JPS63293106A - Production of gold particle - Google Patents

Production of gold particle

Info

Publication number
JPS63293106A
JPS63293106A JP12784987A JP12784987A JPS63293106A JP S63293106 A JPS63293106 A JP S63293106A JP 12784987 A JP12784987 A JP 12784987A JP 12784987 A JP12784987 A JP 12784987A JP S63293106 A JPS63293106 A JP S63293106A
Authority
JP
Japan
Prior art keywords
gold
iodide
iodide salt
alkali metal
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12784987A
Other languages
Japanese (ja)
Inventor
Mamoru Hirako
平子 衛
Nobuyasu Ezawa
江沢 信泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP12784987A priority Critical patent/JPS63293106A/en
Publication of JPS63293106A publication Critical patent/JPS63293106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce minute gold particles having a narrow range of particle size distribution under controlling particle sizes by making the specified pH of gold iodide salt water solution and decomposing the gold iodide salt by adding alkali metal hydroxide solution. CONSTITUTION:The pH of the gold iodide salt water solution (gold potassium iodide, etc.) or mixed water solution of the gold iodide salt and alxali metal iodide salt (potassium iodide, etc.) is to provide at <=12.5 and desirably 8-12. Then, concn. of the alkali metal iodide salt is to provide at 0.05-7 M/l. Next, the alkali metal hydroxide salt (potassium hydroxide, etc.) having 0.1-6N concn. is added to the water solution and the gold particles are generated by decomposing the gold iodide salt at about 10-100 deg.C reaction temp. and the reaction is completed at >=pH 13. By this method, the metal gold having sharp distribution of particle sizes is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing gold particles.

(従来技術とその問題点) 従来、金粒子の製造方法としては、塩化金酸溶液などに
ヒドラジン等の還元剤を用いて還元するが方法が用いら
れてきた。
(Prior art and its problems) Conventionally, gold particles have been produced by reducing a chloroauric acid solution using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子同士が引き寄
せあうために、凝集してしまい粒度分布の幅の広い金粒
子しか得られないという欠点を有していた。
However, this method has the disadvantage that the reduced particles attract each other and aggregate, resulting in gold particles having a wide particle size distribution.

(発明の目的) 本発明は上記の欠点を解消せんがためになされたもので
あり、粒度分布の幅の狭い、粒径コントロール可能な金
粒子の製造方法を提供せんとするものである。
(Object of the Invention) The present invention has been made to solve the above-mentioned drawbacks, and it is an object of the present invention to provide a method for producing gold particles with a narrow particle size distribution and controllable particle size.

(問題点を解決するための手段) 本発明は、ヨウ化金塩水溶液又はヨウ化金塩とヨウ化ア
ルカリ金属塩との混合水溶液のpHを12.5以下とし
それに水酸化アルカリ金属溶液を加え、ヨウ化金塩を分
解し金粒子を得ることを特徴とするものである。
(Means for Solving the Problems) The present invention involves adjusting the pH of a gold iodide salt aqueous solution or a mixed aqueous solution of a gold iodide salt and an alkali metal iodide salt to 12.5 or less, and adding an alkali metal hydroxide solution thereto. , which is characterized by decomposing gold iodide salt to obtain gold particles.

ヨウ化アルカリ金属塩としてカリウムを用いた場合には
ヨウ化アルカリ金属塩とヨウ化金の混合水溶液中でヨウ
化金は次の次の式に従い溶解する〔(1)、(2)式〕
When potassium is used as the alkali metal iodide salt, gold iodide dissolves in a mixed aqueous solution of the alkali metal iodide salt and gold iodide according to the following formula [Equations (1) and (2)]
.

A u I 3 + K I     K A u I
 a  −−−−−−−(1)KAu 14 + K 
I  K”+ (Au +4) −−−−(21これに
水酸化アルカリを加えp IIを12.5を超えるよう
にする事により、金属金が得られる。〔(3)式〕。
A u I 3 + K I K A u I
a −−−−−−−(1) KAu 14 + K
I K"+ (Au +4) ----(21) Metallic gold is obtained by adding alkali hydroxide to this to make p II exceed 12.5. [Formula (3)].

2 [Au 14) −+ 6KOH2AuI+5 K
 I + K I O3+ 3 Hz O+ 21− 
−・−(3)ヨウ化金塩水溶液又はヨウ化金塩とヨウ化
アルカリ金属塩の混合水溶液のpHを12.5以下とし
た理由は、pH12,5を超えると(3)式の反応がお
こってしまうため、反応前に金が析出し目的とする金粒
子が得られないからである。またこの水溶液のp Hは
、アルカリを加える都合上8〜12位が好ましい。
2 [Au 14) −+ 6KOH2AuI+5 K
I + K I O3+ 3 Hz O+ 21-
-・-(3) The reason why the pH of the gold iodide salt aqueous solution or the mixed aqueous solution of the gold iodide salt and the alkali metal iodide salt was set to 12.5 or less is that when the pH exceeds 12.5, the reaction of equation (3) occurs. This is because gold precipitates before the reaction and the desired gold particles cannot be obtained. Further, the pH of this aqueous solution is preferably 8 to 12 for convenience of adding an alkali.

ヨウ化金とヨウ化アルカリ金属塩の混合水溶液の場合p
Hは、中性から弱酸性(pH3〜8)を示す。pHを調
製する為には、酸としては、硫酸、硝酸、ヨウ化水素酸
、りん酸、酢酸、塩酸等があげられる。アルカリとして
は、水酸化ナトリウム、水酸化カリウム、アンモニア水
等があげられる。
In the case of a mixed aqueous solution of gold iodide and alkali metal iodide salt, p
H indicates neutral to weak acidity (pH 3 to 8). In order to adjust the pH, examples of acids include sulfuric acid, nitric acid, hydroiodic acid, phosphoric acid, acetic acid, and hydrochloric acid. Examples of the alkali include sodium hydroxide, potassium hydroxide, and aqueous ammonia.

また反応前の極端なpHの変動を抑えるために、p H
の緩衝作用を有する塩や、酸とアルカリとの組合せによ
るp H緩衝溶液またはp)(緩衝剤、例えばりん酸水
素2ナトリウムーりん酸2水素ナトリウム、炭酸水素ナ
トリウム−炭酸ナトリウム、炭酸ナトリウム−水酸化ナ
トリウム、酢酸−酢酸ナトリウム等によりp Hを調整
しても良い。
In addition, in order to suppress extreme pH fluctuations before the reaction, the pH
salts with a buffering effect, pH buffer solutions or p) (buffers, such as disodium hydrogen phosphate-sodium dihydrogen phosphate, sodium bicarbonate-sodium carbonate, sodium carbonate-hydroxide) The pH may be adjusted using sodium, acetic acid-sodium acetate, or the like.

ヨウ化金塩をヨウ化金とヨウ化アルカリ金属塩の混合水
溶液とした理由は、前述(2)式に示した様にヨウ化金
も、ヨウ化金塩同様の挙動を示すからである。ヨウ化金
塩としてはヨウ化金カリウム、ヨウ化金ナトリウムの他
に、Mg塩、Ca塩、NH,塩などがあげられる。
The reason why the gold iodide salt is a mixed aqueous solution of gold iodide and an alkali metal iodide salt is that gold iodide also exhibits the same behavior as the gold iodide salt, as shown in equation (2) above. Examples of gold iodide include potassium gold iodide and sodium gold iodide, as well as Mg salt, Ca salt, NH salt, and the like.

ヨウ化アルカリ金属塩とヨウ化金の混合水溶液のヨウ化
アルカリ金属塩濃度を0.05M/J〜7M/lとした
理由は、0.05M/1未満では(11式の反応を十分
おこすことができず、TM/lを超えると、ヨウ化アル
カリ金属の飽和濃度に近く結晶が出やすいこと、また反
応の結果が生じるヨウ素酸イオンが塩析効果により、ヨ
ウ素酸アルカリ金属となり金粒子とともに析出してしま
うからである。
The reason why the alkali metal iodide concentration of the mixed aqueous solution of alkali metal iodide and gold iodide was set to 0.05 M/J to 7 M/l is that if it is less than 0.05 M/1, the reaction of equation 11 will not occur sufficiently. If TM/l is exceeded, the concentration of alkali metal iodide is close to the saturation concentration, and crystals are likely to form.Also, due to the salting-out effect, iodate ions that result from the reaction become alkali metal iodate and precipitate together with gold particles. This is because you end up doing it.

実施例においては、ヨウ化アルカリ金属塩としてヨウ化
カリウム、ヨウ化ナトリウムを用いたが、その他にヨウ
化カルシウムやヨウ化マグネシウム、ヨウ化アンモニウ
ム等でも良い。
In the examples, potassium iodide and sodium iodide were used as the alkali metal iodide salt, but calcium iodide, magnesium iodide, ammonium iodide, etc. may also be used.

水酸化アルカリ金属溶液の濃度を、0.1〜6Nとした
理由は、0.1以下では反応の為に多量の水酸化アルカ
リ金属溶液を必要とし、6N以上では、金粒子が凝集し
易くなるからである。
The reason why the concentration of the alkali metal hydroxide solution was set from 0.1 to 6N is that if it is less than 0.1, a large amount of alkali metal hydroxide solution is required for the reaction, and if it is more than 6N, the gold particles tend to aggregate. It is from.

反応温度をは10℃未満では反応が遅(,100°C超
えると析出した金粒子が凝集してしまうので、10〜1
00℃の範囲が好ましい。また反応温度は変動すると、
金粒子の粒径のばらつきが太き(なるので、一定にした
方が好ましい。
If the reaction temperature is less than 10°C, the reaction will be slow (if it exceeds 100°C, the precipitated gold particles will aggregate, so
A range of 00°C is preferred. Also, when the reaction temperature changes,
Since the particle size of the gold particles varies widely, it is preferable to keep them constant.

反応の終点のpHは20℃では12.5以上、80℃で
は12.0以上であれば良いが終点のp I(が低いと
歩留が悪くなるので、好ましくはE)H13以上である
The pH at the end point of the reaction may be at least 12.5 at 20°C and at least 12.0 at 80°C, but the pH at the end point is preferably at least 13 (E), since a low pI() will result in poor yield.

(実施例1) 11当りヨウ化カリウム1.0M、ヨウ化金0.1Mを
含み0.05Nの水酸化カリウム溶液でpH11,0に
調整した溶液5点各100dを、300−ビーカーにと
り、各々10℃、30℃、50℃、70℃、90°Cで
温度を一定に保ちながら1.ONの水酸化カリウム溶液
50+dと反応させた。得られた金粒子はろ過、洗浄し
て粒径分布測定、電子顕微鏡観察を行ったところ、第1
図の結果を得た。
(Example 1) 100 d of each of 5 solutions containing 1.0 M of potassium iodide and 0.1 M of gold iodide and adjusted to pH 11.0 with a 0.05 N potassium hydroxide solution were placed in a 300-cm beaker, and each 1. While keeping the temperature constant at 10°C, 30°C, 50°C, 70°C, and 90°C. Reacted with 50+d of ON potassium hydroxide solution. The obtained gold particles were filtered, washed, measured for particle size distribution, and observed using an electron microscope.
We obtained the results shown in the figure.

(従来例) 11当り塩化金酸0.1Mを含む溶液100mfに、1
、ONのヒドラジン50adを30℃で温度を一定に保
ちながら反応させた、得られた金粒子は、ろ過洗浄して
粒径分布測定、及び電子顕微鏡観察を行ったところ図1
の結果を得た。
(Conventional Example) Add 1 to 100mf of a solution containing 0.1M of chloroauric acid per 11
, ON hydrazine 50ad was reacted at 30°C while keeping the temperature constant. The obtained gold particles were filtered and washed, and the particle size distribution was measured and observed with an electron microscope. Figure 1
I got the result.

実施例では温度条件によりその粒径がコントロールされ
、粒度分布も非常にシャープであることを示している。
The examples show that the particle size is controlled by temperature conditions and the particle size distribution is also very sharp.

これに対し従来例では凝集により粒度分布が広かってし
まったことがわかる。
On the other hand, it can be seen that in the conventional example, the particle size distribution became wide due to aggregation.

(実施例2) tz当りヨウ化カリウム0.1M/l、0.5M/l、
1.0M/I!、3M/i!、7M/j!の溶液各10
0m1にヨウ化金0.05Mを各々に加えた後、0.0
5Nの水酸化カリウム溶液でpH11,0とし、さらに
30℃に保ちながら1.ONの水酸化カリウム溶液50
M4と反応させた。反応後ろ過洗浄して粒径分布測定及
び電子顕微鏡観察を行った結果を下記の表に示す。
(Example 2) Potassium iodide per tz: 0.1 M/l, 0.5 M/l,
1.0M/I! , 3M/i! , 7M/j! 10 each solution of
After adding 0.05M of gold iodide to 0ml of each,
The pH was adjusted to 11.0 with 5N potassium hydroxide solution, and the temperature was further maintained at 30°C. ON potassium hydroxide solution 50
Reacted with M4. The results of particle size distribution measurement and electron microscopy observation after the reaction are shown in the table below.

ヨウ化カリウム濃度0.1M/1では粒度分布が他に比
べてやや広くなっているが0.5〜7.0 M/lでは
、シャープな粒度分布が得られた。
At a potassium iodide concentration of 0.1 M/l, the particle size distribution was slightly wider than the others, but at a potassium iodide concentration of 0.5 to 7.0 M/l, a sharp particle size distribution was obtained.

(実施例3) 11当りヨウ化ナトリウム1.0M、ヨウ化金0.5M
を含み0.05Nの水酸化ナトリウム溶液でpH11,
0に調整した溶液100−を5点とりそれぞれに、0.
2M/1.0.5M/1.1.OM/l 3M/l、6
M/Jの水酸化ナトリウム溶液を加え終点のpHを13
にするよう30℃で反応させた0反応終了後、濾過、洗
浄して、粒度分布測定を行った結果を第2図に示す。
(Example 3) Sodium iodide 1.0M, gold iodide 0.5M per 11
pH 11 with 0.05N sodium hydroxide solution containing
Take 5 points of solution 100- adjusted to 0.
2M/1.0.5M/1.1. OM/l 3M/l, 6
Add M/J sodium hydroxide solution and adjust the final pH to 13.
After the reaction was completed at 30° C., the sample was filtered and washed, and the particle size distribution was measured. The results are shown in FIG.

水酸化カリウム濃度6.0M/lでも7.3μ〜10.
5μの中に粒子の70%が入るシャープな金粒子が得ら
れた。
Even at a potassium hydroxide concentration of 6.0M/l, it is 7.3μ to 10.
Sharp gold particles containing 70% of the particles within 5μ were obtained.

(発明の効果) 以上の説明かられかるように本発明による金粒子の製造
方法は、従来法では得られなかった粒度分布の幅の狭い
微細な金粒子を、粒径をコントロールして製造できるの
で、従来の製造方法に比べ画期的なものといえる。
(Effects of the Invention) As can be seen from the above explanation, the method for producing gold particles according to the present invention can produce fine gold particles with a narrow particle size distribution, which could not be obtained by conventional methods, by controlling the particle size. Therefore, it can be said to be revolutionary compared to conventional manufacturing methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は金粒子の粒度分布を測定した結果を
横軸に粒径、縦軸に累積パーセントを取って示したもの
である。 出願人  田中貴金属工業株式会社 第 1 図 第2図
FIGS. 1 and 2 show the results of measuring the particle size distribution of gold particles, with the horizontal axis representing particle diameter and the vertical axis representing cumulative percentage. Applicant Tanaka Kikinzoku Kogyo Co., Ltd. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)ヨウ化金塩水溶液又はヨウ化金塩とヨウ化アルカ
リ金属塩と混合水溶液のpIIを12.5以下とし、それ
に水酸化アルカリ金属溶液を加え、ヨウ化金塩を分解し
金粒子を得ることを特徴とする金粒子の製造方法。
(1) The pII of a gold iodide salt aqueous solution or a mixed aqueous solution of a gold iodide salt and an alkali metal iodide salt is set to 12.5 or less, and an alkali metal hydroxide solution is added thereto to decompose the gold iodide salt and produce gold particles. A method for producing gold particles characterized by obtaining.
(2)ヨウ化金塩水溶液がヨウ化アルカリ金属塩とヨウ
化金の混合水溶液であることを特徴とする特許請求の範
囲第1項記載の方法。
(2) The method according to claim 1, wherein the aqueous gold iodide salt solution is a mixed aqueous solution of an alkali metal iodide salt and gold iodide.
(3)ヨウ化アルカリ金属塩濃度が0.05M/l〜7
M/lであることを特徴とする特許請求の範囲第1項又
は第2項記載の方法。
(3) Alkali metal iodide concentration is 0.05M/l to 7
3. The method according to claim 1 or 2, characterized in that M/l.
(4)水酸化アルカリ金属溶液の濃度が0.1〜6Nで
あることを特徴とする特許請求の範囲第1項〜第3項記
載の方法。
(4) The method according to claims 1 to 3, wherein the concentration of the alkali metal hydroxide solution is 0.1 to 6N.
JP12784987A 1987-05-25 1987-05-25 Production of gold particle Pending JPS63293106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12784987A JPS63293106A (en) 1987-05-25 1987-05-25 Production of gold particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12784987A JPS63293106A (en) 1987-05-25 1987-05-25 Production of gold particle

Publications (1)

Publication Number Publication Date
JPS63293106A true JPS63293106A (en) 1988-11-30

Family

ID=14970188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12784987A Pending JPS63293106A (en) 1987-05-25 1987-05-25 Production of gold particle

Country Status (1)

Country Link
JP (1) JPS63293106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581301A (en) * 2012-03-30 2012-07-18 吉林大学 Method for preparing multi-metal nanoparticles by one-step coreduction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581301A (en) * 2012-03-30 2012-07-18 吉林大学 Method for preparing multi-metal nanoparticles by one-step coreduction

Similar Documents

Publication Publication Date Title
JPS63307206A (en) Production of fine silver particles
US3954951A (en) Preparation of red amorphous selenium
JPS63293106A (en) Production of gold particle
GB733740A (en) Improvements in or relating to a process for the production of crystalline insulin
CA1068584A (en) Process for removing calcium oxalate scale
JPS63186803A (en) Production of fine copper particles
JPH01210A (en) Method for producing gold particles
JPH01209A (en) Method for producing gold particles
JPH01127609A (en) Production of fine gold particles
JPS63293107A (en) Production of gold particle
JPH01211A (en) Method for producing gold particles
JPS63186805A (en) Production of fine copper particles
JP7187652B2 (en) niobic acid aqueous solution
JP3249589B2 (en) Method for producing high purity zinc sulfide powder
JPH07107172B2 (en) Method for producing fine silver particles
JPH01208A (en) Method for producing gold particles
JPS63179012A (en) Production of fine silver particles
JPS63186807A (en) Production of fine copper particles
JPS63186810A (en) Production of fine copper particles
JPS62294116A (en) Production of fine palladium particles
JPS62294112A (en) Production of fine silver particles
JPS63186804A (en) Production of fine copper particles
JPS63186808A (en) Production of fine copper particles
JPS63186809A (en) Production of fine copper particles
JPS62294120A (en) Production of fine rhodium particles