JPS63297561A - Method for synthesizing high-hardness boron nitride - Google Patents

Method for synthesizing high-hardness boron nitride

Info

Publication number
JPS63297561A
JPS63297561A JP13129687A JP13129687A JPS63297561A JP S63297561 A JPS63297561 A JP S63297561A JP 13129687 A JP13129687 A JP 13129687A JP 13129687 A JP13129687 A JP 13129687A JP S63297561 A JPS63297561 A JP S63297561A
Authority
JP
Japan
Prior art keywords
containing gas
gas
atom
boron nitride
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13129687A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13129687A priority Critical patent/JPS63297561A/en
Publication of JPS63297561A publication Critical patent/JPS63297561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To synthesize stoichiometrically reacted cubic boron nitride, by passing a nitrogen atom-containing gas through D.C. electric discharge, by exciting the above gas, by mixing the excited gas with a boron atom-containing gas, and by passing the resulting gaseous mixture through high-frequency plasma and introducing the above onto a substrate. CONSTITUTION:A nitrogen atom-containing gas and a boron atom-containing gas are separately supplied through introducing pipes 3, 4, respectively, into a reaction vessel 5. Then, D.C. electric discharge is carried out between the introducing pipe 3 and a counter electrode 6 to decompose and excite the nitrogen atom-containing gas. The excited nitrogen-atom gas is mixed with the boron atom-containing gas. The resulting mixed gas is passed through a high-frequency plasma produced by means of a high-frequency coil 9 and introduced into the heated surface of a substrate 10. By this method, the cubic boron nitride excellent in thermal shock resistance, thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temp. can be precipitated from a vapor phase.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非常に高硬度を有するの゛みならず、熱伝導率
にとみ、化学的に安定で、加えてダイヤモンドとは異な
り鉄族金属に対する耐性にも優れることから、切削工具
、耐摩工具などの工具材料、さらKはヒートシンクなど
の電子材料として用いられている立方晶窒化ホウ素を、
気相より基材表面に析出させる方法に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention not only has extremely high hardness, but also has high thermal conductivity and is chemically stable. Because of its excellent resistance to
This relates to a method of depositing on the surface of a substrate from a gas phase.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素の製造方法として、従来、例えば下記
の■N■の方法等が知られていた。
As a method for producing cubic boron nitride, for example, the following method (1N) has been known.

■ 特公昭60−1.81262号公報に示されるよう
に、ホウ素を含有する蒸発源から基体上にホウ素分を蒸
着させると共に、少なくとも窒素を含めイオン種を発生
せしめるイオン発生源から基体上に該イオン種を照射し
て、該基体上に窒化ホウ素を生成させる窒化ホウ素膜の
裏道方法。
■ As shown in Japanese Patent Publication No. 60-1.81262, boron is evaporated onto a substrate from an evaporation source containing boron, and at the same time, boron is deposited onto the substrate from an ion source that generates ionic species containing at least nitrogen. A backdoor method of boron nitride film, which involves irradiating ionic species to produce boron nitride on the substrate.

■ 「ジャーナル オプ マテリアル サイエンス レ
ターズ(Journal Of materialsc
ience 1etters )、4(1985)51
〜54頁」に示されるように、H!十N2  プラズマ
によるボロンの化学輸送を行うことにより、立方晶雪化
ホウ素を生成する方法。
■ Journal of Materials Science Letters
Ience 1etters), 4 (1985) 51
~page 54'', H! A method for producing cubic boron snow by chemically transporting boron using N2 plasma.

■ 〔第9回イオン工学(Ion 5ource Io
nAssisted Technology )シンポ
ジウム(1985年、東京)議事録、「イオン源とイオ
ンを基礎とした応用技術」〕に示されるようK。
■ [9th Ion Engineering (Ion 5source Io
As shown in the proceedings of the nAssisted Technology Symposium (Tokyo, 1985), ``Ion Sources and Applied Technology Based on Ions,'' K.

HCDガンでボロンを蒸発させながら、ホローアノード
からN!をイオン化して基板に放射し、基板には高周波
を印加して、セルフバイアス効果を持たせて立方晶窒化
ホウ素を生成する方法。
While evaporating boron with an HCD gun, N from the hollow anode! This method generates cubic boron nitride by ionizing and irradiating it to the substrate, applying high frequency to the substrate, and creating a self-bias effect.

■ 〔難波:「真空」第28巻第7号(1985年〕2
9〜34頁〕に示されるように、ホウ素原子含有固体に
電子ビーム(EB)を当てることによシホウ素を蒸発さ
せて、それに窒素原子含有ガスを流しこみ、ホウ素及び
窒素を同時にイオン化することKより、基板表面に立方
晶窒化ホウ素を生成する方法。
■ [Namba: "Shinku" Vol. 28, No. 7 (1985) 2
As shown in [pages 9 to 34], boron is evaporated by applying an electron beam (EB) to a solid containing boron atoms, and a gas containing nitrogen atoms is poured into it to simultaneously ionize boron and nitrogen. A method for producing cubic boron nitride on the surface of a substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記■の方法はイオンビームを発生する
装置及びその集束装置が高価でめることが欠点である。
However, method (2) has a disadvantage that the ion beam generating device and its focusing device are expensive.

前記■の方法は、高出力のRFプラズマを成膜に利用し
ているために1反応系からの不純物が混入しやすい。
In method (2), since high-power RF plasma is used for film formation, impurities from one reaction system are likely to be mixed in.

前記■の方法は、■の方法と同じくイオンビームを発生
する装置及びその集束装置が高価であることと、不活性
ガスの原子が析出した立方晶窒化ホウ素に取り込まれる
、という欠点を有する。
Like method (2), method (2) has the disadvantages that the ion beam generating device and its focusing device are expensive, and that the atoms of the inert gas are incorporated into the precipitated cubic boron nitride.

前記■の方法は、ホウ素が比較的低融点であることから
ホウ素が突沸しやすく、そのためFBによって膜厚制御
をすることが困難である。
In the method (2) above, since boron has a relatively low melting point, boron tends to cause bumping, and therefore it is difficult to control the film thickness by FB.

以上のように■〜■のいずれの方法も種々の欠点を有し
ている。
As mentioned above, all methods (1) to (2) have various drawbacks.

本発明はこのような現状に鑑みなされたもので、耐熱W
J撃性、熱伝導性、硬度、耐摩耗性及び高温での鉄族金
属に対する耐性に優れた立方晶窒化ホウ素を気相から析
出させることのできる新規な合成法を提供することを目
的とするものである。また本発明の目的は、化学量論的
に反応してなる立方晶窒化ホウ素すなわちB/N=1で
おるような立方晶窒化ホウ素の合成法を提供するところ
にもある。
The present invention was made in view of the current situation, and is a heat-resistant W
The purpose of the present invention is to provide a new synthesis method that can precipitate cubic boron nitride from the gas phase, which has excellent J-impact properties, thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temperatures. It is something. Another object of the present invention is to provide a method for synthesizing cubic boron nitride produced by a stoichiometric reaction, that is, cubic boron nitride in which B/N=1.

〔問題点を解決するための手段及び作用〕本発明は気相
から高硬度窒化ホウ素を析出させる方法において、ホウ
素原子含有ガスと窒素原子含有ガスを別個に反応系内に
導入して、該窒素原子含有ガスのみを予め直流放電中に
通過せしめて励起した後に上記ホウ素原子含有ガスと混
合して、該混合ガスを高周波プラズマ中に通過せしめ加
熱した基板上に導入することにより該基板上に窒化ホウ
素を析出させることを特徴とする高硬度窒化ホウ素の合
成法である。
[Means and effects for solving the problems] The present invention is a method for precipitating high hardness boron nitride from a gas phase, in which a boron atom-containing gas and a nitrogen atom-containing gas are separately introduced into a reaction system, and the nitrogen Only the atom-containing gas is passed through a DC discharge in advance to be excited, mixed with the boron atom-containing gas, and the mixed gas is passed through a high-frequency plasma and introduced onto the heated substrate to nitride the substrate. This is a method for synthesizing high-hardness boron nitride, which is characterized by precipitating boron.

本発明においては、ホウ素原子含有ガス中のホウ素原子
数と窒素原子含有ガス中の窒素原子数との比B / N
を10001〜100[10の範囲として行なうこと、
また、基板温度を300〜2000℃として行なうこと
が、特に好結果を得られるので好ましい。
In the present invention, the ratio of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is B / N
to be carried out in the range of 10001 to 100 [10,
Further, it is preferable to carry out the process at a substrate temperature of 300 to 2000°C since particularly good results can be obtained.

以下図面を参照して説明する。第1図は本発明を実施す
るために用いる高硬度窒化ホウ素製渾装置の一具体例の
概略断面図であって、窒素原子含有ガス供給装置1及び
ホウ素原子含有ガス供給装置2から供給される、窒素原
子含有ガスとホウ素原子含有ガスは、窒素原子含有ガス
導入管3、ホウ素原子含有ガス導入管4により夫々別個
に反応容器5の内部に供給される。このときに窒素原子
含有ガスのみは導入管3及び対向電極60間に直流放電
を起すことにより分解・励起される。対向電極6は直流
電源7に接続されている。予備励起された窒素原子ガス
は、次でガス導入管4を経て別途供給された上記ホウ素
原子含有ガスと混合されて、この混合ガスは高周波電源
8に接続された高周波コイル9による高周波プラズマの
中を通過して反応容器5内に設置された、加熱された基
板10の表面に導入嘔れる。なお、基板10はヒーター
電源11に接続されたヒーター121Cより加熱されて
おり、この時の温度は500〜2000℃が好ましい。
This will be explained below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a specific example of a high-hardness boron nitride slurry device used to carry out the present invention, and is supplied from a nitrogen atom-containing gas supply device 1 and a boron atom-containing gas supply device 2. The nitrogen atom-containing gas and the boron atom-containing gas are separately supplied into the reaction vessel 5 through the nitrogen atom-containing gas introduction pipe 3 and the boron atom-containing gas introduction pipe 4, respectively. At this time, only the nitrogen atom-containing gas is decomposed and excited by causing a DC discharge between the introduction tube 3 and the opposing electrode 60. The counter electrode 6 is connected to a DC power source 7. The pre-excited nitrogen atom gas is then mixed with the boron atom-containing gas separately supplied through the gas introduction pipe 4, and this mixed gas is generated in a high-frequency plasma by a high-frequency coil 9 connected to a high-frequency power source 8. The heated substrate 10 is introduced into the surface of the heated substrate 10 placed inside the reaction vessel 5. Note that the substrate 10 is heated by a heater 121C connected to the heater power source 11, and the temperature at this time is preferably 500 to 2000°C.

なお11は排気装置、12は排気口である0 本発明においては、ホウ素原子含有ガス及び窒素原子含
有ガスを別々に反応系に導入するが、窒素原子含有ガス
のみを該カス導入管と対向電極の間に直流放電を起すこ
とによって予備励起する。これにより励起状の窒素原子
含有ガスを生成せしめる。
Note that 11 is an exhaust device, and 12 is an exhaust port. In the present invention, a boron atom-containing gas and a nitrogen atom-containing gas are separately introduced into the reaction system, but only the nitrogen atom-containing gas is connected to the waste introduction pipe and the counter electrode. Pre-excitation is performed by generating a DC discharge during the period. This generates an excited nitrogen atom-containing gas.

このように行なう理由は、従来法のように、高周波プラ
ズマ中での分解励起においてはじめて、ホウ素原子含有
ガスと窒素原子含有ガスとを同時に励起すると、ホウ素
原子含有ガスのほうが分解励起しやすく、ホウ素過剰な
窒化ホウ素膜を生成し、立方晶ホウ素膜生成の障害とな
るからである。またホウ素原子含有ガスと窒素原子含有
ガスを別々に励起する従来方法でも、やはりホウ素の方
が分解され易く、これによってもB/N−1という化学
量論的に反応してなる立方晶窒化ホウ素膜を得がたかっ
たからである。そこで前記両ガスの励起状態を同程度と
することが重要であることがわかる。
The reason for doing this is that when a boron atom-containing gas and a nitrogen atom-containing gas are simultaneously excited during decomposition excitation in high-frequency plasma as in the conventional method, the boron atom-containing gas is easier to decompose and excite, and the boron atom-containing gas is more easily decomposed and excited. This is because an excessive boron nitride film is formed, which becomes an obstacle to the formation of a cubic boron film. In addition, even in the conventional method of exciting a boron atom-containing gas and a nitrogen atom-containing gas separately, boron is still more easily decomposed, and this also results in cubic boron nitride formed by a stoichiometric reaction of B/N-1. This is because it was difficult to obtain a film. Therefore, it can be seen that it is important to make the excited states of both gases the same.

従って、本発明のように窒素原子含有カスのみを予め直
流放電中を通過させることにより、励起状の窒素原子を
含有するガスとしておき、これと未だ励起されていない
ホウ素原子含有ガスとの混合ガスを高周波プラズマ中を
通過させると、ホウ素原子含有ガスと窒素原子含有カス
の分解・励起が同程度に起こり、かつ加熱された基板表
面上において、互いにSp3結合を起すのに充分な反応
エネルギーが与えられて、化学量論的に反応したすなわ
ちB/N==1の立方晶窒化ホウ素を生成する。
Therefore, as in the present invention, by passing only the nitrogen atom-containing scum through a DC discharge in advance, a gas containing excited nitrogen atoms is created, and this is mixed with a boron atom-containing gas that is not yet excited. When passed through a high-frequency plasma, the boron atom-containing gas and the nitrogen atom-containing gas are decomposed and excited to the same degree, and sufficient reaction energy is given to cause Sp3 bonding with each other on the heated substrate surface. to produce stoichiometrically reacted cubic boron nitride, ie, B/N==1.

本発明において予備励起に用いる直流放電の出力は、窒
素原子を励起することが必要であるため、50W以上で
あることが好ましい。5゜W以下では窒素原子の励起に
不足する0本発明における高周波プラズマ出力は、10
0W以上が好ましい。100Wより小さい時はホウ素原
子含有ガスが分解励起するエネルギーに不足している。
In the present invention, the output of the DC discharge used for preliminary excitation is preferably 50 W or more since it is necessary to excite nitrogen atoms. The high-frequency plasma output in the present invention is insufficient to excite nitrogen atoms at 5°W or less.
0W or more is preferable. When it is less than 100 W, there is insufficient energy to decompose and excite the boron atom-containing gas.

本発明における一般的な基板の加熱温度は300〜20
00℃の範囲が好ましい0基板温度500℃未満では基
板上に立方晶窒化ホウ素を生成するエネルギーに不足す
るし、2000℃を越えると成膜する窒化ホウ素から窒
素が抜は出て、非立方晶窒化ホウ素になりやすい。
The heating temperature of the general substrate in the present invention is 300 to 20
If the substrate temperature is less than 500°C, there will be insufficient energy to generate cubic boron nitride on the substrate, and if it exceeds 2000°C, nitrogen will be extracted from the boron nitride formed, resulting in a non-cubic crystal. It easily becomes boron nitride.

本発明に使用するホウ素原子含有ガスとしては、例えば
B2H4、BCl2. BBr3 、 BF3 # B
5N5H@等が挙げられ窒素原子含有ガスとしては、例
えばN、 、 NH3等が挙げられる。原料ガスである
ホウ素原子含有ガス中のホウ素原子数と窒素原子含有ガ
ス中の窒素原子数との比B / Nが(10001〜1
0000の範囲にあることが好筐しい。B/Nが(LO
O(8未満であると非晶質状の窒化ホウ素が析出しやす
く、B/Nが10000を越えるとホウ素が過剰となり
、非晶質状のホウ素が形成されやすい。更にホウ素原子
含有ガス及び窒素原子含有ガスのみでなく、水素ガスや
アルゴンガス等を添加して使用してもよい。なお、反応
系圧力は、直流放電と高周波プラズマの放電安定を維持
するためにl101〜100 TOrrの範囲が好まし
い。
Examples of the boron atom-containing gas used in the present invention include B2H4, BCl2. BBr3, BF3 #B
Examples of the nitrogen atom-containing gas include N, , NH3, and the like. The ratio B/N of the number of boron atoms in the boron atom-containing gas that is the raw material gas and the number of nitrogen atoms in the nitrogen atom-containing gas is (10001 to 1
Preferably, it is in the range of 0000. B/N is (LO
O (When B/N is less than 8, amorphous boron nitride tends to precipitate, and when B/N exceeds 10,000, boron becomes excessive and amorphous boron is likely to be formed. Furthermore, boron atom-containing gas and nitrogen In addition to the atom-containing gas, hydrogen gas, argon gas, etc. may be added and used.The reaction system pressure should be in the range of l101 to 100 TOrr in order to maintain discharge stability of DC discharge and high frequency plasma. preferable.

基板の温度調整は、第1図ではヒーターにより調整され
る例を示したが、第2図に示すように、高岡波プラズマ
によVVS整する方法も好ましい。この場合基板温度は
プラズマ出力の強度で制御する。第2図において1〜1
0.13.14は第1図と同じ部分を意味している。
Although the temperature of the substrate is adjusted using a heater in FIG. 1, it is also preferable to adjust the VVS using Takaoka wave plasma as shown in FIG. In this case, the substrate temperature is controlled by the intensity of plasma output. 1 to 1 in Figure 2
0.13.14 means the same parts as in FIG.

〔実施例〕〔Example〕

実施例1 第1図に示した装置を用いて本発明によりモリブデン板
を基板として立方晶窒化ホウ素を被債した。原料ガスと
しては、BCl3 8 cc/ min及びNH36c
c/minを流し、反応管内圧力は10Torr  に
調整して、亘流電源出力soow、高周波プラズマ出力
soow、基板温度800℃の条件にて、2時間反応を
続は九〇その結果、基板表面に厚さ5μm程度の窒化ホ
ウ素膜が析出した。これをX線回折で評価した結果、2
θ=4五2°付近に鋭いピークを検出し、立方晶窒化ホ
ウ素であると同定できた。これにより本発明の方法で立
方晶の窒化ホウ素をうまく析出できることが証明された
Example 1 Using the apparatus shown in FIG. 1, cubic boron nitride was deposited using a molybdenum plate as a substrate according to the present invention. As raw material gas, BCl3 8 cc/min and NH36c
c/min, the pressure inside the reaction tube was adjusted to 10 Torr, and the reaction was continued for 2 hours under the conditions of cross current power supply output so low, high frequency plasma output so high, and substrate temperature 800 °C. A boron nitride film with a thickness of about 5 μm was deposited. As a result of evaluating this using X-ray diffraction, 2
A sharp peak was detected near θ=452°, and it was identified as cubic boron nitride. This proves that the method of the present invention can successfully deposit cubic boron nitride.

実施例2 第2図に示した装置を用いて、本発明によりシリコン基
板に立方晶窒化ホウ素膜を被覆した。
Example 2 Using the apparatus shown in FIG. 2, a silicon substrate was coated with a cubic boron nitride film according to the present invention.

原料ガスとしては、B、H・ 10 cc/win及び
NH120cc/min及びH@  150 cc/m
inを流し、反応管内圧力は2 G Torr  にa
1m整して、NH3の分解・励起用直流電源出力400
W、高周波プラズマ出力soow、基板温度900℃の
条件で3時間反応させた。その結果、基板表面に厚さ7
μm程度の窒化ホウ素膜が析出した。これをレーザラマ
ン回折で評価し九結果、1055個−1及び1310α
−1付近に鋭いピークを検出し、立方晶窒化ホウ素と同
定できた。
Raw material gases include B, H 10 cc/win, NH 120 cc/min and H@ 150 cc/m
The pressure inside the reaction tube was reduced to 2 G Torr.
1m, DC power supply output 400 for decomposition and excitation of NH3
The reaction was carried out for 3 hours under the conditions of W, high frequency plasma output so low, and substrate temperature of 900°C. As a result, a thickness of 7
A boron nitride film of about μm was deposited. This was evaluated by laser Raman diffraction and the results were 1055 pieces-1 and 1310α
A sharp peak was detected near -1, and it was identified as cubic boron nitride.

比較例1 第1図に示した装置を用いて、C−81基板を用いて、
窒素原子含有ガスの予備励起を行わずに窒化ホウ素膜の
被覆を行った。原料ガスとして802316007m1
n及びN=  2 o cc/m1nを流して、反応管
内圧力を10 Torr  に調整して、高周波プラズ
マ出力400W、基板温度800℃の条件で4時間反応
させた。その結果基板表面に厚さ6μm程度の窒化ホウ
素膜が析出した。
Comparative Example 1 Using the apparatus shown in FIG. 1, using a C-81 substrate,
The boron nitride film was coated without pre-excitation of the nitrogen atom-containing gas. 802316007ml as raw material gas
The reaction was carried out for 4 hours under the conditions of a high frequency plasma output of 400 W and a substrate temperature of 800° C. by flowing n and N=2 o cc/ml and adjusting the pressure inside the reaction tube to 10 Torr. As a result, a boron nitride film with a thickness of about 6 μm was deposited on the surface of the substrate.

これをX線回折で評価した結果、2θ=2&7°。As a result of evaluating this by X-ray diffraction, 2θ=2&7°.

4五2°付近にピークを検出したが、267°付近のピ
ークの方が大きかった。このデータから本比較例のよう
に予備励起しない烏 ガスとBCl3カスの混合ガスを
高周波プラズマ中を通過させる方法で得た窒化ホウ素膜
は六方晶窒化ホウ素及び立方晶窒化ホウ素が混在し、か
つ六方晶窒化ホウ素のほうが含有率が大きいと同定でき
た。
A peak was detected near 452°, but the peak near 267° was larger. From this data, it can be seen that the boron nitride film obtained by passing a mixed gas of Corasto gas and BCl3 scum without pre-excitation through high-frequency plasma as in this comparative example contains hexagonal boron nitride and cubic boron nitride, and It was identified that crystalline boron nitride had a higher content.

性能評価試験1 以上の実施例1.2及び比較例10条件にていずれも窒
化ホウ素膜を析出させることができたので、これらの各
条件によって、切削チップに実際にコーティングして、
得られた被覆チップを用いて切削テストを行った。比較
のためコーティングを行っていないチップ及びCVD法
によりTiNコーティングを行ったチップの切削テスト
も行った。
Performance Evaluation Test 1 Since a boron nitride film could be deposited under the conditions of Example 1.2 and Comparative Example 10 above, a cutting tip was actually coated under each of these conditions.
A cutting test was conducted using the obtained coated chip. For comparison, cutting tests were also conducted on chips without coating and chips coated with TiN using the CVD method.

使用のチップはWCC超超硬合金TNGN1604(1
8,被覆層厚はいずれも5μmとした。
The tip used is WCC cemented carbide TNGN1604 (1
8. The coating layer thickness was 5 μm in both cases.

切削テスト条件は以下の通りである。The cutting test conditions are as follows.

切削速度: 270 m/win 送   り :Q、2箇/rev 切り込み:α2mm 被削材:FCD45 方 式:乾 式 テスト結果は表に示すとおりであって、これよりNo、
 1〜No、 3の窒化ホウ素膜を被覆したチップが、
TiN被覆(No、 4 )や被檄なしくNo。
Cutting speed: 270 m/win Feed: Q, 2 cuts/rev Depth of cut: α2mm Work material: FCD45 Method: Dry The test results are as shown in the table, and from this, No.
Chips covered with boron nitride film of No. 1 to No. 3 are
No without TiN coating (No, 4) or coating.

5)のものに比べ、耐摩耗性に優れ、特に本発明による
立方晶窒化ホウ素膜のN001及びNo。
5), the cubic boron nitride films according to the present invention have excellent wear resistance, especially No. 001 and No. 5).

2のものは、膜中に六方晶窒化ホウ素が立方晶窒化ホウ
素より大きい割合で混在しているNo。
No. 2 is No. in which hexagonal boron nitride is mixed in a larger proportion than cubic boron nitride in the film.

5のものより1さらに優れた耐摩耗性を有することが明
らかである。
It is clear that the wear resistance is even better than that of No. 5.

表 性能評価試験2(鋳鉄切削における耐欠損性)第3図は
本発明によるCBNコーティングチップと従来のAL、
O,コーティングチップ、従来のTiCコーティングチ
ップ及び被覆なしのチップについて、鋳鉄切削における
耐欠損性テストを行った結果を、刃先欠損割合壇での切
削時間(min )と衝撃回数にて示した棒グラフ図で
ある。チップ材質、被接形成条件、切削条件は下記のと
おりでアク、本発明品のCBNコーティングチップが最
も欠損が少なく、多大の効果を示すことが明らかに理解
できる。
Surface performance evaluation test 2 (fracture resistance in cutting cast iron) Figure 3 shows the CBN coated tip according to the present invention and the conventional AL,
A bar graph diagram showing the results of a fracture resistance test in cast iron cutting for coated chips, conventional TiC coated chips, and uncoated chips in terms of cutting time (min) and number of impacts at the cutting edge fracture rate. It is. The chip material, contact forming conditions, and cutting conditions are as follows, and it is clearly understood that the CBN-coated chip of the present invention has the least amount of defects and exhibits a great effect.

(チップ材質)TNMG  2204013  N−U
J(CBNコート条件)原料ガス:BClg  15c
c/ min 、 NHll 5 cc/min 、直
流電源出力=400W、高周波プラズマ出カニ350W
、基板温度:950℃、圧カニ 15 TOrr(At
、O,コート条件)原料ガス: Atcls / Hz
 /CO意=1:10:2.温度1100℃、圧カニ2
 0  Torr (TiNコート条件条件材原料ガスTiCl2 / N
鵞/ a。
(Chip material) TNMG 2204013 N-U
J (CBN coating conditions) Raw material gas: BClg 15c
c/min, NHll 5 cc/min, DC power output = 400W, high frequency plasma output crab 350W
, substrate temperature: 950°C, pressure crab 15 TOrr (At
, O, coating conditions) Raw material gas: Atcls / Hz
/CO meaning=1:10:2. Temperature 1100℃, pressure crab 2
0 Torr (TiN coating conditions Condition material raw material gas TiCl2/N
Goose/a.

=1:1:20、温度=950℃、圧力=120rr (切削条件)被削材:Fe12.チップ: ’rNM0
220408 N−UJ、切削速度: 150 m/m
in性能評価試験3(鋼旋剤における切削性能)第4図
に、本発明によるCBNコーティングチップ(イ)と従
来のTiNコーティングチップ(ロ)及び被覆のないチ
ップ(/)を用いて、鋼旋削における切削性能を試験し
た結果を、寿命時間(sea。
= 1:1:20, temperature = 950°C, pressure = 120rr (Cutting conditions) Work material: Fe12. Chip: 'rNM0
220408 N-UJ, cutting speed: 150 m/m
In performance evaluation test 3 (cutting performance in steel turning) Figure 4 shows the results of steel turning using a CBN coated tip according to the present invention (a), a conventional TiN coated tip (b), and an uncoated tip (/). The results of testing the cutting performance during life time (sea) are shown below.

横軸)と切削速度(m/min、縦軸)の関係のグラフ
として表す。チップ材jx、被覆形成条件。
It is expressed as a graph of the relationship between (horizontal axis) and cutting speed (m/min, vertical axis). Chip material jx, coating formation conditions.

切削条件は次のとおりであった。The cutting conditions were as follows.

チップ材質: 8PGN  120408(CBNコー
ト条件)原料ガス: B、H・ 20cc/ man 
、 N@  20 ac/min 、直流電源用カニ5
80W、高周波プラズマ出カニsoow、基板温度=9
00℃、圧カニ 10 TOrr(TiNコード条件)
原料ガス: TiC24/ H意/Nx冨1:15:2
.温度:870℃、圧カニ25orr (切削条件ン被削材: 5KD61、チップ:5PGN
  t20408、 切p込み:α2 m 、送り: 
(L 1 m+/ rev 第4図から、本発明品(イ)が最も耐摩耗性に優れるこ
とが明らかである。
Chip material: 8PGN 120408 (CBN coating conditions) Raw material gas: B, H・20cc/man
, N@20 ac/min, crab 5 for DC power supply
80W, high frequency plasma output soow, substrate temperature = 9
00℃, pressure crab 10 TOrr (TiN code condition)
Raw material gas: TiC24/Hi/Nx 1:15:2
.. Temperature: 870℃, Pressure crab 25orr (Cutting conditions: Work material: 5KD61, Tip: 5PGN
t20408, depth of cut: α2 m, feed:
(L 1 m+/rev From FIG. 4, it is clear that the product of the present invention (A) has the best wear resistance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は耐熱衝撃性。 As explained above, the present invention has thermal shock resistance.

熱伝導性、硬度、耐摩耗性及び高温での鉄族金楓に対す
る耐性にも優れる立方晶窒化ホウ素を気相から析出でき
る新規で優れた方法である。
This is a novel and excellent method for precipitating cubic boron nitride from the gas phase, which has excellent thermal conductivity, hardness, abrasion resistance, and resistance to iron group metals at high temperatures.

本発明による立方晶窒化ホウ素を切削部材や耐摩耗部材
等の被榎膜として利用すると、上記の優れた緒特性を有
するために多大の効果を奏する。
When the cubic boron nitride according to the present invention is used as a coated film for cutting members, wear-resistant members, etc., it has the above-mentioned excellent properties and therefore has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の高硬度窒化ホウ素の合成法
を実施するための立方晶窒化ホウ素裂造装置の一具体例
を説明する概略図、第3図は本発明による被覆チップと
比較品について、鋳鉄切削における耐欠損性テストを行
ったときの刃先が欠損筐での時間(min ) 、衝撃
回数を棒グラフで示して比較した図表でおる。 第4図は本発明による被覆チップと比較品との、鋼旋削
における切削性能を、切削速度<m/min )と寿命
時間(min )の関係で示した図表である。 笛1 図
FIGS. 1 and 2 are schematic diagrams illustrating a specific example of a cubic boron nitride cleaving apparatus for carrying out the high-hardness boron nitride synthesis method of the present invention, and FIG. This is a bar graph comparing the time (min) the cutting edge remains in the chipped housing and the number of impacts during a fracture resistance test in cast iron cutting for comparative products. FIG. 4 is a chart showing the cutting performance in steel turning of the coated tip according to the present invention and a comparative product in terms of the relationship between cutting speed <m/min) and life time (min). Flute 1 diagram

Claims (3)

【特許請求の範囲】[Claims] (1)気相から高硬度窒化ホウ素を析出させる方法にお
いて、ホウ素原子含有ガスと窒素原子含有ガスを別個に
反応系内に導入して、該窒素原子含有ガスのみを予め直
流放電中に通過せしめて励起した後に上記ホウ素原子含
有ガスと混合して、該混合ガスを高周波プラズマ中に通
過せしめ加熱した基板上に導入することにより該基板上
に窒化ホウ素を析出させることを特徴とする高硬度窒化
ホウ素の合成法。
(1) In the method of precipitating high-hardness boron nitride from the gas phase, a boron atom-containing gas and a nitrogen atom-containing gas are separately introduced into the reaction system, and only the nitrogen atom-containing gas is passed through in advance during DC discharge. High-hardness nitriding, characterized in that boron nitride is precipitated on the substrate by excitation with the boron atom-containing gas, and passing the mixed gas through high-frequency plasma and introducing it onto the heated substrate. Synthesis method of boron.
(2)ホウ素原子含有ガス中のホウ素原子数と窒素原子
含有ガス中の窒素原子数との比B/Nを0.0001〜
10000の範囲にして行なう特許請求の範囲第(1)
項に記載される高硬度窒化ホウ素の合成法。
(2) The ratio B/N of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is 0.0001 to
Claim No. (1) made within the range of 10,000
Synthesis method of high hardness boron nitride described in section.
(3)基板温度を300〜2000℃として行なう特許
請求の範囲第(1)項に記載される高硬度窒化ホウ素の
合成法。
(3) A method for synthesizing high hardness boron nitride according to claim (1), which is carried out at a substrate temperature of 300 to 2000°C.
JP13129687A 1987-05-29 1987-05-29 Method for synthesizing high-hardness boron nitride Pending JPS63297561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13129687A JPS63297561A (en) 1987-05-29 1987-05-29 Method for synthesizing high-hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13129687A JPS63297561A (en) 1987-05-29 1987-05-29 Method for synthesizing high-hardness boron nitride

Publications (1)

Publication Number Publication Date
JPS63297561A true JPS63297561A (en) 1988-12-05

Family

ID=15054650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13129687A Pending JPS63297561A (en) 1987-05-29 1987-05-29 Method for synthesizing high-hardness boron nitride

Country Status (1)

Country Link
JP (1) JPS63297561A (en)

Similar Documents

Publication Publication Date Title
US5316804A (en) Process for the synthesis of hard boron nitride
US5320878A (en) Method of chemical vapor deposition of boron nitride using polymeric cyanoborane
JPH04958B2 (en)
JPS63297561A (en) Method for synthesizing high-hardness boron nitride
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
JPS62158195A (en) Synthesizing method of diamond
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS62243770A (en) Method for synthesizing high hardness boron nitride
RU2532749C1 (en) Method of obtaining nanosized carbon layers with diamond properties
JP3476232B2 (en) Method for synthesizing C3N4 by plasma arc method
JPH0524114B2 (en)
JPS6395200A (en) Production of hard boron nitride film
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPS63277766A (en) Method for synthesizing high-hardness boron nitride
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS6369973A (en) Production of cubic boron nitride film
Olszyna et al. The in-flame crystallization of a metastable BN form
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPS62205277A (en) Method for synthesizing high-hardness boron nitride
JPH0667797B2 (en) Diamond synthesis method
JPH04124272A (en) Cubic boron nitride coating member and its production
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPS63199872A (en) Method for synthesizing high hardness boron nitride