JPS63293107A - Production of gold particle - Google Patents

Production of gold particle

Info

Publication number
JPS63293107A
JPS63293107A JP12785087A JP12785087A JPS63293107A JP S63293107 A JPS63293107 A JP S63293107A JP 12785087 A JP12785087 A JP 12785087A JP 12785087 A JP12785087 A JP 12785087A JP S63293107 A JPS63293107 A JP S63293107A
Authority
JP
Japan
Prior art keywords
gold
gold particles
particles
particle size
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12785087A
Other languages
Japanese (ja)
Inventor
Mamoru Hirako
平子 衛
Nobuyasu Ezawa
江沢 信泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP12785087A priority Critical patent/JPS63293107A/en
Publication of JPS63293107A publication Critical patent/JPS63293107A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce gold particles having narrow distribution of particle sizes and large particle diameters by adding alkali hydroxide solution to water solution containing gold particles and gold iodide salt ion and precipitating the gold particles. CONSTITUTION:The alkali hydroxide solution (potassium hydroxide, etc., having about 0.1-0.6 N concn.) is added to the water solution containing the gold particles as nucleus and gold iodide salt ion (gold potassium iodide, etc., having about 0.01-0.75 M/l concn.) and reacted at about 10-100 deg.C. By this method, the gold particles having larger particle size are obtd. and further by repeating this operation, the particle diameter can be made larger by larger.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing gold particles.

(従来技術とその問題点) 従来金粒子の製造方法としては、塩化金酸溶液などにヒ
ドラジン等の還元剤を用いて還元する方法が用いられて
きた。
(Prior art and its problems) As a conventional method for producing gold particles, a method has been used in which a chloroauric acid solution or the like is reduced using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子同士が引き寄
せ合うために、凝集してしまい粒度分布の幅の広い金粒
子しか得られないという欠点を有していた。
However, this method has the disadvantage that the reduced particles attract each other and aggregate, resulting in gold particles having a wide particle size distribution.

また粒径の大きいものについても、整った結晶をもつも
のが得られず、得られても凝集したものである等の欠点
を有していた゛。
In addition, those with large particle sizes also have the disadvantage that they cannot be obtained with well-ordered crystals, and even if they are obtained, they are agglomerated.

(発明の目的) 本発明は上記の欠点を解消せんがためになされたもので
あり、粒度分布の幅の狭い粒径コントロール可能な結晶
状の金粒子の製造方法を提供せんとするものである。
(Objective of the Invention) The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a method for producing crystalline gold particles with a narrow particle size distribution and controllable particle size. .

(問題点を解決するための手段) 発明者らは、ヨウ化合を溶かしたヨウ化カリウム溶液〔
(1)、(2)式〕に水酸化カリウム溶液を加えると、
分散した粒度分布幅の狭い金粒子が得られAC(3)式
〕事に着目し、上記方法の改良の結果、本発明を成すに
至った。
(Means for solving the problem) The inventors have developed a potassium iodide solution in which an iodine compound is dissolved [
When potassium hydroxide solution is added to equations (1) and (2),
Focusing on the fact that dispersed gold particles with a narrow particle size distribution width can be obtained (formula AC (3)), the present invention was accomplished as a result of improvements to the above method.

本発明は、核とする金粒子とヨウ化金酸イオンを含む水
溶液に水酸化アルカリ溶液を加え前記金粒子に金を析出
させ、より大きな金粒子を得ることを特徴とするもので
ある。
The present invention is characterized in that an alkali hydroxide solution is added to an aqueous solution containing gold particles as cores and iodoaurate ions to precipitate gold onto the gold particles, thereby obtaining larger gold particles.

核とする金粒子は、どのような製法のものでも良いが、
粒径の大きなものを得る為には、なるべく大きな、好ま
しくは、数μから十数μのものが良い。これは、析出さ
せる際の金の量に限りがある事、直径を2倍にする為に
は8倍量の質量を要するからである。また得られる金粒
子の粒径を一定にするために、粒度分布幅の狭いものの
方が良い。
The gold particles used as the core may be manufactured using any manufacturing method, but
In order to obtain particles with a large particle size, particles should be as large as possible, preferably from several microns to more than ten microns. This is because there is a limit to the amount of gold that can be deposited, and to double the diameter, eight times the mass is required. Further, in order to make the particle size of the obtained gold particles constant, it is better to have a narrow particle size distribution width.

ヨウ化金イオンを含む水溶液を得るためのヨウ化金塩と
してヨウ化合カリウム、ヨウ化合ナトリウム等のアルカ
リ金属塩の他、Ca、Mg等のアルカリ土類金属塩、ア
ンモニウム塩等があげられる。またヨウ化アルカリ金属
塩として、カリウム塩、ナトリウム塩等のアルカリ金属
塩、カルシウム塩、マグネシウム塩等のアルカリ土類金
属塩、アンモニウム塩等があげられる。
Examples of gold iodide salts for obtaining an aqueous solution containing gold iodide ions include alkali metal salts such as potassium iodide and sodium iodide, alkaline earth metal salts such as Ca and Mg, and ammonium salts. Examples of the alkali metal iodide salts include alkali metal salts such as potassium salts and sodium salts, alkaline earth metal salts such as calcium salts and magnesium salts, and ammonium salts.

濃度は、ヨウ化金塩として0.01〜0.75M/Jが
良い。0.01M/ffi未満では収量が少なく 、0
.’75M/1を超えると溶解させることが難しいから
である。ヨウ化アルカリ金属塩については0.01〜7
M/lが良い。ヨウ化金塩は水に溶けやすいが、ヨウ化
アルカリ金属がある場合はより良く溶解し、液も劣化し
にくい。しかし7M/1を超えると飽和濃度に近く結晶
が出やすくなる。
The concentration is preferably 0.01 to 0.75 M/J as gold iodide salt. If it is less than 0.01M/ffi, the yield will be low and 0.
.. This is because if it exceeds 75M/1, it is difficult to dissolve it. 0.01-7 for alkali metal iodide salts
M/l is good. Gold iodide salts are easily soluble in water, but when alkali metal iodides are present, they dissolve better and the liquid is less likely to deteriorate. However, when the concentration exceeds 7M/1, crystals tend to form near the saturation concentration.

pHは13を超えると(3)式がおこるため不都合なの
で13以下がよいが、操作上8〜13がより好ましい。
If the pH exceeds 13, formula (3) occurs, which is inconvenient, so a pH of 13 or less is preferable, but a pH of 8 to 13 is more preferable for operational reasons.

p Hを調整するためには、通常使われる酸、アルカリ
の他にp Hの緩衝作用を有するものでも良い。
In order to adjust the pH, in addition to the commonly used acids and alkalis, substances having a pH buffering effect may be used.

さらにその他の添加剤を入れて使用しても良く、I2や
K 10.等が入っていると系内が酸化性雰囲気となり
、液の保存時に金が析出しないなどの利点がある。
Furthermore, other additives may be added and used, such as I2 and K10. etc., the system becomes an oxidizing atmosphere, which has the advantage that gold does not precipitate during storage of the liquid.

水酸化アルカリ溶液としては、KOH,NaOHなどが
良い。濃度は0.1〜6.OR位の方が良く高濃度のも
のの使用は粒径が不ぞろいになり易く良くない。
As the alkaline hydroxide solution, KOH, NaOH, etc. are preferable. The concentration is 0.1-6. It is better to have an OR level, but using a high concentration is not good because the particle size tends to be uneven.

金を析出させるための条件としては、10〜100℃で
良いが、30〜70℃の方が粒径をコントロールし易い
The conditions for depositing gold may be 10 to 100°C, but it is easier to control the particle size at 30 to 70°C.

(実施例1) ■β当りヨウ化カリウム3.OM、ヨウ化金塩0.25
Mを含み0.05Nの水酸化カリウム溶液でpH11,
0にした溶*(以下A液)を302と1.0M#!の水
酸化カリウム溶液(以下B液)301を作り実験した。
(Example 1) ■ Potassium iodide per β 3. OM, gold iodide salt 0.25
pH 11 with 0.05N potassium hydroxide solution containing M,
302 and 1.0M#! A potassium hydroxide solution (hereinafter referred to as B solution) 301 was prepared and an experiment was conducted.

(11まずA液とB液を50℃で各llを混合して金粒
子を含む溶液21を得た(サンプルA)。金粒子を沈降
させた後上澄みを1.61すて、残る0、41を金粒子
を含む溶液(C液)とした。
(11 First, each liter of solution A and solution B were mixed at 50°C to obtain a solution 21 containing gold particles (sample A). 41 was used as a solution containing gold particles (liquid C).

(2)C液にA液11を加え1.41とし50℃にてB
液II!と混合し金粒子を析出させ(計2.1)、上澄
みを2.ORすて、残る0、41の金粒子を含み溶液を
得る。
(2) Add 11 of liquid A to liquid C to make it 1.41, and heat B at 50°C.
Liquid II! The gold particles were precipitated by mixing with (2.1 in total), and the supernatant was mixed with (2.1 in total). After discarding the OR, a solution containing remaining 0.41 gold particles is obtained.

この液を(2)でのC液とし結晶成長の為の核とし、こ
の操作を30回繰り返し、1回目、2回目、5回目、1
0回目、25回目にそれぞれサンプルB,C,D,Eと
し、粒度分布測定と電子顕微鏡観察を行った結果を表1
に示す。
This liquid was used as the C solution in (2) and used as a nucleus for crystal growth, and this operation was repeated 30 times, 1st, 2nd, 5th, 1
Table 1 shows the results of particle size distribution measurement and electron microscope observation for samples B, C, D, and E at the 0th and 25th runs.
Shown below.

(従来例) 上述実施例1のA液のかわりに1β当り金0.25Mを
含む塩化金酸塩酸酸性溶液とB液のかわりの2M/Il
の二塩酸ヒドラジン溶液を用いて実施例1と同じ実験を
行いサンプルA゛〜E′を得たのでこれを実施例1と同
様の方法で評価をしたものを表1に示す。
(Conventional example) A chloroauric acid acidic solution containing 0.25M gold per 1β instead of the A solution of Example 1 and 2M/Il instead of the B solution.
The same experiment as in Example 1 was carried out using the hydrazine dihydrochloride solution of 1. Samples A' to E' were obtained, and the samples A' to E' were evaluated in the same manner as in Example 1 and are shown in Table 1.

(以下余白) 表からもわかるように実施例1では金粒子に新たに金が
析出して粒径が徐々に大きくなることと粒度分布幅が狭
いことがわかるが従来例においては粒径は大きくならず
、粒度分布幅が凝集により広がってしまっていることが
わかる。
(Margins below) As can be seen from the table, in Example 1, gold is newly precipitated on the gold particles and the particle size gradually increases, and the particle size distribution width is narrow, but in the conventional example, the particle size is large. It can be seen that the particle size distribution width is widened due to aggregation.

(実施例2) 実施例1のA液、B液を用いて実験した。(Example 2) An experiment was conducted using liquids A and B of Example 1.

A液0.51B液0.5!を加え金粒子を析出させたの
ち上澄み0,81をすて、残る0、21を核となる金粒
子を含む溶液とした。
A liquid 0.51 B liquid 0.5! was added to precipitate gold particles, the supernatant 0.81 was discarded, and the remaining 0.21 was used as a solution containing gold particles serving as cores.

この液にA液を21入れ30℃とし強く攪拌しながら5
m/分の速さでB液を2j!加えた。これにより得られ
た金粒子を粒度分布測定と電子顕微鏡実験を行ったとこ
ろ平均粒径が32μで25〜37μの間に全粒子数の7
0%が含まれるシャープなものが得られた。
Add 21 parts of solution A to this solution and heat to 30°C while stirring vigorously.
2j of liquid B at the speed of m/min! added. The resulting gold particles were subjected to particle size distribution measurement and electron microscopy experiments, and found that the average particle size was 32 μm, and 7 of the total particles were between 25 and 37 μm.
A sharp product containing 0% was obtained.

(発明の効果) 以上の説明かられかるように本発明による金粒子の製造
方法は、従来法では得られなかった粒度分布の幅の狭い
金粒子を、粒径をコントロールして製造できるので、従
来の製造方法に比べ画期的なものといえる。
(Effects of the Invention) As can be seen from the above explanation, the method for producing gold particles according to the present invention can produce gold particles with a narrow particle size distribution, which could not be obtained by conventional methods, by controlling the particle size. It can be said to be revolutionary compared to conventional manufacturing methods.

Claims (3)

【特許請求の範囲】[Claims] (1)核とする金粒子とヨウ化金塩イオンを含む水溶液
に水酸化アルカリ溶液を加え、前記金粒子に金を析出さ
せ、より大きな粒径の金粒子を得ることを特徴とする金
粒子の製造方法。
(1) Gold particles characterized by adding an alkali hydroxide solution to an aqueous solution containing gold particles as cores and gold iodide ions to precipitate gold on the gold particles to obtain gold particles with a larger particle size. manufacturing method.
(2)核とする金粒子がヨウ化金塩のヨウ化アルカリ金
属塩溶液に水酸化アルカリ溶液を加えて得られた金粒子
であることを特徴とする特許請求の範囲第1項記載の金
粒子の製造方法。
(2) The gold according to claim 1, characterized in that the gold particles serving as the core are gold particles obtained by adding an alkali hydroxide solution to an alkali metal iodide salt solution of a gold iodide salt. Method of manufacturing particles.
(3)核とする金粒子が特許請求の範囲第1項にて得ら
れた金粒子であることを特徴とする特許請求の範囲第1
項記載の製造方法。
(3) Claim 1, characterized in that the gold particles serving as the core are the gold particles obtained in Claim 1.
Manufacturing method described in section.
JP12785087A 1987-05-25 1987-05-25 Production of gold particle Pending JPS63293107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12785087A JPS63293107A (en) 1987-05-25 1987-05-25 Production of gold particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12785087A JPS63293107A (en) 1987-05-25 1987-05-25 Production of gold particle

Publications (1)

Publication Number Publication Date
JPS63293107A true JPS63293107A (en) 1988-11-30

Family

ID=14970210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12785087A Pending JPS63293107A (en) 1987-05-25 1987-05-25 Production of gold particle

Country Status (1)

Country Link
JP (1) JPS63293107A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149903A (en) * 2002-11-01 2004-05-27 Kaken Tec Kk Conductive powder, conductive composition, and production method for conductive powder
US7211135B2 (en) 2004-03-16 2007-05-01 Nanogate Coating Systems Gmbh Writable and printable colloidal gold solution
JP2011105981A (en) * 2009-11-16 2011-06-02 Hiroshima Univ Method for producing gold particle, gold particle, laser ablation apparatus, collecting member used therefor and method for producing particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149903A (en) * 2002-11-01 2004-05-27 Kaken Tec Kk Conductive powder, conductive composition, and production method for conductive powder
US7211135B2 (en) 2004-03-16 2007-05-01 Nanogate Coating Systems Gmbh Writable and printable colloidal gold solution
US7579074B2 (en) 2004-03-16 2009-08-25 Nanogate Ag Writable and printable colloidal gold solution
JP2011105981A (en) * 2009-11-16 2011-06-02 Hiroshima Univ Method for producing gold particle, gold particle, laser ablation apparatus, collecting member used therefor and method for producing particle

Similar Documents

Publication Publication Date Title
US9371572B2 (en) Process for manufacture of nanometric, monodisperse, stable metallic silver and a product obtained therefrom
JP5035545B2 (en) Method for producing alkaline zirconia sol
CN103586461A (en) Nano-silver sol and preparation and purification method thereof
JPS63307206A (en) Production of fine silver particles
JP4746534B2 (en) Method for producing silver nanoparticles
CN105645455B (en) A kind of method that superfine nano powder is prepared using pulse current
JPS63293107A (en) Production of gold particle
JP7164391B2 (en) Method for producing copper nanowires
JPS63186803A (en) Production of fine copper particles
JPH0211709A (en) Production of silver colloid
JPS63179009A (en) Production of fine silver particles
JP7003668B2 (en) Manufacturing method of copper nano ink and copper nano ink
JPS63186805A (en) Production of fine copper particles
JP2016020532A (en) Silver nanoparticle colloid, silver nanoparticle, manufacturing method of silver nanoparticle colloid and manufacturing method of silver nanoparticle
KR102307482B1 (en) Method for producing high-concentration metal ink, andhigh-concentration metal ink produced by this method
JPS63179010A (en) Production of fine silver particles
JPS63230520A (en) Production of calcium carbonate having controlled particle diameter
JPS61243105A (en) Production of pulverous silver particles
JPS63179012A (en) Production of fine silver particles
JPS63179011A (en) Production of fine silver particles
JPS63186809A (en) Production of fine copper particles
JPH01225709A (en) Production of fine palladium particles
JPS63186812A (en) Production of fine copper particles
JPS63293106A (en) Production of gold particle
JPH01225708A (en) Production of fine palladium particles