JPS633402A - Manufacture of highly filled and highly oriented magnetic iron powder - Google Patents

Manufacture of highly filled and highly oriented magnetic iron powder

Info

Publication number
JPS633402A
JPS633402A JP61146122A JP14612286A JPS633402A JP S633402 A JPS633402 A JP S633402A JP 61146122 A JP61146122 A JP 61146122A JP 14612286 A JP14612286 A JP 14612286A JP S633402 A JPS633402 A JP S633402A
Authority
JP
Japan
Prior art keywords
titanium
zirconium
iron powder
magnetic
magnetic iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61146122A
Other languages
Japanese (ja)
Inventor
Toshinori Ishibashi
石橋 俊則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61146122A priority Critical patent/JPS633402A/en
Publication of JPS633402A publication Critical patent/JPS633402A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To give high orientational property to magnetic iron powder by a method wherein, when titanium oxide and the like is coated on the surface of iron oxyhydroxide, metal alkoxide such as titanium and the like is hydrolyzed and coated under the state wherein iron oxyhydroxide is present. CONSTITUTION:In the magnetic iron powder manufacturing method wherein, after titanium oxide and/or zirconium oxide bas been coated on the surface of the grains of iron oxyhydroxide, they are reduced using hydrogen, and the metal alkoxide of titanium and/or zirconium is hydrolyzed under the state wherein iron oxyhydroxide is present when it is going to be coated. The alkoxide of titanium and the alkoxide of zirconium are effective especially when both of them are used together. As the simple method of coating of titanium and/or zirconium, the cake of water-contained iron oxyhydroxide and the alkoxide of titanium and/or zirconium are kneaded and a hydrolyzing operation is progressed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気記録用磁性鉄粉の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing magnetic iron powder for magnetic recording.

[従来の技術] 2 磁気記録は高密度化が強く指向され、磁性材に対す
る要求もこれに対応してますます厳しくなっている。8
Mビデオ用途について概観すると、磁気テープは出力ア
ップ及びノイズ低減につき改良が続けられており、磁性
粉としては、高いσSの:求から、従来の酸化鉄系磁性
粉と異なり、高い還元度のいわゆる磁性鉄粉が使用され
ている。
[Prior Art] 2. There is a strong trend toward higher density magnetic recording, and the demands on magnetic materials are becoming increasingly strict in response. 8
An overview of M-video applications shows that magnetic tape continues to be improved to increase output and reduce noise.As magnetic powder, due to the requirement for high σS, unlike conventional iron oxide-based magnetic powder, so-called high reduction degree magnetic powder is used. Magnetic iron powder is used.

磁性鉄粉は、−般に、針状のオキシ水酸化鉄を加熱還元
する方法によって製造されているが、加熱還元の際に出
発物質であるオキシ水酸化鉄が形崩れしたり焼結したり
するのを防止するための形状保持成分や最終的に得られ
る磁性鉄粉の磁気特性を調整する成分を、オキシ水酸化
鉄の加熱還元の前にオキシ水酸化鉄の表面に′g1着さ
せる処理を行なうことが、通常行なわれている。
Magnetic iron powder is generally produced by heating and reducing acicular iron oxyhydroxide, but the starting material iron oxyhydroxide may lose its shape or sinter during heating reduction. A treatment in which a shape-retaining component to prevent the formation of particles and a component to adjust the magnetic properties of the finally obtained magnetic iron powder are deposited on the surface of the iron oxyhydroxide before the iron oxyhydroxide is thermally reduced. It is usually done.

被着処理について述べると、形状保持成分としては、P
%5iSAl、B、Cr、Ti、Zr、Mn等の酸化物
、水酸化物、@酸塩、炭酸塩等が用いられており、また
、磁気s!4NM成分としてはN r s Cu 。
Regarding the adhesion treatment, as a shape-retaining component, P
%5iSAl, B, Cr, Ti, Zr, Mn, etc. oxides, hydroxides, acid salts, carbonates, etc. are used, and magnetic s! The 4NM component is N r s Cu .

、Co、Zn等の酸化物、水酸化物、硝酸塩、炭酸塩等
が用いられている。これらの化合物をオキシ水酸化鉄の
表面に被着させる方法としては、捕潰機等の混練機を用
いてオキシ水酸化鉄を含水ペースト状にして前記した被
着成分を添加混合する方法、或いは、オキシ水酸化鉄を
スラリー状態として該スラリーに被着成分の水可溶塩を
添加したのち苛性ソーダや酸でpHを調節して水可溶性
塩を酸化物又は水酸化物としてオキシ水酸化鉄の表面に
沈着させる方法、或いは、両者を組み合せた方法などが
知られている。
, Co, Zn, etc., oxides, hydroxides, nitrates, carbonates, etc. are used. As a method for depositing these compounds on the surface of iron oxyhydroxide, there is a method in which iron oxyhydroxide is made into a water-containing paste using a kneader such as a crusher, and the above-mentioned depositing components are added and mixed. After making iron oxyhydroxide into a slurry state and adding a water-soluble salt as an adhering component to the slurry, the pH is adjusted with caustic soda or an acid, and the water-soluble salt is converted into an oxide or hydroxide to form the surface of iron oxyhydroxide. A method of depositing it on the surface of an organic material, or a method of combining both methods is known.

オキシ水酸化鉄もしくは被着処理を施したオキシ水酸化
鉄の加熱還元処理について述べると、オキシ水酸化鉄も
しくは被着処理を施したオキシ水酸化鉄を水素を用いて
300〜500°Cで直接還元しても良いが、水素によ
る還元の前に非還元性雰囲気下でオキシ水酸化鉄もしく
は被着処理を施したオキシ水酸化鉄を300〜900℃
で焼成したα−Fezesを主成分とする酸化物にして
から水素を用いて300〜500°Cで還元する方法が
焼きしまった磁性鉄粉を得やすいために好ましい。
Regarding the thermal reduction treatment of iron oxyhydroxide or iron oxyhydroxide that has been subjected to a deposition treatment, iron oxyhydroxide or iron oxyhydroxide that has been subjected to a deposition treatment is directly heated at 300 to 500°C using hydrogen. However, before reduction with hydrogen, iron oxyhydroxide or iron oxyhydroxide that has been subjected to adhesion treatment is heated at 300 to 900°C in a non-reducing atmosphere.
A preferred method is to convert the fired α-Fezes into an oxide as a main component and then reduce it using hydrogen at 300 to 500°C because it is easy to obtain fired magnetic iron powder.

・[発明が解決すべき問題点] 磁性鉄粉としては、テープの出力アップの要請に対応し
て、高い配向性、充てん性を有すること、即ちテープに
した時に高いBr値と高いBr78m値をもたらす様な
粉が要求されている。また、テープの低ノイズ化の要請
に対応して、磁性鉄粉の微細化も要求されている。これ
を磁性鉄粉の比表面積で表わすと、現在の市販8III
11テープには約50s2/gの磁性鉄粉が使用されて
いるが、低ノイズ化の要求から60+*”/g曲後の微
細な磁性鉄粉が望まれている。また、低ノイズ化のため
には、微細化するだけでは十分でなく、微細化した磁性
鉄粉を高い充てん度でテープの磁性層に充てんせねばな
らない。
・[Problems to be solved by the invention] In order to meet the demand for increased tape output, magnetic iron powder must have high orientation and filling properties, that is, it must have a high Br value and a high Br78m value when made into a tape. There is a demand for powder that yields In addition, in response to the demand for lower noise tapes, there is also a demand for finer magnetic iron powder. Expressing this in terms of the specific surface area of magnetic iron powder, the current commercially available 8III
11 tape uses magnetic iron powder of approximately 50s2/g, but due to the demand for low noise, fine magnetic iron powder of 60+*"/g is desired after being played. In order to achieve this, it is not enough to simply make the magnetic iron powder fine, but it is also necessary to fill the magnetic layer of the tape with a high degree of filling with fine magnetic iron powder.

以上の様に、磁性鉄粉に対する高配向性、商売てん性賦
与はテープ性能の向上にとってきわめて重要な特性であ
る。
As described above, imparting high orientation and commercial tenacity to magnetic iron powder are extremely important characteristics for improving tape performance.

[問題点を解決するための手段] 本発明者は、磁性鉄粉に高配向性、商売てん性を賦与す
べく鋭意検討して本発明を完成させた。
[Means for Solving the Problems] The present inventor has completed the present invention through intensive studies to impart high orientation and commercial viability to magnetic iron powder.

すなわち、本発明によれば、オキシ水酸化鉄の粒子表面
に酸化チタン及V/又は酸化ジルコニウムを被着させた
のち水素を用いて還元して磁性鉄粉を製造する方法にお
いて、被着に際して、チタン及び/又はジルコニウムの
金属アルコキシドをオキシ水酸化鉄の存在下に加水分解
して被着せしめることを特徴とする磁性鉄粉の製造方法
が提供される。
That is, according to the present invention, in a method for producing magnetic iron powder by depositing titanium oxide and V/or zirconium oxide on the surface of iron oxyhydroxide particles and then reducing the particles using hydrogen, upon deposition, A method for producing magnetic iron powder is provided, which comprises hydrolyzing and depositing titanium and/or zirconium metal alkoxide in the presence of iron oxyhydroxide.

本発明において、チタンのアルコキシドは式Ti(OR
)4[式中、Rはアルキル残基]で表わされるアルキル
チタネートであって、Rがイソプロピル基、11−ブチ
ル基又は2−エチルヘキシル基であるものが市場で入手
しやすいが、TiC1,や1’ i(N Ox)−をエ
チレングリコールに添加して80°C以上に加熱するこ
とにより得られる′riのエチレングリフラードを用い
ても良い、−方、ジルコニウムのフルフキシトは式Z 
r(ORL[式中、Rはアルキル残基]で表わされるア
ルキルチタネートであって、Rがプロピル基のもの即ち
Z r(n −C2H’t O)4が市場で入手できる
が、Tiの賜金と同様な処理で得られるZrのエチレン
グリフラードを用いることもできる。これらのチタンの
アルコキシド及びノルコニウムのアルコキシドは、それ
ぞれ単独でも使用できるが、チタン及びジルコニウムの
複合酸化物となるように両者を併用すると、特に効果的
である。
In the present invention, the alkoxide of titanium is of the formula Ti(OR
) 4 [wherein R is an alkyl residue] Alkyl titanates in which R is an isopropyl group, 11-butyl group, or 2-ethylhexyl group are easily available on the market, but TiC1, 1 Ethylene glyfuride of 'ri obtained by adding 'i(NOx)- to ethylene glycol and heating to 80°C or above may be used.
An alkyl titanate represented by r(ORL [wherein R is an alkyl residue], in which R is a propyl group, that is, Z r(n -C2H't O)4) is available on the market, It is also possible to use Zr ethylene glyfuride obtained by the same treatment as .These titanium alkoxides and norconium alkoxides can be used alone, but they can be used in combination to form a composite oxide of titanium and zirconium. This is particularly effective.

I’ll化チタン及び酸化ツルコニツムは、鉄に対して
、鉄100原子当りチタン及びジルコニウムの総和が1
0原子以下となるような量で被着せしめるのが良く、1
0原子より多いと、Br値及びBr78m値が小さくな
り好ましくない。これは、チタン及び/又はジルコニウ
ムのアルコキシドの加水分解によって生ずる酸化チタン
、酸化ジルコニウム及び/又はその複合酸化物を被着し
たオキシ水酸化鉄同志が凝集し、そのような被着オキシ
酸化鉄を出発原料として得られる磁性鉄粉が分散性や充
てん性に劣るためであろうと思われる。
Titanium chloride and turconium oxide have a total of 1 titanium and zirconium per 100 atoms of iron.
It is best to deposit in an amount that is 0 atoms or less, and 1
If there are more than 0 atoms, the Br value and Br78m value become small, which is not preferable. This is because iron oxyhydroxides coated with titanium oxide, zirconium oxide, and/or their composite oxides, which are produced by hydrolysis of titanium and/or zirconium alkoxides, aggregate, and the deposited iron oxyhydroxides start to aggregate. This is probably because the magnetic iron powder obtained as a raw material has poor dispersibility and filling properties.

本発明においてチタン及び/又はジルコニウムのアルコ
キシドのオキシ水酸化鉄への被着方法としては、種々の
方法が採用できるが、簡便には、水を含んだオキシ水酸
化鉄のケーキとチタン及び/又はノルコニウムのアルコ
キシドを混練することで加水分解が同時に進行し、酸化
チタン及び酸化ノルコニウムを被着せしめることができ
る。また、チタン及び/又はシルコニツムのアルコキシ
ドをアルコールに希釈して上述の混練を行なうことによ
っても、或いは、多量のアルコール中にオキシ水酸化鉄
を分散せしめ、チタン及1/又はジルコニウムのアルコ
キシドと混合し加水分解のために適量の水を添加した後
にアルコールを濾過又は蒸発除去することによっても、
達成される。
In the present invention, various methods can be adopted for adhering titanium and/or zirconium alkoxide to iron oxyhydroxide, but a simple method is to attach a cake of iron oxyhydroxide containing water and titanium and/or By kneading norconium alkoxide, hydrolysis proceeds simultaneously, allowing titanium oxide and norconium oxide to be deposited. Alternatively, by diluting titanium and/or silconium alkoxide with alcohol and performing the above-mentioned kneading, or by dispersing iron oxyhydroxide in a large amount of alcohol and mixing it with titanium and/or zirconium alkoxide. Also by adding an appropriate amount of water for hydrolysis and then removing the alcohol by filtration or evaporation.
achieved.

本発明においは、オキシ水酸化鉄を製造する方法、或い
は、被着後にオキシ水酸化鉄を焼成還元して磁性鉄粉と
する方法については特に制限がなく、公知の種々の方法
が採用できる0例えば、オキシ水酸化鉄の製法としては
、実施例に記載したデーサイトの合成例が、また、焼a
、a元については同じ(実施例に記載した処理例が、そ
れぞれ例示できる。
In the present invention, there are no particular restrictions on the method of producing iron oxyhydroxide or the method of baking and reducing iron oxyhydroxide after deposition to obtain magnetic iron powder, and various known methods can be employed. For example, as a method for producing iron oxyhydroxide, the dacite synthesis example described in the Examples is also used.
, a element is the same (the processing examples described in the examples can be exemplified respectively).

[作用] 本発明においては、チタン及1//又はジルコニウムの
金属アルコキシVをオキシ水酸化鉄の存在下に加水分解
することによって被着せしめるので、オキシ水酸化鉄に
均一に酸化チタン及び/又は酸化ジルコニウムが被着さ
れ、特に特定の量の酸化チタン及V/又は酸化ジルコニ
ウムを被着せしめた場合′にはオキシ水酸化鉄同志が凝
集することがなく、従って、磁性鉄粉としたときに大き
なりr値及び大きなりr/Bm値をもつものが得られる
[Function] In the present invention, since the metal alkoxy V of titanium and/or zirconium is deposited by hydrolyzing it in the presence of iron oxyhydroxide, titanium oxide and/or zirconium is uniformly applied to the iron oxyhydroxide. When zirconium oxide is deposited, especially when a specific amount of titanium oxide and V/or zirconium oxide is deposited, the iron oxyhydroxides do not aggregate together, so when made into magnetic iron powder, A large r value and a large r/Bm value are obtained.

[実施例1 以下に、実施例を示し、本発明をさらに説明する。[Example 1 The present invention will be further explained below with reference to Examples.

ス1■生 (デーサイトの合成) FeSO< ・7HzOの50kg及C7N15O,・
6H20の0 、5 kgを水1000J2に溶解し、
液温を40℃に調整した(これを溶液Iとする)、また
、NaOH45kgを水5002に溶解し、液温を35
°Cに調整した(これを溶液■とする)。
Raw material (synthesis of dacite) 50 kg of FeSO<・7HzO and C7N15O,・
Dissolve 0.5 kg of 6H20 in 1000 J2 of water,
The liquid temperature was adjusted to 40°C (this is called solution I). Also, 45kg of NaOH was dissolved in 5002°C of water, and the liquid temperature was adjusted to 35°C.
The temperature was adjusted to °C (this will be referred to as solution ■).

、・ 攪拌機付き内容積3M3の反応器に溶液Iを仕込
み、次いで溶液■を一括投入し、5分間攪拌混合して中
和反応を完結させた後、12M’/winの供給速度で
空気を吹込み酸化を行なうことにより、黄褐色のデーサ
イトが沈澱粒子として得られた。
,・ Pour solution I into a reactor with an internal volume of 3M3 equipped with a stirrer, then add solution II all at once, stir and mix for 5 minutes to complete the neutralization reaction, and then blow air at a feed rate of 12M'/win. By carrying out the mixed oxidation, yellowish brown dacite was obtained as precipitated particles.

該デーサイトを水洗、M’過し、ン濾過ケーキの一部を
分取して分析したところ、該デーサイトは軸比1G、比
表面積80m2/gの針状粒子であった(該デーサイト
をGfと呼」:)。
The dacite was washed with water, filtered with M', and a part of the filtered cake was collected and analyzed, and it was found that the dacite was acicular particles with an axial ratio of 1G and a specific surface area of 80m2/g (the dacite is called Gf” :).

(被着処理) デーサイ)(GI)の水洗濾過ケーキ10kg(デーサ
イト2 、2 kg 、水7 、8 kgから成る)を
襠潰磯に投入した。Ti(i−CzH70)−8,3と
及びZ r(n−C、H70)+5.0gをブタ/−ル
50−で希釈した液を、デーサイトケーキに10分間か
けて徐々に添加し、次いで5時間混練した。この過程で
、TiO2とZrC)2の複合酸化物で表面が被覆され
たデーサイトが得られた。
(Adhesion Treatment) 10 kg of water-washed filter cake (consisting of 2 kg of dacite and 7 kg of water and 8 kg of water) of Dacite (GI) was put into a gristle. A solution prepared by diluting Ti(i-CzH70)-8,3 and Zr(n-C,H70)+5.0g with 50-butol was gradually added to the dacite cake over 10 minutes. The mixture was then kneaded for 5 hours. In this process, dacite whose surface was coated with a composite oxide of TiO2 and ZrC)2 was obtained.

引き続き、該処理ケーキを110℃にセットした乾燥機
に入れて乾燥し、乾燥ケーキを乳鉢で粉砕して48メツ
シユ径より小さい顆粒に調整した。
Subsequently, the treated cake was dried in a dryer set at 110°C, and the dried cake was ground in a mortar to form granules with a diameter smaller than 48 mesh.

この顆粒の一部を分取して分析したところ、該被着粉は
、重量比で、Ni/Fe=0.95/100、Zr/F
e=1.0/I 00、T i/ F e= 1 、0
/100であった。
When a part of this granule was separated and analyzed, it was found that the adhering powder had a weight ratio of Ni/Fe=0.95/100, Zr/F
e=1.0/I 00, T i/F e= 1, 0
/100.

(11元) 前記被着粉を空気中650℃で4時間加熱焼成し、その
1 kgを攪拌流動床方式の反応器に仕込み、N2を3
ONm’/Hで供給しつつ、反応器内の温度を450℃
に昇温しで3時IIVI維持した後、ガスをN2に切換
えて大気温度まで冷却した。
(11 yuan) The adhered powder was heated and calcined in air at 650°C for 4 hours, 1 kg of it was charged into a stirred fluidized bed reactor, and N2 was added to the reactor for 3 hours.
While supplying at ONm'/H, the temperature inside the reactor was increased to 450℃.
After raising the temperature to 3:00 and maintaining it at 3:00, the gas was switched to N2 and the temperature was cooled to ambient temperature.

次に、還元粉を回収してトルエン中に浸漬した後、平皿
上に展開して空気と接触せしめ、還元粉末の表面に酸化
被膜を形1&させて安定化し、最終的にドライの磁性鉄
粉約0 、6 kgを得た。
Next, the reduced powder is collected and immersed in toluene, spread on a flat plate and brought into contact with air to form an oxide film on the surface of the reduced powder to stabilize it, and finally dry magnetic iron powder. Approximately 0.6 kg was obtained.

(磁性鉄粉の評価) ■ 粉体物性 粉体物性として、磁気特性及び比表面積にっき測定して
、次の値を得た。尚、磁気特性は振動試料型磁力計(V
SM)を用いて測定磁界10KOeにて測定した。
(Evaluation of magnetic iron powder) ■ Powder physical properties As powder physical properties, magnetic properties and specific surface area were measured and the following values were obtained. The magnetic properties were measured using a vibrating sample magnetometer (V
SM) at a measurement magnetic field of 10 KOe.

He        1530 00 σ3       126  emu/litσ「/σ
S      O951 比表面積     53  m”/g ■ シート物性の測定 磁性鉄粉300部、VAGH(塩・酸ビ系重合体、UC
C社製商品名)45部、トルエン175部及びメチルイ
ソブチルケトン175ffl!からなる混合物をボール
ミル中で24時間攪拌分散した後、さらにタケネー)L
−1007(ツレタンプレポリマー、武田薬品製商品名
)2部、トルエン15部及びメチルイソブチルケトン1
5部をボールミル中に加え、1時間攪拌分散して磁性塗
料をl111!l!シた。
He 1530 00 σ3 126 emu/litσ "/σ
S O951 Specific surface area 53 m”/g ■Measurement of sheet properties 300 parts of magnetic iron powder, VAGH (salt/vinyl acid polymer, UC
(trade name manufactured by Company C) 45 parts, 175 parts of toluene, and 175 ffl of methyl isobutyl ketone! After stirring and dispersing the mixture in a ball mill for 24 hours,
2 parts of -1007 (Turethane prepolymer, trade name manufactured by Takeda Pharmaceutical Co., Ltd.), 15 parts of toluene, and 1 part of methyl isobutyl ketone
Add 5 parts to a ball mill and stir and disperse for 1 hour to form a magnetic paint. l! Shita.

得られた磁性塗料を、厚さ16μ論のポリエステルフィ
ルムに乾燥厚が3μ鶴となる様に塗布し、磁界中で金属
粉末の配向を行なったのち乾燥し、次いで磁性層表面を
カレンダー処理により鏡面加工し、所定の幅に裁断して
検体を得た。
The obtained magnetic paint was applied to a polyester film with a thickness of 16 μm so that the dry thickness was 3 μm, the metal powder was oriented in a magnetic field, and then dried. Then, the surface of the magnetic layer was calendered to a mirror finish. The samples were processed and cut to a predetermined width.

該検体をVSMにて測定磁界10KOeで測定して、次
のシート物性を得た。
The sample was measured with a VSM at a measurement magnetic field of 10 KOe to obtain the following sheet properties.

He         1420 0eBr     
    2440  GaussBr/Bn     
  0.80 比」(劣り一 デーサイト(G 1 )のt濾過ケーキ10kg(デー
サイト2.2 kg、水7 、8 kg )を補i宵機
に投入した9Ti(NO=)−85,6gとZr0(N
 Oり2・2 H2O4(Li2.とを混合したものを
デーサイトケーキに10分間かけて添加し、次いで3時
間混練し、アンモニア水でpHを8に調整し、引き続き
2時間混練した。
He 1420 0eBr
2440 GaussBr/Bn
9Ti (NO =) - 85.6 g of 10 kg of filtered cake (2.2 kg of dacite, 7.8 kg of water) (2.2 kg of dacite, 7.8 kg of water) of 0.80 ratio (inferior 1 dacite (G 1 )) was put into the evening machine. and Zr0(N
A mixture of O2.2 H2O4 (Li2.) was added to the dacite cake over 10 minutes, then kneaded for 3 hours, the pH was adjusted to 8 with aqueous ammonia, and then kneaded for 2 hours.

該処理ケーキを110°Cにセットした乾燥機に入れて
乾燥し、乾燥ケーキを乳鉢で粉砕して48メツシユ径よ
り小さい顆粒に調整した。
The treated cake was dried in a dryer set at 110°C, and the dried cake was ground in a mortar to form granules with a diameter smaller than 48 mesh.

この顆粒の一部を分取して分析したところ、該被着粉は
、重量比で、Ni/Fc=0.95/100、Zr/F
e−0,95/ 100、Ti/Fe=1゜08/10
0であった。
When a part of these granules was separated and analyzed, it was found that the adhering powder had a weight ratio of Ni/Fc=0.95/100 and Zr/Fc.
e-0,95/100, Ti/Fe=1°08/10
It was 0.

以下、実施例と同一条件の抛作により、磁性鉄粉約0 
、6 kgを得た。
Below, the magnetic iron powder was approximately 0
, 6 kg was obtained.

実施例と同一条件で測定した磁性鉄粉の粉体物性は、 He        1490 0e σ3       125  emu/gσr/σs 
     0.48 比表面積     50  m27g であり、シート物性は、 He         1400 0eBr     
    2150  GaussBr/Bm     
 0.74 であった。
The powder properties of the magnetic iron powder measured under the same conditions as in the example are: He 1490 0e σ3 125 emu/gσr/σs
0.48 Specific surface area 50 m27g, sheet physical properties are He 1400 0eBr
2150 GaussBr/Bm
It was 0.74.

友鷲j[ζ 被着工程ニオイテ、Ti(+−CzHtOLを838に
、Z r(n −C3H? O)−を1 o、ogに、
ブタノールを300e1に、それぞれ使用量を変更した
以外は、実施例と同条件の抛作を行ない、ドライの磁性
鉄粉約0 、 G kgを得た。
Tomowashi j[ζ Adhesion process nitrite, Ti (+-CzHtOL to 838, Zr(n-C3H?O)- to 1 o, og,
Approximately 0.0 G kg of dry magnetic iron powder was obtained by carrying out cultivation under the same conditions as in Example except that the amount of butanol used was changed to 300 e1.

この被で粉の一部を分取して分析したところ、該被着粉
は、重量比で、Ni/Fe=0.95/100、Zr/
 Fe= 2.01 / 100、Ti/Fe=10.
1/100であった。これは、Fel 00原子あたり
、Zrが0.6原子、Ti力弓2原子に相当する。
When a part of the coated powder was separated and analyzed, it was found that the coated powder had a weight ratio of Ni/Fe=0.95/100, Zr/
Fe=2.01/100, Ti/Fe=10.
It was 1/100. This corresponds to 0.6 atoms of Zr and 2 atoms of Ti per 00 atoms of Fel.

粉体物性は、 He        1420 0e σs        104  emu/gL:!r/
σS     O,44 比表面積     64  m27B であり、シート物性は、 Hc         1390 0eBr     
    1450  GaussBr/Bn+    
  0.68 であった。
The powder physical properties are He 1420 0e σs 104 emu/gL:! r/
σS O,44 Specific surface area 64 m27B, sheet physical properties are Hc 1390 0eBr
1450 GaussBr/Bn+
It was 0.68.

[効果] 本発明の方法は、商売てん高配向性の磁性鉄粉を与える
ので、工業的に極めて価値がある。
[Effect] The method of the present invention provides commercially highly oriented magnetic iron powder, and is therefore extremely valuable industrially.

Claims (1)

【特許請求の範囲】 1、オキシ水酸化鉄の粒子表面に酸化チタン及び/又は
酸化ジルコニウムを被着させたのち水素を用いて還元し
て磁性鉄粉を製造する方法において、チタン及び/又は
ジルコニウムの金属アルコキシドをオキシ水酸化鉄の存
在下に加水分解して被着せしめることを特徴とする磁性
鉄粉の製造方法。 2、チタンのアルコキシド及びジルコニウムのアルコキ
シドを併用する特許請求の範囲第1項記載の方法。 3、チタン及びジルコニウムの総和が鉄100原子に対
して10原子以下となるように被着せしめる特許請求の
範囲第1項または第2項記載の方法。
[Claims] 1. In a method for producing magnetic iron powder by depositing titanium oxide and/or zirconium oxide on the surface of particles of iron oxyhydroxide and then reducing the particles with hydrogen, titanium and/or zirconium A method for producing magnetic iron powder, which comprises hydrolyzing and depositing a metal alkoxide in the presence of iron oxyhydroxide. 2. The method according to claim 1, in which titanium alkoxide and zirconium alkoxide are used in combination. 3. The method according to claim 1 or 2, wherein the total amount of titanium and zirconium is 10 atoms or less per 100 atoms of iron.
JP61146122A 1986-06-24 1986-06-24 Manufacture of highly filled and highly oriented magnetic iron powder Pending JPS633402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61146122A JPS633402A (en) 1986-06-24 1986-06-24 Manufacture of highly filled and highly oriented magnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61146122A JPS633402A (en) 1986-06-24 1986-06-24 Manufacture of highly filled and highly oriented magnetic iron powder

Publications (1)

Publication Number Publication Date
JPS633402A true JPS633402A (en) 1988-01-08

Family

ID=15400647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61146122A Pending JPS633402A (en) 1986-06-24 1986-06-24 Manufacture of highly filled and highly oriented magnetic iron powder

Country Status (1)

Country Link
JP (1) JPS633402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010230U (en) * 1983-06-30 1985-01-24 株式会社フジクラ flat cable
EP0609897A3 (en) * 1993-02-05 1994-08-24 Nittetsu Mining Co., Ltd. Powder having at least one layer and process for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010230U (en) * 1983-06-30 1985-01-24 株式会社フジクラ flat cable
JPH0117771Y2 (en) * 1983-06-30 1989-05-24
EP0609897A3 (en) * 1993-02-05 1994-08-24 Nittetsu Mining Co., Ltd. Powder having at least one layer and process for preparing the same

Similar Documents

Publication Publication Date Title
JPS633402A (en) Manufacture of highly filled and highly oriented magnetic iron powder
JPS62241827A (en) Production of ferromagnetic fine powder for magnetic recording
JPS62275027A (en) Production of ferromagnetic fine powder for magnetic recording
JPS6331085B2 (en)
JP5102926B2 (en) Method for producing titanium-iron composite oxide pigment
JP3306614B2 (en) Method for producing ceramic material powder
JPH07172839A (en) Production of magnetic powder of hexagonal ba ferrite
JPH0624748A (en) Niobate and/or tantalate of metal, their production and their use
JPH06234522A (en) Electrically conductive material and its production
JPH0427168B2 (en)
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPS6260204A (en) Manufacture of magnetic iron powder of high filling adaptability and high orientational property
JPH013019A (en) Method for producing perovskite ceramic fine powder
JP2950892B2 (en) Method for producing hexagonal plate-like barium ferrite
JPS62235220A (en) Production of ferromagnetic fine powder for magnetic recording
JPH0717385B2 (en) Method for producing composite ferrite magnetic powder
JPS6255902A (en) Manufacture of magnetic iron powder with high bulk density
JPS6258605A (en) Manufacture of magnetic iron powder of high filling adaptability and orientational property
JPH02133323A (en) Production of magnetic powder of magnetoplumbite type ferrite
JPH0341412B2 (en)
JPS63307109A (en) Method for synthesizing piezoelectric and dielectric ceramics powder
JPH06651B2 (en) Method for producing piezoelectric ceramic powder
JPH01100028A (en) Barium ferrite magnetic powder and production thereof
JPH0521321B2 (en)
JPH02204332A (en) Production of hexagonal ferrite magnetic powder