JPS63190025A - High-performance acrylic carbon fiber and production thereof - Google Patents

High-performance acrylic carbon fiber and production thereof

Info

Publication number
JPS63190025A
JPS63190025A JP1951987A JP1951987A JPS63190025A JP S63190025 A JPS63190025 A JP S63190025A JP 1951987 A JP1951987 A JP 1951987A JP 1951987 A JP1951987 A JP 1951987A JP S63190025 A JPS63190025 A JP S63190025A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
measured
ipa
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1951987A
Other languages
Japanese (ja)
Other versions
JP2668209B2 (en
Inventor
Fujio Nakao
中尾 富士夫
Hajime Asai
浅井 肇
Katsumi Anai
穴井 勝美
Yoshiaki Maruyama
丸山 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62019519A priority Critical patent/JP2668209B2/en
Publication of JPS63190025A publication Critical patent/JPS63190025A/en
Application granted granted Critical
Publication of JP2668209B2 publication Critical patent/JP2668209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled fiber having excellent impact strength and useful for aircraft, etc., by carrying out flame-resisting treatment of an acrylonitrile fiber precursor, stretching the treated fiber in an inert atmosphere under heating, carbonizing at a high temperature and oxidizing under alkaline condition with electric current using the carbon fiber as an anode. CONSTITUTION:An acrylonitrile fiber precursor is subjected to flame-resisting treatment in a manner to give a fiber density of 1.25-1.40g/cm<3>, stretched by >=3% in an inert atmosphere at 300-800 deg.C and heat-treated at 1,150-1,400 deg.C in stretched state to obtain a carbon fiber. The carbon fiber is oxidized by passing electric current at a rate of 50-400 coulomb/g in an alkaline aqueous solution at >=7pH using the carbon fiber as an anode or is oxidized with air to obtain the objective fiber having a strand elastic modulus of 30-40ton/mm<2> and Lc.La (determined by wide angle X-ray diffraction) and a surface characteristic parameter ipa (measured by potential scanning method) satisfying the formulas I-III.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は制御された表面特性を有するアクリル系高性能
炭素繊維及びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-performance acrylic carbon fiber with controlled surface properties and a method for producing the same.

〔従来の技術〕[Conventional technology]

炭素繊維の高性能化の要望は年々強くなってきており、
特に航空機用炭素繊維としては高強度化、高弾性化の方
向で、最近では50トン前後の弾性率を有する中弾性炭
素繊維が開発の主流として指向されつつある。
The demand for improved performance of carbon fiber is becoming stronger year by year.
In particular, carbon fibers for aircraft use are being developed in the direction of higher strength and higher elasticity, and recently, medium-modulus carbon fibers having an elastic modulus of around 50 tons are becoming mainstream.

航空機の一次構造材に使用されるコンポジットとしては
、耐衝撃強度の大きいこと、特に損傷許容性に重点をお
い友衝撃後の残存圧縮強度(以下0ム工と略記)の高い
ことが必須性能として要求されてきている。   ゛ コンポジットのCAlを向上させるために、一般的には
通常マ) +7ツクス樹脂の強靭化と炭素繊維の高伸度
化による改良の試みが多くなされているが、一方炭素繊
維の表面特性はコンポジットの特性を左右する極めて重
要な要因であると広く認識されているにもかかわらず、
表面特性をコントロールすることによってCAlを向上
させる試みは全くなされておらず、その次め充分なCA
l値を示す炭素繊維はいまだに開発されていないのが現
状である。
Composites used as primary structural materials for aircraft must have high impact resistance, with particular emphasis on damage tolerance, and high residual compressive strength after impact (hereinafter abbreviated as zero strength). It's been requested.゛In order to improve the CAl of composites, many attempts have been made to improve the CAl of composites by strengthening the +7Tx resin and increasing the elongation of carbon fibers, but on the other hand, the surface properties of carbon fibers are Although it is widely recognized that it is an extremely important factor that influences the characteristics of
No attempt has been made to improve CAl by controlling surface properties, and secondly, sufficient CA
At present, carbon fibers exhibiting a l value have not yet been developed.

〔発明が解決しようとする問題点コ 本発明の目的は主として航空機に使用される耐衝撃特性
に優れ次コンポジット特性を発現し得るプレプレグ中間
材の補強用炭素繊維を提供することにあり、表面特性の
制御されたアクリル系の中高弾性炭素繊維に関するもの
である。
[Problems to be Solved by the Invention] The purpose of the present invention is to provide carbon fibers for reinforcing prepreg intermediate materials that are mainly used in aircraft and have excellent impact resistance properties and can exhibit the following composite properties. This invention relates to acrylic medium-high modulus carbon fibers with controlled properties.

〔問題点を解決する几めの手段〕[Elaborate means to solve problems]

本発明の要旨とするところは、 (1)ストランド弾性率が30〜40 ton711m
1スであるアクリル系炭素繊維において、広角X線回折
法で測定されるLc、Laおよび電位走査法で測定され
る表面特性パラメーター1paが下記式にあるアクリル
系高性能炭素繊維である。
The gist of the present invention is as follows: (1) Strand elastic modulus is 30 to 40 tons711m
The acrylic carbon fiber is a high-performance acrylic carbon fiber whose Lc and La measured by wide-angle X-ray diffraction and the surface property parameter 1pa measured by potential scanning method are expressed by the following formula.

12 ム≦Lc≦20 ム 30 ム≦La≦40 ム α10μム/a11!≦ipa≦1125μム/i更に
は水抽出液のσVによる2 30 nmでの吸光度がα
2以下であることt−特徴としたアクリル系高性能炭素
繊維、及び (2)骸炭素繊維の製造法として、アクリロニトリル系
繊維プレカーサーを繊維密度がt25〜L 40 f 
/am”となるように耐炎化処理し、次いで不活性雰囲
気下300〜800℃の温度で34以上の伸長を与えt
後、更に1150〜1400℃の温度で緊張下に熱処理
を行って得られる炭素繊維を、更にイ、pH7より大の
アルカリ・注水溶液Φで該炭素繊維を陽極として50〜
400クーロノ/fの電気量を流して酸化第at行うか
、口、空気酸化処理を行うことにある。
12 Mu≦Lc≦20 Mu30 Mu≦La≦40 Muα10μmu/a11! ≦ipa≦1125 μm/i Furthermore, the absorbance at 2 30 nm due to σV of the water extract is α
Acrylic high-performance carbon fiber characterized by t-2 or less, and (2) a method for producing skeleton carbon fiber, an acrylonitrile-based fiber precursor with a fiber density of t25 to L40 f
/am'', and then elongated to 34 or more at a temperature of 300 to 800°C in an inert atmosphere.
After that, the carbon fiber obtained by heat treatment under tension at a temperature of 1,150 to 1,400°C is further treated with an alkaline water injection solution Φ with a pH higher than 7 for 50 to 50 minutes using the carbon fiber as an anode.
Either oxidation is carried out by flowing an amount of electricity of 400 couronos/f, or air oxidation treatment is carried out.

ストランド弾性率が30〜40 ton/m”である中
高弾性のアクリル系炭素繊維は汎用24 ton/m”
タイプに比べて結晶構造が太きく発達しているが、本発
明者らはコンポジットのCAlが良好な炭素繊維を開発
するに当って結晶サイズの大きさ、即ち広角X線回折法
で測定されるところのLc、Laの大きさがCAlを決
める上で極めて重要な要因の1つであり、各々12ム≦
Lc≦15ム、30A≦La≦40ムの範囲に制御する
ことがOAIを向上させることを見い出し本発明に至っ
た。
Medium-high elastic acrylic carbon fiber with a strand modulus of 30 to 40 ton/m" is a general-purpose 24 ton/m"
Although the crystal structure is thick and developed compared to the carbon fiber type, the present inventors determined the crystal size, that is, measured by wide-angle X-ray diffraction, in developing a carbon fiber with good CAl of the composite. However, the size of Lc and La is one of the extremely important factors in determining CAl, and each is 12 mm ≦
It was discovered that OAI can be improved by controlling Lc≦15 mm and 30 A≦La≦40 mm, leading to the present invention.

結晶構造のパラメータであるLc、Laが上記範囲より
大きくなると炭素繊維表1においても不活性なグラファ
イト面が大きく広がることになり、後処理工程での表面
酸化が起りにくくなるばかりでなく、次とえ、一定水準
まで表面酸化を行つ次としてもその被酸化部分は広いグ
ラファイト面の周辺部のみに局在化し、マトリックス樹
脂との相互作用に乏しいグラファイト面が表面を多く被
うこととなり、後処理の表面酸化の効果が発現しにくく
なって、0ム工は向上しないことが明らかとなつ几。
If the crystal structure parameters Lc and La are larger than the above range, the inert graphite surface will greatly expand even in carbon fiber Table 1, which will not only make surface oxidation less likely to occur in the post-treatment process, but also Even if the surface is oxidized to a certain level, the oxidized area will be localized only in the periphery of the wide graphite surface, and the surface will be covered with a large amount of graphite surface that has poor interaction with the matrix resin. It has become clear that the surface oxidation effect of the treatment becomes less effective, and that the 0-μm finish does not improve.

更に、コンポジットのCAlは炭素繊維のストランド破
断伸度の大きい程高くなることはよく知られているが、
一般にアクリル系炭素繊維はブレカーサ−に由来するフ
ィブリル構造が強度向上に大きな役割を果たしており、
Lc、 Laが大きくなるとフィブリル構造が破壊され
てくる友め炭素化温度を上げてLc、LaQ大きくする
と強度低下を引き起こす。
Furthermore, it is well known that the CAI of the composite increases as the elongation at break of the carbon fiber strand increases;
In general, the fibril structure of acrylic carbon fibers derived from breaker plays a major role in improving strength.
When Lc and La increase, the fibril structure is destroyed.If the carbonization temperature is increased to increase Lc and LaQ, the strength will decrease.

LcとLILt一本発明の範囲に制御することによって
ストラ/ド強度、すなわち破断伸度も大きくなりCA工
の向上に有利である。ストランドの破断伸度としては1
.6係以上あることが望ましい。
By controlling Lc and LILt within the range of the present invention, the strut/dot strength, that is, the elongation at break, also increases, which is advantageous for improving the CA work. The breaking elongation of the strand is 1
.. It is desirable to have 6 or more sections.

それ故、フッポジットのCA工を向上させるにはLc、
La’ji上記範囲に制御することが極めて重要となっ
てくる。従来30〜40 ton/sm冨の中高弾性糸
を得るには比較的高−1少慶くとも1500℃以上の温
度で焼成するのが一般的であったが、本発明者らは弾性
率は結晶の大きさよりもむしろ結晶の配向によってより
支配的に決定される事実に着目し、中弾性糸を従来よシ
もより低温で、少なくとも1400℃以下の温度で焼成
することによシ、結晶の大きさを大きくしないで配向を
上げることで所望の弾性率を確保し、高強度でかつコン
ポジットのCム工の良好なる炭素繊維を得る手法を明ら
かにし、本発明を完成するに至ったものである。
Therefore, in order to improve the CA work of Hupposite, Lc,
It is extremely important to control La'ji within the above range. Conventionally, in order to obtain medium-high elasticity yarn with a thickness of 30 to 40 ton/sm, it was common to sinter at a temperature of relatively high -1 or higher than 1,500°C, but the present inventors have determined that the elastic modulus is Focusing on the fact that the orientation of the crystals is more dominantly determined than the size of the crystals, by firing the medium elastic yarn at a lower temperature than conventionally, at least 1400°C or lower, We have clarified a method to obtain carbon fibers with high strength and good composite C-mu process by increasing the orientation without increasing the size, and have completed the present invention. be.

Lc、Laが上記範囲より小さいときは、結晶の配向は
向上しても基本特性である弾性率を30〜40ton乙
−に特定することは難しい。
When Lc and La are smaller than the above ranges, it is difficult to specify the elastic modulus, which is a basic characteristic, to 30 to 40 tons even if the crystal orientation is improved.

コンポジットのOム工の発現には、結晶サイズの制御が
重要であると共に電位走査法によって検知されるところ
の表面特性のパラメーターである1paiα10≦ip
a≦α25の範囲に制御することが同時に不可欠である
Controlling the crystal size is important for the development of the Om property of the composite, and the parameter of the surface properties detected by the potential scanning method is 1paiα10≦ip.
At the same time, it is essential to control within the range a≦α25.

ipaは水酸基、カルボキシル基等可逆的に酸化還元し
得る炭素繊維表層の官能基の濃度および官能基が存在す
る炭素繊維電極と測定溶液との間の電気二重層状態によ
って変わるパラメーターと考えられるが、このipaは
一般に焼成過程の最高炭素化温度によって決まるが、焼
成後の表面酸化処理によっても任意の大きさに制御する
ことが可能である。 ipaが(110未満ではマドI
Jツクス樹脂に対して不活性となり相互作用に乏しくC
ム工が低い値であるのに対して、ipaがα25を越え
ると官能基の増加率が低下するだけでなく表層に脆弱部
が多く形成されるようになり、かえってOム工は低下し
てくる。
ipa is considered to be a parameter that changes depending on the concentration of functional groups on the carbon fiber surface layer that can be reversibly redoxed, such as hydroxyl groups and carboxyl groups, and the electric double layer state between the carbon fiber electrode where the functional groups are present and the measurement solution. This ipa is generally determined by the maximum carbonization temperature during the firing process, but it can also be controlled to any size by surface oxidation treatment after firing. ipa is less than 110
C
While the value of MU is low, when ipa exceeds α25, not only the rate of increase in functional groups decreases, but also many brittle parts are formed on the surface layer, and on the contrary, OMU decreases. come.

ipaを上記範囲に制御することがコノポジットのCム
工を最大にすることになる。
Controlling ipa within the above range will maximize the Cm of the conoposite.

炭素繊維の表面特性値として、通常X線光電子分光法に
より01s/aig等が測定されるが、これらの値は単
なる化学的な官能基濃度の指標にすぎず、コンポジット
の0ム工を向上させる目的においては、01s110i
s4!を制御することは有効でないことが明らかとなっ
た。すなわち、表面酸化レベルを上げても、O1!17
018は飽和、頭打ちの傾向を示すので、処理レベルを
強くするとかえって低下する様なaム工に対しては、0
11!10i8の制御は効果がない。
As a surface property value of carbon fiber, 01s/aig etc. are usually measured by X-ray photoelectron spectroscopy, but these values are merely indicators of the chemical functional group concentration, and are used to improve the 0m process of the composite. For purposes, 01s110i
s4! It has become clear that controlling the In other words, even if the surface oxidation level is increased, O1!17
Since 018 shows a tendency to saturate and reach a plateau, 0
11!10i8 control has no effect.

すなわち、ipa f制御することによって初めてCム
工を向上させることが可能となったのである。
In other words, it became possible to improve C-movement for the first time by controlling IPAF.

本発明の更なる特徴は、水抽出液の177による2 5
0 nmの吸光度が02以下である炭素繊維にある。炭
素繊維の表面には、焼成過程で焼結付着したタール・ミ
スト成分及び表面処理過程で酸化され九それらの酸化物
が付着、或いは結晶間のミクロボイド部に沈積し、脆弱
な層或いは部分を形成しており、この脆弱部は一般に繊
維基質との結合が弱く剥離し易い状態になっている。コ
ンポジットのCム工を向上させるためには衝撃を加え几
事によって生じるコンポジット内部の剥離を最小限にと
どめることが重要でTo5、そのためには炭素繊維表層
t−識化すると同時に脆弱部を取り除くことが必要不可
欠であるとの認識にもとづき、これら表面汚れのうち特
に水可溶成分の除去された炭素繊維が、0ム工の向上、
特にCム工値のばらつきの小さい炭素繊維を得る上で重
要であることを見出し本発明を完成させるに至った。焼
成過程で発生したメ−ル・ミスト成分は、その後の表面
処理過程で著るしく酸化され、水可溶成分に転換される
が、その残存量は表面処理方法によって大きく左右され
、電解酸化等の湿式処理を行つ迄場合は、その後の水洗
過程で電解質と共にある程度は洗浄除去されるが、空気
酸化等の乾式処理を行った場合は、汚れ成分の殆んどは
洗浄除去されることなく炭素繊維表層に多量付着した1
1である。従って、いずれの表面処理方法においてもそ
の後の洗浄工程が必要となる。
A further feature of the invention is that 25 by 177 of the aqueous extract
The carbon fiber has an absorbance of 0.02 nm or less. On the surface of carbon fibers, tar and mist components that are sintered and adhered during the firing process and oxidized oxides that are oxidized during the surface treatment process adhere to the surface of carbon fibers, or deposit in microvoids between crystals, forming brittle layers or parts. Generally, this fragile portion has a weak bond with the fiber matrix and is easily peeled off. In order to improve the carbon fiber work of the composite, it is important to minimize the peeling inside the composite that occurs due to impact application. Based on the recognition that carbon fiber is indispensable, carbon fiber from which water-soluble components have been particularly removed from these surface contaminants can be used to improve
In particular, the present inventors discovered that this is important in obtaining carbon fibers with small variations in C.mu. value and completed the present invention. The mail/mist components generated during the firing process are significantly oxidized and converted into water-soluble components during the subsequent surface treatment process, but the amount remaining largely depends on the surface treatment method. If a wet treatment is performed, some of the dirt will be washed away along with the electrolyte in the subsequent water washing process, but if a dry treatment such as air oxidation is performed, most of the contaminant components will not be washed away. A large amount of 1 attached to the carbon fiber surface layer
It is 1. Therefore, any surface treatment method requires a subsequent cleaning step.

本発明でいうLc、Laの制御、ipaの制御、表層汚
れの除去がコンポジットのCA工を向上させ、ばらつき
を少なくするための不可欠の条件であり、これらを同時
に満足し友高伸度炭素繊維で始めて初期の目的を追成し
得るのである。
In the present invention, control of Lc, La, control of IPA, and removal of surface dirt are essential conditions for improving CA processing of composites and reducing variations. Only then can you pursue your initial goals.

本発明の炭素繊維の製造方法は、Lc、 La f前述
記載の範囲に入れる几めに、焼成過程における最高炭素
化温度t−115Q〜1400℃にすることか必要であ
り、その際所望の弾性*1−得るためには、用いる。プ
レカーサーの単繊維デ= −J/が[12〜α9dの範
囲であることが好ましい。又、プレカーサーを電子顕微
鏡によって観測される表面粗面化度が10−五〇の範囲
にあるものが好ましい。表面粗面化度の小さいものの方
が衝撃時、繊維と樹脂の界面で衝撃エネルギーを吸収し
、繊維自体を傷つけることが表いので、衝撃強度特にC
A工等の値が高くなるためである。
In the method for producing carbon fibers of the present invention, in order to keep Lc and Laf within the above-described range, it is necessary to set the maximum carbonization temperature in the firing process to t-115Q to 1400°C, and in this case, the desired elasticity *1 - To obtain, use. It is preferable that the single fiber de=-J/ of the precursor is in the range of [12 to α9d. Further, it is preferable that the surface roughness of the precursor as observed by an electron microscope is in the range of 10-50. In the event of an impact, a material with a smaller surface roughness absorbs the impact energy at the interface between the fiber and the resin and damages the fiber itself, so the impact strength, especially C.
This is because the value of A-work etc. becomes high.

更に、耐炎化工程における昇温速度をα5〜α8℃/分
、伸長率を15優以上とするのが好ましく、繊維密度は
1.25〜1.4 f/c111”となるように耐炎化
処理する。
Furthermore, it is preferable that the temperature increase rate in the flame-retardant process is α5 to α8°C/min, the elongation rate is 15 or more, and the flame-retardant treatment is performed so that the fiber density is 1.25 to 1.4 f/c111”. do.

次いで不活性雰囲気下300〜800℃の温度で3嗟以
上の伸長を与え九後、更に1150〜1400℃の温度
で緊張下に熱処理全行って炭素繊維とする。
The fibers are then elongated for at least 3 hours in an inert atmosphere at a temperature of 300 to 800°C, and then heat treated under tension at a temperature of 1150 to 1400°C to obtain carbon fibers.

炭素化工程における焼成時間を長くすることによって弾
性率全天きくすることも可能であるが、弾性率は時間に
対して飽和の傾向を示すため、1〜3分の処理時間が適
当であり13分を越える炭素化時間は工業的に不利な方
法である。
It is possible to increase the overall elastic modulus by increasing the firing time in the carbonization process, but since the elastic modulus tends to saturate with time, a treatment time of 1 to 3 minutes is appropriate. Carbonization times exceeding minutes are an industrially disadvantageous process.

1pat一本発明の範囲に制御するための表面処理方法
としては特に制限はなく、分利の方法即ち、電解酸化、
薬剤酸化及び空気酸化などによる酸化処理が挙げられる
There is no particular restriction on the surface treatment method for controlling the 1 pat to within the range of the present invention, and there are various methods such as electrolytic oxidation, electrolytic oxidation,
Examples include oxidation treatments such as chemical oxidation and air oxidation.

工業的に広〈実施されている電解酸化においては、ip
aを既述範囲に制御するためには、電気量管変えること
で行うのが最も簡便な方法である。この場合、同一電気
量であっても、用いる電解質及び七の濃度によってip
a拡大きく異ってくるが、望ましいipaはいずれの場
合であっても110〜125μ&1511”であること
はいうまでも表い。
In electrolytic oxidation, which is widely practiced industrially, IP
In order to control a within the above-mentioned range, the simplest method is to change the coulometric tube. In this case, even if the amount of electricity is the same, the ip
It goes without saying that the desired IPA is 110 to 125μ &1511'' in any case, although the a expansion varies greatly.

又、空気酸化においては、加熱温度を変えることによっ
てipa’i制御することが可能であるが、その際、雰
囲気ガスとしてオゾンt′1〜2voL嘔含む空気食用
いることにより、140〜230℃の温度で05分以上
酸化処理することにより精度よ(lpaの制御が可能と
なり工業的により好ましい。
In addition, in air oxidation, it is possible to control ipa'i by changing the heating temperature. Oxidation treatment at a temperature of 0.5 minutes or longer makes it possible to control precision (lpa), which is more industrially preferable.

焼成過程での炭素化温度の高い程、得られる炭素繊維の
ipaが小さくなるため、後の表面処理は強い条件で行
う必要がおる。
The higher the carbonization temperature in the firing process, the smaller the IPA of the resulting carbon fiber, so the subsequent surface treatment must be performed under strong conditions.

表面も環径の炭素繊維の水抽出液の吸光度をα2以下に
するには表面処理した炭素繊維を水洗、或いはアルカリ
性水溶液中で浸漬忰浄処理することによって容易に達成
されるが、本発明の目的をより完全に達成させるには、
前述の表面処理方法としてアルカリ性水溶液中で電解酸
化処理1行つ死後に水洗もしくはアルカリ性水浴液中で
洗浄処理するのが望ましい。
In order to reduce the absorbance of a water extract of carbon fibers with a ring diameter to α2 or less, it is easily achieved by washing the surface-treated carbon fibers with water or immersing them in an alkaline aqueous solution. To achieve your goals more fully,
As the above-mentioned surface treatment method, it is preferable to carry out one electrolytic oxidation treatment in an alkaline aqueous solution, followed by washing with water or washing in an alkaline water bath solution after death.

炭素繊維表層の脆弱部は酸性水溶液中で電解酸化を行う
@り、全く除去されず、アルカリ性水溶液中で電解酸化
することにより始めて、低分子量物に酸化分解されると
同時に官能基の導入によシ極性の増した脆弱部分が容易
にアルカリ注水t#液中に溶出するようになる。
The weak parts of the carbon fiber surface layer are not removed at all by electrolytic oxidation in an acidic aqueous solution, and are oxidized and decomposed into low molecular weight products only by electrolytic oxidation in an alkaline aqueous solution, and at the same time are oxidized and decomposed by the introduction of functional groups. The weak portion with increased polarity easily dissolves into the alkaline water injection T# solution.

アルカリ性水溶液中で電解酸化を行うと、電解液が著る
しく着色してくることからもわかるように、酸化と同時
に、OA工に悪影響をおよぼす炭素繊維の脆弱部を取除
くことが可能であp1引続く水洗或いはアルカリ性水溶
液中で充分に洗浄除去することを組み合わせることによ
って炭素繊維基質と樹脂を強固に結合させ衝撃的な剥離
強度を大巾に向上させることができる。
When electrolytic oxidation is performed in an alkaline aqueous solution, it is possible to remove the weak parts of carbon fibers that have a negative impact on OA work, as can be seen from the fact that the electrolyte becomes significantly colored. By combining p1 with subsequent washing with water or sufficient washing and removal in an alkaline aqueous solution, the carbon fiber matrix and the resin can be firmly bonded and the impact peel strength can be greatly improved.

本発明において電解酸化処理後、水洗するに際して処理
温度が高い程効果的であり40℃以上、好ましくは70
℃以上、更に好ましくは清水を用いて1分以上洗浄処理
するのがよい。40℃未満では洗浄効果が低下し、洗浄
時間が長くなってしまうために工業的に不利である。
In the present invention, when washing with water after electrolytic oxidation treatment, the higher the treatment temperature is, the more effective it is;
It is preferable to perform the washing treatment at a temperature of 1 minute or more at a temperature of 100° C. or more, more preferably using fresh water. If the temperature is lower than 40°C, the cleaning effect will decrease and the cleaning time will become long, which is industrially disadvantageous.

更に電解酸化での処理条件によってはpHが7より大き
いアルカリ性水溶液を用いた方がより効果的に洗浄でき
る。電流密度を大、きくして電解酸化レベルを高め几場
合や電解液のアルカリ濃度を低くして可溶物の溶出を抑
えた場合等にはアルカリ性水溶液中で洗浄するのがより
効果的である。この場合、洗浄用アルカリ性水溶液は電
解用アルカリ性水溶液と同一である必要はなく、全く別
のアルカリ環、濃度及びpH?採用してもさしつかえな
いが、工業的には同一溶液であれば有利であることは当
然である。
Furthermore, depending on the treatment conditions for electrolytic oxidation, using an alkaline aqueous solution with a pH of more than 7 can be used for more effective cleaning. When the electrolytic oxidation level is increased by increasing the current density, or when the alkaline concentration of the electrolytic solution is lowered to suppress the elution of soluble materials, it is more effective to wash in an alkaline aqueous solution. In this case, the alkaline aqueous solution for cleaning does not need to be the same as the alkaline aqueous solution for electrolysis, but has a completely different alkali ring, concentration and pH? Although it is acceptable to use the same solution, it is natural that it is advantageous from an industrial perspective if the solution is the same.

本発明で用いるアルカリ化合物としては、水に対して通
常α02チ、より好ましくはα05悌以上溶解し、pH
が7より大きく14以下を呈する化合物であればよく、
例えば水酸化ナトリウム、水酸化カリウム、水酸化バリ
ウム等の水酸化物、アンモニア、りん酸二ナトリウム、
りん酸三カリウム、炭酸ナトリウム、炭酸水素ナトリウ
ム、炭酸アンモニウム、炭酸水素アンモニウム、硝酸ナ
トリウム等の無機塩類、酢酸ナトリウム、酢酸カリウム
、安息香酸ナトリウム、安息香酸アンモニウム等の有機
塩等を単独、もしくは二種以上の混合物で用いることが
できる。
The alkaline compound used in the present invention usually dissolves in water by α02 degrees, more preferably α05 degrees or more, and has a pH
is greater than 7 and less than or equal to 14,
For example, hydroxides such as sodium hydroxide, potassium hydroxide, barium hydroxide, ammonia, disodium phosphate,
Inorganic salts such as tripotassium phosphate, sodium carbonate, sodium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, sodium nitrate, etc., organic salts such as sodium acetate, potassium acetate, sodium benzoate, ammonium benzoate, etc. alone or in combination A mixture of the above can be used.

アルカリ金属、アルカリ出金属の炭素繊維中への残存音
道けるためには、9ん酸ニアンモニウム、安息香酸アン
モニウム、炭酸アンモニウム等のアンモニウム塩を用い
るのが好ましく、更に炭酸アンモニウム、炭酸水素アン
モニウム、カルバミン酸アンモニウム等は加熱分解によ
り除去可能であるのでより好ましい。
In order to prevent residual alkali metals and alkali metals from remaining in the carbon fibers, it is preferable to use ammonium salts such as ammonium 9oate, ammonium benzoate, and ammonium carbonate. Ammonium carbamate and the like are more preferred since they can be removed by thermal decomposition.

又、アルカリ性水溶液を用いて洗浄する場合、30〜8
0℃に加熱して行うとより効果的であり望ましい。しか
し炭酸アンモニウム、炭酸水素アンモニウムの如く、加
熱により易分解性の化合物では室温で処理するのが適当
である。
In addition, when cleaning with an alkaline aqueous solution, 30 to 8
It is more effective and desirable to carry out heating to 0°C. However, for compounds that are easily decomposed by heating, such as ammonium carbonate and ammonium hydrogen carbonate, it is appropriate to treat them at room temperature.

本発明における洗浄時間は特に制限はないが、本発明の
目的から炭素繊維の蒸留水による抽出液の230 nm
におけるtrvの吸光度がI12以下となるまで洗浄を
行う。
The cleaning time in the present invention is not particularly limited, but for the purpose of the present invention, the cleaning time of the carbon fiber extract with distilled water is 230 nm.
Washing is carried out until the absorbance of trv in is below I12.

本発明の洗浄工程は、電解酸化処理後、連続的に洗浄す
る方法、あるいは一旦炭素繊維を巻取った後に再度連続
的又はバッチで洗浄する方法等いずれの方法でもよく、
洗浄効果を更に上げる几めに温水を強制的に流動させた
り、不活性ガスを用いてバブリングをし几p1超音波に
よって振動を与え几りすることもできる。
The cleaning step of the present invention may be performed by any method such as continuous cleaning after electrolytic oxidation treatment, or continuous or batch cleaning after winding the carbon fiber,
To further improve the cleaning effect, it is also possible to force hot water to flow, or to perform bubbling with an inert gas, and to apply vibrations using ultrasonic waves.

〔実施例コ 以下実施例によ)本発明を具体的に説明する。[Example EXAMPLES The present invention will be specifically explained below using examples.

イ、「ストランド弾性率及び強度」はJ工8−R−゛へ
\7601に記載の方法で測定し次。
B. "Strand elastic modulus and strength" were measured by the method described in J.

口、「広角X線回折法で測定される微結晶の大きさLc
、LaJは、日本学術振興会、第117委員会炭素(1
963)36 25に示される方法で測定し友。
Kuchi, “Size of microcrystals Lc measured by wide-angle X-ray diffraction method
, LaJ is Japan Society for the Promotion of Science, 117th Committee Carbon (1
963) 36 Measured using the method shown in 25.

ハ、ripaJは%開昭60−252718号公報に示
す電位走査法により標準定量速度2 m V/秒で測定
し友。
C. ripaJ was measured at a standard quantitative rate of 2 mV/sec by the potential scanning method disclosed in JP-A-60-252718.

二、「吸光度」は炭素繊維1〜5f’jf)クーラー付
フラスコに入れ、重量比で炭素繊維の10倍の蒸留水を
加え、これを槽内水温±2℃の超音波洗浄器(発振周波
数45 KHz、高周波出力907)に入れて10分間
抽出し、次いで上澄み液を回収して13のセル長の石英
製UVセルに入れ対照液に蒸留水を用いてUV分光光度
計により測定した波長230 nmでの吸光度である。
2. "Absorbance" is carbon fiber 1~5f'jf) Place the carbon fiber in a flask with a cooler, add distilled water that is 10 times the amount of carbon fiber by weight, and place it in an ultrasonic cleaner (oscillation frequency 45 KHz, high frequency output (907) for 10 minutes, and then the supernatant was collected and placed in a quartz UV cell with a cell length of 13 at a wavelength of 230 as measured by UV spectrophotometer using distilled water as a reference solution. Absorbance in nm.

ホ、「残存圧縮強度(Cム工)」はNASA RP10
92に準拠して次の方法により測定した。
E, "Residual compressive strength (C)" is NASA RP10
It was measured by the following method in accordance with 92.

ビス(4−マレイミドフェニル〕メタ750部t−2,
2−ビス(4−シアナートフェニル)プロパン450部
と120℃で20分間予備反応させ、予備反応物を得、
これにエピコート854(油化シェル社製、エポキシ当
量250)”i4.4−ジアミノジフェニルスルホンと
アミノ基/エポキシ基冨1/4の轟量比で160℃、4
時間反応させ、エピコート807(m化シェル社製、エ
ポキシ当量170)で80係に希釈し次子備反応物20
00部を加え、70℃で30分間均一に混合し、更にN
−(へ4−ジクロロフェニル)−N’、N’−ジメチル
尿素100部、ジクミルパーオキサイド1部及び醸化珪
素微粉末アエロジル380(日本アエロジル社製)25
部を加え、70℃で1時間均一に混合して得交エポキシ
樹脂と炭素繊維とから一方向プリプしグを作成しく+4
5101為45/90 ] 4 Bの擬似等方に積層し
、180℃で2時間硬化させて寸法4X6Xα25イン
チの試験片を作成する。
bis(4-maleimidophenyl)meta 750 parts t-2,
Preliminary reaction with 450 parts of 2-bis(4-cyanatophenyl)propane at 120°C for 20 minutes to obtain a pre-reacted product,
To this was added Epicoat 854 (manufactured by Yuka Shell Co., Ltd., epoxy equivalent: 250) at 160°C, 4.4-diaminodiphenylsulfone and an amino group/epoxy group concentration of 1/4.
The reactant was reacted for 1 hour, diluted with Epikote 807 (manufactured by Shell Co., Ltd., epoxy equivalent: 170) to 80%
00 parts, mixed uniformly at 70°C for 30 minutes, and then
-(H4-dichlorophenyl)-N',N'-dimethylurea 100 parts, dicumyl peroxide 1 part and silicone fermentation fine powder Aerosil 380 (manufactured by Nippon Aerosil Co., Ltd.) 25
Add 50% of the mixture and mix uniformly at 70°C for 1 hour to create a unidirectional prep from the epoxy resin and carbon fiber.
45/90 for 5101 ] 4B were laminated in a pseudo-isotropic manner and cured at 180° C. for 2 hours to prepare a test piece with dimensions of 4×6×α25 inches.

該試験片t−5X5イ7チの穴のあい友スチール製台上
に固定した後、その中心にα5インチRのノーズ金つけ
7tj 4.9 )C9の分銅を落下せしめ、板厚1イ
ンチ当r) 1500 I、b−1nの衝撃を加え几後
、その板を圧縮試験することによりOAIを求め友。
After fixing the test piece on a steel stand with a t-5 x 5-inch hole, a C9 weight with an α5-inch radius nose was dropped into the center of the test piece, and r) After applying an impact of 1500 I, b-1n, the OAI was determined by compression testing the plate.

へ、「表面粗面化度」は、特開昭59−130320号
公報に示す方法で測定し友。
The "degree of surface roughness" was measured by the method disclosed in Japanese Patent Application Laid-open No. 130320/1983.

実施例1 アクリロニトリル98 wt%、アクリル酸メチル1v
t96、メタクリル酸I wt%の組#:を有するx合
体’tジメチルホルムアミドに固形分濃度26 wt%
となるように溶解してドープを作り、10μ濾過及び3
μ濾過全行って湿式紡糸を行い、引き続き湯浴で5倍に
延伸し、水洗乾燥して更に乾熱170℃でt3倍に延伸
して、[18デニール、表面粗面化度z3の繊度を有す
るフィラメント数9000のアクリル系繊維プレカーサ
ーを得た。
Example 1 Acrylonitrile 98 wt%, methyl acrylate 1v
t96, methacrylic acid I wt% group #: x combined with't dimethylformamide with a solids concentration of 26 wt%
Dissolve to make a dope, filter through 10μ and
All μ filtration was performed and wet spinning was performed, followed by stretching 5 times in a hot water bath, washing with water, drying, and further stretching 3 times t with dry heat at 170°C to obtain a fineness of [18 denier, surface roughness degree z3]. An acrylic fiber precursor having 9000 filaments was obtained.

このプレカーサーを220〜260℃の熱風循環型の耐
炎化炉を60分間通過せしめて耐炎化処理するに際して
15僑の伸長操作を施し次。
This precursor was passed through a hot air circulation type flameproofing furnace at 220 to 260°C for 60 minutes to make it flameproof, and then subjected to 15-degree elongation.

次に耐炎化繊維を純粋なN!気流中300〜600℃の
温度勾配を有する第一炭素化炉を通過せしめるに際して
8憾の伸長を加え、更に同雰囲気中1300℃の最高温
度を有する第二炭素化炉中において400 mf/eL
の張力下に2分熱処理を行い炭素繊維を得次。
Next, add flame-resistant fibers to pure N! When passing through the first carbonization furnace with a temperature gradient of 300 to 600°C in the air stream, 8 degrees of elongation was added, and further 400 mf/eL was passed through the second carbonization furnace with a maximum temperature of 1300°C in the same atmosphere.
Heat treatment was performed for 2 minutes under tension to obtain carbon fibers.

引き続いて、炭酸アンモニウム10 wtl水溶液中を
走行せしめ炭素繊維を陽極として、被処理炭素繊維1f
当5100クーロンの電気量となる様に対極との間で通
電処理を行い、次いでNaOH5嘔水溶液で1分及び温
水90℃で15分間洗浄し几後乾燥し炭素繊維を得た。
Subsequently, 1f of the carbon fibers to be treated were run in a 10 wtl aqueous solution of ammonium carbonate, and the carbon fibers were used as anodes.
A current was applied between the electrode and the counter electrode so that the amount of electricity was 5100 coulombs, and then the carbon fiber was washed with NaOH5 water solution for 1 minute and warm water at 90° C. for 15 minutes, and dried after washing to obtain a carbon fiber.

この炭素繊維は第1表に示すような特性を示した。This carbon fiber exhibited the characteristics shown in Table 1.

実施例2 プレカーサー繊度が14デニール、表面粗面化度″L4
のものを、第二炭素化炉の最高温度1400℃で処理す
る以外は、実施例1と同一条件でプレカーサー紡糸、耐
炎化、炭素化処理を行つ几。
Example 2 Precursor fineness is 14 denier, surface roughness degree "L4"
Precursor spinning, flame resistance, and carbonization were performed under the same conditions as in Example 1, except that the second carbonization furnace was heated to a maximum temperature of 1400°C.

更に、電解酸化時の電気量200クーロノ/fで処理す
ること以外は、実施例1と同じ表面処理及び洗浄処理を
行つ九。得られ次炭素繊維は第1表に示すような特性を
示した。
Furthermore, the same surface treatment and cleaning treatment as in Example 1 was performed except that the treatment was performed with an amount of electricity of 200 coulon/f during electrolytic oxidation. The obtained carbon fiber exhibited properties as shown in Table 1.

実施例3 プレカーサーの繊度がα6デニール、表面粗面化度z3
とする以外は、実施例1と同一の条件でプレカーサー紡
糸、耐炎化、炭素化、表面処理、洗浄処理を行った。
Example 3 Precursor fineness is α6 denier, surface roughness degree is z3
Precursor spinning, flame resistance, carbonization, surface treatment, and cleaning treatment were performed under the same conditions as in Example 1 except that.

得られた炭素繊維は第1表に示すような特性を示し次。The obtained carbon fiber exhibited the following characteristics as shown in Table 1.

比較例1 実施例1と同様に紡糸、耐炎化、炭素化を行って得られ
次炭素繊維を、りん酸5嗟水溶液中20クーロン/lで
電解酸化を行い、その後、実施例1と同様に洗浄処理を
行う几。この炭素繊維社第1表に示すような特性を示し
几。
Comparative Example 1 A carbon fiber obtained by spinning, flameproofing, and carbonization in the same manner as in Example 1 was subjected to electrolytic oxidation at 20 coulombs/l in a 5-ton phosphoric acid aqueous solution, and then, in the same manner as in Example 1, A container for cleaning. This Carbon Fiber Co., Ltd. exhibits the characteristics shown in Table 1.

比較例2 t2デニール、粗面化度1α5のプレカーサーを使用し
て、第二炭素化炉最高温度1500℃で処理する以外は
、実施例1と同様にして耐炎化、炭素化、表面処理及び
洗浄処理を行つ次。
Comparative Example 2 Flame resistance, carbonization, surface treatment and cleaning were performed in the same manner as in Example 1, except that a precursor with a t2 denier and a roughness degree of 1α5 was used, and the treatment was carried out at the maximum temperature of 1500°C in the second carbonization furnace. Next to process.

得られた炭素繊維は第1表に示すような特性を示した。The obtained carbon fiber exhibited the characteristics shown in Table 1.

比較例3 400 mf!/デニールの張力下乗高温度2000℃
で炭素化を行つ友以外は、実施例1と同一の条件で製糸
、耐炎化、表面処理、洗浄処理を行つt、得られ友炭素
繊維は第1表に示すような特性を示し次。
Comparative example 3 400 mf! /Denier tension lower temperature 2000℃
The carbon fibers obtained were subjected to spinning, flame resistance, surface treatment, and cleaning under the same conditions as in Example 1, except for the carbon fibers that were carbonized. .

Claims (1)

【特許請求の範囲】 1、ストランド弾性率が30〜40ton/mm^2で
あるアクリル系炭素繊維において、広角X線回折法で測
定されるLc、Laおよび電位走査法で測定される表面
特性パラメーターipaが下記式の範囲にあることを特
徴とするアクリル系高性能炭素繊維 12Å≦Lc≦20Å 30Å≦La≦40Å 0.10μA/cm^2≦ipa≦0.25μA/cm
^22、水抽出液のUVによる230nmの吸光度が0
.2以下であることを特徴とする特許請求の範囲第1項
記載の炭素繊維 3、アクリロニトリル系繊維プレカーサーを繊維密度が
1.25〜1.40g/cm^3となるように耐炎化処
理し、次いで不活性雰囲気下300〜800℃の温度で
3%以上の伸長を与えた後、更に1150〜1400℃
の温度で緊張下に熱処理を行つて得られる炭素繊維を、 更にイ、pH7より大のアルカリ性水溶液中で該炭素繊
維を陽極として50〜400クーロン/gの電気量を流
して酸化処理を行うかロ、空気酸化処理を行うことを特
徴とする ストランド弾性率が30〜40ton/mm^2、広角
X線回折法で測定されるLc、Laおよび電位走査法で
測定される表面特性パラメーターipaが下記式の範囲
にあるアクリル系高性能炭素繊維の製造法 12Å≦Lc≦20Å 30Å≦La≦40Å 0.1μA/cm^2≦ipa≦0.25μA/cm^
24、アクリロニトリル系繊維が、単繊維デニール0.
2〜0.9デニールの繊維であることを特徴とする特許
請求の範囲第3項記載の製造法5、アクリロニトリル系
繊維が、表面粗面化度1.0〜3.0の範囲にあること
を特徴とする特許請求の範囲第5項記載の製造法
[Claims] 1. Lc and La measured by wide-angle X-ray diffraction method and surface property parameters measured by potential scanning method in acrylic carbon fiber having a strand elastic modulus of 30 to 40 ton/mm^2 Acrylic high-performance carbon fiber 12Å≦Lc≦20Å 30Å≦La≦40Å 0.10 μA/cm^2≦ipa≦0.25 μA/cm
^22, the absorbance of the water extract at 230 nm by UV is 0.
.. The carbon fiber 3 according to claim 1, characterized in that the fiber density is 2 or less, and the acrylonitrile-based fiber precursor is subjected to flame-retardant treatment so that the fiber density is 1.25 to 1.40 g/cm^3, Next, after giving an elongation of 3% or more at a temperature of 300 to 800°C in an inert atmosphere, it is further elongated at a temperature of 1150 to 1400°C.
The carbon fibers obtained by heat treatment under tension at a temperature of 1 are further subjected to oxidation treatment by flowing an amount of electricity of 50 to 400 coulombs/g using the carbon fibers as anodes in an alkaline aqueous solution with a pH higher than 7. B. The elastic modulus of the strand is 30 to 40 tons/mm^2, which is characterized by air oxidation treatment, and the Lc and La measured by wide-angle X-ray diffraction and the surface property parameter ipa measured by potential scanning method are as follows. Manufacturing method of acrylic high-performance carbon fiber within the range of the formula 12 Å≦Lc≦20 Å 30 Å≦La≦40 Å 0.1 μA/cm^2≦ipa≦0.25 μA/cm^
24. The acrylonitrile fiber has a single fiber denier of 0.
Manufacturing method 5 according to claim 3, characterized in that the acrylonitrile fiber has a surface roughness degree of 1.0 to 3.0. The manufacturing method according to claim 5, characterized in that
JP62019519A 1987-01-29 1987-01-29 Acrylic high-performance carbon fiber manufacturing method Expired - Lifetime JP2668209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019519A JP2668209B2 (en) 1987-01-29 1987-01-29 Acrylic high-performance carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019519A JP2668209B2 (en) 1987-01-29 1987-01-29 Acrylic high-performance carbon fiber manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9086603A Division JPH1025627A (en) 1997-04-04 1997-04-04 Acrylic carbon fiber

Publications (2)

Publication Number Publication Date
JPS63190025A true JPS63190025A (en) 1988-08-05
JP2668209B2 JP2668209B2 (en) 1997-10-27

Family

ID=12001592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019519A Expired - Lifetime JP2668209B2 (en) 1987-01-29 1987-01-29 Acrylic high-performance carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP2668209B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887120A (en) * 1972-02-23 1973-11-16
JPS6099010A (en) * 1983-10-13 1985-06-01 ヒツトコ Method and apparatus for producing carbon fiber
JPS60252718A (en) * 1984-05-23 1985-12-13 Mitsubishi Rayon Co Ltd Intermediate of high-performance composite material
JPS6197422A (en) * 1984-10-16 1986-05-15 Nikkiso Co Ltd High-strength carbon fiber and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4887120A (en) * 1972-02-23 1973-11-16
JPS6099010A (en) * 1983-10-13 1985-06-01 ヒツトコ Method and apparatus for producing carbon fiber
JPS60252718A (en) * 1984-05-23 1985-12-13 Mitsubishi Rayon Co Ltd Intermediate of high-performance composite material
JPS6197422A (en) * 1984-10-16 1986-05-15 Nikkiso Co Ltd High-strength carbon fiber and its production

Also Published As

Publication number Publication date
JP2668209B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US7862794B2 (en) Surface treatment of carbon microfibers
EP0374680B1 (en) Carbon fibers having modified surfaces and process for preparing the same
JPH1025627A (en) Acrylic carbon fiber
JPS62276075A (en) Carbon fiber and its production
KR910003351B1 (en) Method for after-treatment of carbon fiber
JPS63190025A (en) High-performance acrylic carbon fiber and production thereof
JP3755255B2 (en) Carbon fiber and method for producing the same
US4832932A (en) Carbon fiber for composite material
JP2004238761A (en) Carbon fiber strand and fiber-reinforced composite material
JP2006183173A (en) Carbon fiber and method for producing the same
JPS5966518A (en) Production of carbon or graphite fiber
JPH0192470A (en) Surface treatment of carbon fiber
JPH02169763A (en) Surface-improved carbon fiber and production thereof
US3876444A (en) Method of treating high strength carbon fibers
JP2002180370A (en) Carbon fiber for metal oxide coating and method for producing the same
JP3057493B2 (en) Method for producing surface-modified carbon fiber
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
JP2592294B2 (en) Post-processing method of carbon fiber
CN86102269B (en) Tanfalum-made spinning jet (plate) with lithium tantalate film for wet and dry and wet spinning
JP3012885B2 (en) Method for producing surface-modified carbon fiber
JPH02307967A (en) Production of surface-modified carbon fiber
KR102240016B1 (en) Method of manufacturing carbon nanofiber membrane with excellent flexibility and strength
JPH0284525A (en) Surface treatment of carbon fiber
JPH03287860A (en) Production of carbon fiber
JPS599272A (en) Acrylonitrile fiber and method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term