JP3681550B2 - Rare earth oxide and method for producing the same - Google Patents

Rare earth oxide and method for producing the same Download PDF

Info

Publication number
JP3681550B2
JP3681550B2 JP21537298A JP21537298A JP3681550B2 JP 3681550 B2 JP3681550 B2 JP 3681550B2 JP 21537298 A JP21537298 A JP 21537298A JP 21537298 A JP21537298 A JP 21537298A JP 3681550 B2 JP3681550 B2 JP 3681550B2
Authority
JP
Japan
Prior art keywords
rare earth
earth oxide
carbonate
producing
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21537298A
Other languages
Japanese (ja)
Other versions
JP2000044234A (en
Inventor
和浩 綿谷
勇 藤岡
政利 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP21537298A priority Critical patent/JP3681550B2/en
Publication of JP2000044234A publication Critical patent/JP2000044234A/en
Application granted granted Critical
Publication of JP3681550B2 publication Critical patent/JP3681550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、希土類元素を含んだセラミックスの原料やセラミックス焼結助剤などに有用なフィッシャー径が小さく、比表面積が大きく、且つ結晶子サイズが小さい希土類酸化物およびその製造方法に関するものである。
【0002】
【従来の技術】
一般に希土類酸化物は、その蓚酸塩、炭酸塩、水酸化物、それらの複塩、その他の塩類を焼成することによって得られている。また、希土類酸化物を焼結したセラミックスもしくは希土類酸化物を含んだセラミックスには、これらの方法で製造された希土類酸化物が一般に利用されているが、その製造方法の違いによってセラミックスを製造する際の焼結密度の上りやすさに違いが生じる。焼結密度の上りやすさは使用する希土類酸化物の粒径、比表面積、結晶子サイズなどが影響していることが知られている。また、他のセラミックス粉末などに混合する場合には、粒子同士の凝集力が弱く、大きな労力をかけずに混合できるかどうかが重要な要素である。セラミックスに使用する希土類酸化物粉末としては、一般的に、粒径は細かく、比表面積は大きく、結晶子サイズは小さいほうが良いとされている。
【0003】
【発明が解決しようとする課題】
そこで本発明者らは、焼結体に利用した際に焼結密度が上がりやすい、粒径が小さく、比表面積が大きく、且つ結晶子サイズが小さい希土類酸化物を得ることを目的として研究を行った。
【0004】
通常、希土類元素を含むセラミックスの原料としての希土類酸化物に求められる特徴としては、より低温で焼結密度が上がること、粉末同士の分散状態が良いことなどが挙げられる。このような特徴を希土類酸化物に持たせるためには一般に、粒子径が小さいこと、比表面積が大きいこと、結晶子サイズが小さいことが有効である。
ところで、希土類酸化物を作る場合には、通常はその前駆体としての蓚酸塩や炭酸塩などの塩としての形態があり、これらを焼成することによって酸化物を合成するために、前駆体としての塩の特徴が、製造する酸化物の特性に影響をあたえることになる。そのために希土類元素を含むセラミックスに適した希土類酸化物粒子を得るためには目的に合った前駆体としての塩を製造することが必要となる。
例えば、蓚酸塩やその複塩を希土類酸化物製造の前駆体とした場合は、一般に分散性の良好な粉体が得られるが、反面粒子径があまり小さくならず、せいぜい1μm程度にしかならないという欠点がある。また、水酸化物を中間原料とした場合は、粒径は小さいものができるが、沈殿がゲル状のため、固液分離その他の取り扱いが困難であり、また焼成時に凝集して粒子径が大きくなるという欠点がある。このように、セラミックス原料としての希土類酸化物粉末を作る上で、いずれの前駆体を用いても一長一短がある。
本発明は、セラミックス原料として有用な、粒径が小さく、比表面積が大きく、結晶子サイズが小さい希土類酸化物を効率良く提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、希土類酸化物の前駆体としての塩のそれぞれの長所に着目し、おのおのの長所を合せ持った前駆体を作ることを考えた。
まず、水酸化物沈殿の粒子の細かさに着目し、これを活かすことを考えた。しかし、水酸化物沈殿はそのままでは上記のように焼成時に粒子径が大きくなってしまう。そこで、一旦水酸化物沈殿を生成させておき、この水酸化物沈殿中の水酸基を別の基、例えば蓚酸イオンや炭酸イオンで置き換えることにより、水酸化物沈殿の欠点である濾過性の悪さを改善し、焼成時の粒子径の成長を抑えることができるのではないかと考え、検討を行った。
その結果、希土類元素の水酸化物をアルカリを使って析出させる工程の途中で炭酸イオン発生物質を添加することにより、水酸化物の一部または全部を炭酸塩もしくは塩基性炭酸塩に変化させることによって、濾過性の良好な沈殿物が得られ、これを固液分離し、得られたケーキを焼成することで、セラミックス原料として必要な、粒径が小さく、比表面積が大きく、且つ結晶子サイズが小さい希土類酸化物が得られることを見いだした。
またこの方法により得られた沈殿は通常の水酸化物と異なり、固液分離その他の取扱いが容易で、焼成時にも粒子径が大きくならないという長所がある。
【0006】
【発明の実施の形態】
以下、本発明における希土類酸化物の製造条件をさらに詳しく説明する。
なお本発明で言う希土類酸化物とは、酸化イットリウムを含む周期律表の原子番号37〜71のランタノイドの1種類の希土類酸化物から複数の希土類酸化物からなるものまでを含んだものである。
はじめに希土類元素の塩を含んだ水溶液を調製する。
塩としては塩化物、硝酸塩、酢酸塩等が例示されるが、硝酸塩が好ましい。
希土類元素の溶液濃度は1モル/リットル以下がよい。これ以上の高濃度では結晶の析出後の取扱いが不便なためである。
【0007】
次いで希土類元素の塩を含んだ水溶液にアルカリを添加して希土類の水酸化物沈殿を生成させる。
アルカリの添加量は希土類元素のモル数の2〜10倍のモル数とすることが必要で、好ましくは3〜3.5倍のモル数とするのがよく、2倍未満のモル数では析出が不十分となり、10倍のモル数を超えると不経済となる。ただし、希土類元素の塩の溶液にあらかじめ酸が含まれている場合は酸を中和する量のアルカリを添加することができる。
アルカリの種類としてはアンモニアが好ましいが、使用する希土類酸化物中にアルカリ金属元素の混入がさしつかえない場合は、苛性ソーダなどアルカリ金属の水酸化物も使用できる。
【0008】
通常アルカリを添加して生成させた希土類の水酸化物沈殿からでも、結晶子サイズの小さな水酸化物を得ることが可能であるが、得られる沈殿がゲル状のため固液分離が容易ではなく、さらには焼成工程などを経て酸化物に合成する際に、水酸基からの脱水や凝集によって、粒子径が大きくなってしまい、粒径の小さな粒子は得られなくなる。
そこで本発明ではアルカリによる希土類水酸化物沈殿生成工程の途中で炭酸イオン発生物質を添加することにより、水酸化物沈殿の一部もしくは全部を炭酸塩もしくは塩基性炭酸塩に変化させる工程を設けた。
炭酸イオン発生物質としては重炭酸アンモニウムが一般的であるが、炭酸アンモニウムを用いることもできる。
一度生成した希土類水酸化物沈殿は、炭酸イオン発生物質を添加することによって炭酸塩もしくは塩基性炭酸塩に変化させる。
このような方法で合成された希土類炭酸塩もしくは塩基性炭酸塩は、はじめから希土類元素の塩を含んだ溶液に炭酸イオン発生物質を添加して作った炭酸塩や塩基性炭酸塩に比べると粒径が小さく、結晶子サイズも小さいことが見いだされた。これはその粒径や結晶子の大きさなどが水酸化物沈殿の特徴を受け継いでいるからである。しかも希土類炭酸塩は通常、焼成時に粒子径が大きくなりにくいという特徴を持っているため、粒子径の小さな酸化物を得ることができる。
【0009】
炭酸イオン発生物質の添加量は希土類元素のモル数の0.5〜2倍のモル数とすることが必要で、0.5倍未満のモル数および2倍を超えるモル数では、濾過性の悪い沈殿物を生じる。
炭酸イオン発生物の添加のタイミングについては、希土類水酸化物沈殿が生じている状態で添加すれば、いつでもよい。しかし、あまり水酸化物沈殿が生成していない状態では効果がないため、溶液中に含まれる希土類元素のモル数の2倍程度のモル数のアルカリを添加した時点で添加するのが好ましい。
溶液の温度は特に規定する必要はないが、10℃以上90℃以下で作業しやすい温度が好ましい。炭酸イオン発生物質の添加後は希土類の水酸化物の水酸基と炭酸イオン発生物質の炭酸根が置換するのを待つために20分以上の攪拌、熟成時間をとるのが好ましい。こうして得られた沈殿を固液分離し、必要に応じて乾燥する。
析出させた希土類元素の沈殿物は、希土類元素の水酸化物と炭酸塩の共沈品の様な状態になっており、水酸化物沈殿のようにゲル状ではなく、濾過性の良好なケーキとなるために固液分離の作業性も水酸化物沈殿に比べて非常に改善されている。
【0010】
固液分離されたケーキの焼成温度は300℃以上900℃以下で行うことが必要で、好ましくは600〜900℃とするのがよく、300℃未満では酸化物への変化が不十分であり、900℃を超えると焼結が始まってしまう。
焼成直後の酸化物はフロック状になっているので、これを手もみ、ふるい、解砕機などの手段でほぐしてやるとセラミックス原料として使いよい。
【0011】
このようにして得られた希土類酸化物は、フィッシャー径が0.5μm以下、BET法で測定した比表面積が30m2 /g以上、旦つX線回折法で測定した結晶子の大きさが250Å以下である。
この希土類酸化物を用いた焼結体の焼結密度を測定したところ、従来の方法で合成された酸化物より、低い温度で焼結体の密度が向上し焼結特性が優れていることがわかった。
【0012】
【実施例】
以下、本発明の実施の形態を実施例及び比較例を挙げて具体的に説明するが、これらは本発明を限定するものではない。
(物性測定方法)
(1)粒子径:フィッシャー法にて測定した。
(2)比表面積:BET法にて測定した。
(3)結晶子サイズ:X線回折装置でのシェラー法によって測定した。
(実施例1)
濃度 0.1モル/リットルの硝酸イットリウム水溶液10リットルに、25%アンモニア水を2モル分、溶液を攪拌しながら添加し、該アンモニア水添加後、重炭酸アンモニウムの10%溶液を重炭酸アンモニウムで1.5モル分添加し、約60分間攪拌する。さらに25%アンモニア水を1モル分添加して10分間攪拌を続け沈殿を生成させた。このときの溶液のpHは約9であった。沈殿溶液をブフネル漏斗で濾過して沈殿を分離したところ容易に行うことができた。次いで沈殿を680℃で6時間焼成して酸化イットリウムの粉末約112gを得た。この酸化イットリウムの粉末のフィッシャー径は0.2μmで、比表面積は38m2/gで、結晶子サイズは約210Åであった。また、この粉末を原料に酸化イットリウムの焼結体を試作したところ、成形密度は約1.5g/cm3(理論密度の約30%)となり、これを1500℃で4時間常圧焼結したところ焼結密度は約4.5g/cm3(理論密度の約90%)であった。
【0013】
(比較例1)
実施例1においてアンモニア水の代わりに蓚酸を添加してイットリウムの蓚酸塩を沈殿させ、これを実施例1と同様に処理して酸化イットリウムの粉末を得た。この酸化イットリウムの粉末のフィッシャー径は0.7μmで、比表面積は10m2/gで、結晶子サイズは約1000Åであった。また、この粉末を原料に酸化イットリウムの焼結体を試作したところ、成形密度は約2.5g/cm3(理論密度の約50%)となり、これを1500℃で4時間常圧焼結したところ焼結密度は約3.8g/cm3(理論密度の約75%)であった。
【0014】
【発明の効果】
本発明によると、希土類元素のセラミックスの原料やセラミックスの焼結助剤などに有用な、フィッシャー径が小さく、比表面積が大きく、且つ結晶子サイズが小さい希土類酸化物が簡便な方法で経済的に製造でき、産業上その利用価値は極めて高いといえる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rare earth oxide having a small Fischer diameter, a large specific surface area, and a small crystallite size, which are useful as a raw material for ceramics containing rare earth elements, a ceramic sintering aid, and the like, and a method for producing the same.
[0002]
[Prior art]
In general, rare earth oxides are obtained by firing their oxalates, carbonates, hydroxides, their double salts, and other salts. In addition, rare earth oxides produced by these methods are generally used for ceramics sintered with rare earth oxides or ceramics containing rare earth oxides. There is a difference in the ease of increasing the sintered density. It is known that the ease of increasing the sintering density is influenced by the particle size, specific surface area, crystallite size, etc. of the rare earth oxide used. Moreover, when mixing with other ceramic powder etc., the cohesive force of particle | grains is weak, and it is an important element whether it can mix, without applying a big effort. As rare earth oxide powders used for ceramics, it is generally preferred that the particle size is fine, the specific surface area is large, and the crystallite size is small.
[0003]
[Problems to be solved by the invention]
Therefore, the present inventors have conducted research for the purpose of obtaining rare earth oxides that tend to increase the sintering density, have a small particle size, a large specific surface area, and a small crystallite size when used in a sintered body. It was.
[0004]
In general, the characteristics required of rare earth oxides as raw materials for ceramics containing rare earth elements include an increase in sintering density at a lower temperature and a good dispersion state between powders. In order to impart such characteristics to the rare earth oxide, it is generally effective that the particle diameter is small, the specific surface area is large, and the crystallite size is small.
By the way, when making rare earth oxides, there are usually forms as salts such as oxalates and carbonates as precursors thereof, and in order to synthesize oxides by firing these, The characteristics of the salt will affect the properties of the oxide produced. Therefore, in order to obtain rare earth oxide particles suitable for ceramics containing rare earth elements, it is necessary to produce a salt as a precursor suitable for the purpose.
For example, when oxalate or a double salt thereof is used as a precursor for the production of rare earth oxides, a powder having good dispersibility is generally obtained, but on the other hand, the particle diameter is not so small and is only about 1 μm at most. There are drawbacks. In addition, when hydroxide is used as an intermediate raw material, the particle size can be small, but because the precipitate is in a gel form, solid-liquid separation and other handling are difficult, and the particle size is increased by aggregation during firing. There is a drawback of becoming. Thus, there are advantages and disadvantages in using any of the precursors in making rare earth oxide powder as a ceramic raw material.
An object of the present invention is to efficiently provide a rare earth oxide useful as a ceramic raw material, having a small particle size, a large specific surface area, and a small crystallite size.
[0005]
[Means for Solving the Problems]
The present inventors focused on the advantages of each salt as a rare earth oxide precursor and considered to make a precursor having both advantages.
First, attention was paid to the fineness of the particles of the hydroxide precipitate, and it was considered to make use of this. However, if the hydroxide precipitate is left as it is, the particle size becomes large during firing as described above. Therefore, once the hydroxide precipitate is generated, and the hydroxyl group in the hydroxide precipitate is replaced with another group, for example, oxalate ion or carbonate ion, the poor filterability, which is a drawback of the hydroxide precipitate, is reduced. We thought that it would be possible to improve and suppress the growth of the particle size during firing, and studied.
As a result, a part or all of the hydroxide can be changed to carbonate or basic carbonate by adding a carbonate ion generating substance in the process of depositing rare earth hydroxide using alkali. Thus, a precipitate having good filterability is obtained, and this is subjected to solid-liquid separation, and the obtained cake is baked, so that the required particle size is small, the specific surface area is large, and the crystallite size is required as a ceramic raw material. It has been found that a rare earth oxide having a small particle size can be obtained.
In addition, the precipitate obtained by this method is different from ordinary hydroxides in that it is easy to handle solid-liquid separation and other operations, and has the advantage that the particle size does not increase even during firing.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the production conditions of the rare earth oxide in the present invention will be described in more detail.
The rare earth oxide referred to in the present invention includes one kind of rare earth oxide of lanthanoids having atomic numbers 37 to 71 in the periodic table containing yttrium oxide to those composed of a plurality of rare earth oxides.
First, an aqueous solution containing a rare earth element salt is prepared.
Examples of the salt include chloride, nitrate, acetate and the like, and nitrate is preferred.
The solution concentration of the rare earth element is preferably 1 mol / liter or less. This is because a higher concentration than this is inconvenient to handle after crystal precipitation.
[0007]
Next, an alkali is added to the aqueous solution containing the salt of the rare earth element to form a rare earth hydroxide precipitate.
The amount of alkali added needs to be 2 to 10 times the number of moles of rare earth elements, preferably 3 to 3.5 times the number of moles, and precipitation is less than 2 times the number of moles. Becomes insufficient, and if it exceeds 10 times the number of moles, it becomes uneconomical. However, in the case where an acid is previously contained in the rare earth element salt solution, an alkali in an amount for neutralizing the acid can be added.
As the type of alkali, ammonia is preferable, but when an alkali metal element cannot be mixed in the rare earth oxide to be used, an alkali metal hydroxide such as caustic soda can also be used.
[0008]
It is possible to obtain hydroxides with small crystallite size even from rare earth hydroxide precipitates that are usually generated by adding alkali, but solid-liquid separation is not easy because the resulting precipitates are gel-like. In addition, when the oxide is synthesized through a firing step or the like, the particle size becomes large due to dehydration or aggregation from the hydroxyl group, and particles having a small particle size cannot be obtained.
Therefore, in the present invention, a step of changing a part or all of the hydroxide precipitate into a carbonate or a basic carbonate by adding a carbonate ion generating substance in the middle of the rare earth hydroxide precipitate generating step with an alkali is provided. .
As the carbonate ion generating substance, ammonium bicarbonate is generally used, but ammonium carbonate can also be used.
The rare earth hydroxide precipitate once produced is converted into carbonate or basic carbonate by adding a carbonate ion generating substance.
Rare earth carbonates or basic carbonates synthesized in this way are more granular than carbonates and basic carbonates made by adding carbonate ion-generating substances to solutions containing rare earth element salts from the beginning. It was found that the diameter was small and the crystallite size was small. This is because the particle size, crystallite size, etc. inherit the characteristics of hydroxide precipitation. In addition, rare earth carbonates usually have a feature that the particle diameter is difficult to increase upon firing, and therefore an oxide having a small particle diameter can be obtained.
[0009]
The addition amount of the carbonate ion generating material must be 0.5 to 2 times the number of moles of the rare earth element, and if the number of moles is less than 0.5 times and more than 2 times, the filterability is low. This produces a bad precipitate.
The timing of adding the carbonate ion generator may be any time as long as it is added in a state where the rare earth hydroxide precipitate is generated. However, since there is no effect in a state where hydroxide precipitates are not generated so much, it is preferable to add the alkali at the time of adding about twice the number of moles of the rare earth element contained in the solution.
The temperature of the solution does not need to be specified, but a temperature at which the operation is easy at 10 ° C. or higher and 90 ° C. or lower is preferable. After the addition of the carbonate ion generating substance, it is preferable to take stirring and aging time of 20 minutes or longer in order to wait for the hydroxyl group of the rare earth hydroxide and the carbonate radical of the carbonate ion generating substance to be replaced. The precipitate thus obtained is separated into solid and liquid, and dried if necessary.
Precipitated rare earth element is in a state like a coprecipitation product of rare earth element hydroxide and carbonate, and it is not gel like hydroxide precipitation and cake with good filterability Therefore, the workability of solid-liquid separation is greatly improved compared to hydroxide precipitation.
[0010]
The baking temperature of the cake separated into solid and liquid needs to be 300 ° C. or higher and 900 ° C. or lower, preferably 600 to 900 ° C. If it is lower than 300 ° C., the change to oxide is insufficient, If it exceeds 900 ° C., sintering will begin.
Since the oxide immediately after firing is in the form of a flock, it can be used as a ceramic raw material if it is loosened by means of a hand, a sieve or a crusher.
[0011]
The rare earth oxide thus obtained has a Fischer diameter of 0.5 μm or less, a specific surface area measured by the BET method of 30 m 2 / g or more, and a crystallite size of 250 μm measured by the X-ray diffraction method. It is as follows.
When the sintered density of the sintered body using this rare earth oxide was measured, it was found that the density of the sintered body was improved at a lower temperature and the sintering characteristics were better than the oxide synthesized by the conventional method. all right.
[0012]
【Example】
Embodiments of the present invention will be specifically described below with reference to examples and comparative examples, but these do not limit the present invention.
(Physical property measurement method)
(1) Particle size: measured by the Fisher method.
(2) Specific surface area: measured by the BET method.
(3) Crystallite size: Measured by the Scherrer method with an X-ray diffractometer.
(Example 1)
To 10 liters of an aqueous solution of yttrium nitrate having a concentration of 0.1 mol / liter, 2 mol of 25% aqueous ammonia was added while stirring the solution. After the addition of the aqueous ammonia, a 10% solution of ammonium bicarbonate was added as 1. Add 5 moles and stir for about 60 minutes. Further, 1 mol of 25% aqueous ammonia was added and stirring was continued for 10 minutes to form a precipitate. The pH of the solution at this time was about 9. The precipitate solution was filtered through a Buchner funnel to separate the precipitate, which was easily performed. The precipitate was then calcined at 680 ° C. for 6 hours to obtain about 112 g of yttrium oxide powder. The Fischer diameter of this yttrium oxide powder was 0.2 μm, the specific surface area was 38 m 2 / g, and the crystallite size was about 210 mm. Also, when this powder was used as a raw material, a sintered body of yttrium oxide was prototyped. The molding density was about 1.5 g / cm 3 (about 30% of the theoretical density), and this was sintered at 1500 ° C. for 4 hours under normal pressure. The sintered density was about 4.5 g / cm 3 (about 90% of the theoretical density).
[0013]
(Comparative Example 1)
In Example 1, oxalic acid was added instead of aqueous ammonia to precipitate yttrium oxalate, which was treated in the same manner as in Example 1 to obtain yttrium oxide powder. The Fischer diameter of this yttrium oxide powder was 0.7 μm, the specific surface area was 10 m 2 / g, and the crystallite size was about 1000 mm. Moreover, when this powder was used as a raw material, a sintered body of yttrium oxide was prototyped. The molding density was about 2.5 g / cm 3 (about 50% of the theoretical density), and this was sintered at 1500 ° C. for 4 hours under normal pressure. The sintered density was about 3.8 g / cm 3 (about 75% of the theoretical density).
[0014]
【The invention's effect】
According to the present invention, a rare earth oxide having a small Fischer diameter, a large specific surface area, and a small crystallite size, which is useful as a raw material for rare earth element ceramics or a sintering aid for ceramics, is economically obtained by a simple method. It can be manufactured and its industrial utility value is extremely high.

Claims (5)

フィッシャー径が0.5μm以下、BET法で測定した比表面積が30m2 /g以上、且つX線回折法で測定した結晶子の大きさが250Å以下であることを特徴とする希土類酸化物。A rare earth oxide having a Fischer diameter of 0.5 μm or less, a specific surface area measured by the BET method of 30 m 2 / g or more, and a crystallite size of 250 μm or less measured by an X-ray diffraction method. 希土類酸化物の前駆体として希土類の水酸化物の一部または全部を炭酸塩もしくは塩基性炭酸塩に置換させたものを用い、これを300℃以上900℃以下の温度で焼成して得られる請求項1に記載の希土類酸化物。Claims obtained by firing at a temperature of 300 ° C. or more and 900 ° C. or less using a rare earth hydroxide precursor partially or entirely substituted with carbonate or basic carbonate. Item 2. The rare earth oxide according to Item 1. 希土類元素のイオンを含む溶液に、該希土類元素のモル数の2〜10倍のモル数のアルカリを添加し、もって水酸化物沈殿を析出させる過程の途中で、炭酸イオン発生物質を前記希土類元素のモル数の0.5〜2倍のモル数添加し、得られた沈殿を固液分離し、300℃以上900℃以下の温度で焼成することを特徴とする希土類酸化物の製造方法。In the course of the process of adding an alkali having a mole number of 2 to 10 times the mole number of the rare earth element to the solution containing the rare earth element ion, and depositing a hydroxide precipitate, the carbonate ion generating material is added to the rare earth element. A method for producing a rare earth oxide, comprising adding 0.5 to 2 times the number of moles of the catalyst, solid-liquid separation of the resulting precipitate, and firing at a temperature of 300 ° C to 900 ° C. アルカリがアンモニアである請求項3に記載の希土類酸化物の製造方法。The method for producing a rare earth oxide according to claim 3, wherein the alkali is ammonia. 炭酸イオン発生物質が重炭酸アンモニウムである請求項3または4に記載の希土類酸化物の製造方法。The method for producing a rare earth oxide according to claim 3 or 4, wherein the carbonate ion generating material is ammonium bicarbonate.
JP21537298A 1998-07-30 1998-07-30 Rare earth oxide and method for producing the same Expired - Fee Related JP3681550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21537298A JP3681550B2 (en) 1998-07-30 1998-07-30 Rare earth oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21537298A JP3681550B2 (en) 1998-07-30 1998-07-30 Rare earth oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000044234A JP2000044234A (en) 2000-02-15
JP3681550B2 true JP3681550B2 (en) 2005-08-10

Family

ID=16671215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21537298A Expired - Fee Related JP3681550B2 (en) 1998-07-30 1998-07-30 Rare earth oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP3681550B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939741B2 (en) 2018-08-31 2021-09-22 信越化学工業株式会社 Method for producing rare earth compound particles
JP7389960B2 (en) * 2019-06-14 2023-12-01 富士電機株式会社 carbon dioxide gas sensor

Also Published As

Publication number Publication date
JP2000044234A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP4992003B2 (en) Method for producing metal oxide fine particles
JP3713758B2 (en) Method for producing iron-containing composite oxide powder
JP2004517020A (en) Zirconia in the form of fine powder, zirconia hydroxycarbonate and methods for producing them
JP3906352B2 (en) Method for producing YAG transparent sintered body
JP2868176B2 (en) Method for producing rare earth element oxide powder
JP3681550B2 (en) Rare earth oxide and method for producing the same
US3702882A (en) Process for the preparation of fine sized magnesium aluminate spinel
JPS61186219A (en) Production of lead-containing fine powder
JPH0238527B2 (en)
JP3906353B2 (en) YAG fine powder manufacturing method
JP3992214B2 (en) Rare earth element-containing barium titanate powder and method for producing the same
JP2843908B2 (en) Method for producing yttrium oxide fine powder
JP2547007B2 (en) Method for producing perovskite type oxide fine powder
JPH0210091B2 (en)
JPS6016373B2 (en) Method for manufacturing perovskite-type lead-containing composite oxide
JPH0239451B2 (en)
JPH0624743A (en) Production of spherical zinc oxide powder
JP4185197B2 (en) Method for producing bismuth (III) oxide
JPS59232920A (en) Manufacture of zirconium oxide powder containing yttrium as solid solution
JPH0529606B2 (en)
JP2002255656A (en) Method for producing nano-crystal grain dense sintered body
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
JPH09221318A (en) Production of acicular crystal basic magnesium chloride
JPH0255375B2 (en)
JPH0427166B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees