JPS599272A - Acrylonitrile fiber and method - Google Patents

Acrylonitrile fiber and method

Info

Publication number
JPS599272A
JPS599272A JP11740582A JP11740582A JPS599272A JP S599272 A JPS599272 A JP S599272A JP 11740582 A JP11740582 A JP 11740582A JP 11740582 A JP11740582 A JP 11740582A JP S599272 A JPS599272 A JP S599272A
Authority
JP
Japan
Prior art keywords
fiber
fibers
acrylonitrile
flame
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11740582A
Other languages
Japanese (ja)
Other versions
JPH0255549B2 (en
Inventor
博靖 小川
宮武 文雄
繁井 哲郎
高橋 捷
岡部 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Beslon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Beslon Co Ltd filed Critical Toho Beslon Co Ltd
Priority to JP11740582A priority Critical patent/JPS599272A/en
Publication of JPS599272A publication Critical patent/JPS599272A/en
Publication of JPH0255549B2 publication Critical patent/JPH0255549B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本弁明は、高強度炭素繊維を得るに好適な、繊維相互に
にn着のない耐炎性繊維を得るためのアクリロニトリル
系繊維及びこのアクリロニトリル系繊維の製造方法なら
びにこのアクリロニトリル系繊維を用いて耐炎化処理し
、更に要りれば炭化処理りる方法に関りるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an acrylonitrile fiber, a method for producing the acrylonitrile fiber, and a method for producing the acrylonitrile fiber for obtaining a flame-resistant fiber that is suitable for obtaining a high-strength carbon fiber and has no adhesion to each other. This relates to a method of flame-retardant treatment using fibers and, if necessary, carbonization treatment.

従来、アクリル系繊維を空気中200−・300℃で張
力下に耐炎化処理しで耐炎性繊維とし、或は更にこの耐
炎性繊維を500℃以上の不活性ガス雰囲気中張力士で
炭素化始期して、炭素繊維を得ることは知られている。
Conventionally, acrylic fibers are flame-resistant treated under tension at 200-300℃ in air to make them flame-resistant, or these flame-resistant fibers are then carbonized using a tensile strength specialist in an inert gas atmosphere at 500℃ or higher. It is known that carbon fibers can be obtained by

耐炎性繊維は、防炎防熱材又はバッキング材どして使用
されているが、品質性能の一層の改善が望まれている。
Flame-resistant fibers are used as flame-retardant and heat-insulating materials or backing materials, but further improvement in quality and performance is desired.

又、上記の様にして得た炭素繊維は、比強度と比弾性に
優れているため、スポーツ、レジャー用品をはじめ自動
車、高速駆動体、さらには航空、宇宙分野にも採用され
、需要が拡大しくいる。しかし、こうした需要の拡大に
伴ない用途によっては従来の引張強度300〜350k
g/l11m2稈度のものひは不満足で、さIうにこれ
を越えた、にり高強度の炭水繊維が要望されるようにな
った。
In addition, the carbon fiber obtained in the above manner has excellent specific strength and specific elasticity, so it is used in sports and leisure goods, automobiles, high-speed drive bodies, and even in the aviation and space fields, and demand is increasing. I'm here. However, as demand increases, depending on the application, the conventional tensile strength is 300 to 350K.
The fiber with a culm density of 11 g/l is unsatisfactory, and there is now a demand for a carbon fiber with a higher strength than this.

木光明者等はかかる事情にかんがみ、所望の繊維を得べ
く検討の結果、従来の耐炎性繊維の品質性能が充分でな
く、ヌ炭素繊紺の引張強度が前記の如き値にとどまって
いる要因が、耐炎化処理過程におけるill繊紺相11
間の膠着にあることを見出し、このDi防止のス・1m
について研究を進めた結果、本発明に至っlこ。
In view of the above circumstances, Kiko Akira et al. investigated to obtain the desired fiber and found that the quality performance of conventional flame-resistant fibers was insufficient, and the reason why the tensile strength of Nu Carbon Fiber Navy Blue remained at the above-mentioned value. However, the ill fiber navy blue phase 11 in the flame retardant treatment process
We found that there is a stalemate between
As a result of research on the subject, we have arrived at the present invention.

本発明は、単繊維相互間に膠着のない耐炎竹織絹製造用
アクリロニトリル繊維及びぞの製造法を提供する事を目
的とづるものである。
The object of the present invention is to provide an acrylonitrile fiber for producing flame-resistant bamboo-woven silk that does not cause adhesion between single fibers, and a method for producing the same.

更に、本発明は、高強度の炭素繊維を得る事のできるア
クリロニトリル系繊維及びイの製造法を提供りる事を目
的とするbのCある。
Furthermore, the present invention is directed to (b) C, which aims to provide acrylonitrile-based fibers capable of obtaining high-strength carbon fibers, and a method for producing (a).

本発明は一般式 (式中1り1は炭素数11〜17個の脂肪族炭化水素球
、Rz、Rtは水素原子、低級アルキル基、ヒドロキシ
エチル基、ヒドロキシイソプロピル基、Xは陰イオンを
夫々表わづ。) で示される脂肪酸]ステル及び脂肪酸アミドのアンモニ
ウム塩の少くとも1種を付着した耐炎性繊維製造用又は
炭素繊維製造用のアクリロニトリル系繊維に閏りるらの
である。又このにうなアクリロニトリル系繊維を得るた
めにアクリロニトリル系繊維の製造上程において脱溶媒
後の何れかの段階でアクリロニトリル系繊維に前記アン
モニウム塩の付着処理を行う方法及びこのようにして得
られたアクリロニトリル系繊維を耐炎化或いは耐炎化1
(更に炭素化りる方法に関りるものである。
The present invention is based on the general formula (wherein 1 and 1 are aliphatic hydrocarbon spheres having 11 to 17 carbon atoms, Rz and Rt are hydrogen atoms, lower alkyl groups, hydroxyethyl groups, and hydroxyisopropyl groups, and X is an anion, respectively. The present invention applies to acrylonitrile fibers for the production of flame-resistant fibers or carbon fibers to which at least one of ammonium salts of ster and fatty acid amides is attached. In addition, in order to obtain this acrylonitrile fiber, there is a method in which the ammonium salt is attached to the acrylonitrile fiber at any stage after solvent removal in the production process of the acrylonitrile fiber, and the acrylonitrile fiber thus obtained. Making fibers flame resistant or flame resistant 1
(It also relates to the carbonization method.

上記のように原料繊維であるアクリロニトリル系繊維に
、特定のアンモニウム塩を何首さけて耐炎化処理づるこ
とにより、単繊維相互間の膠着のない耐炎性繊維が得ら
れる。
As mentioned above, by subjecting acrylonitrile fibers, which are raw material fibers, to flame-retardant treatment by adding a number of specific ammonium salts, flame-resistant fibers without adhesion between single fibers can be obtained.

このような耐炎性楳t(1を、次いで炭素化することに
よって高強度の011軒「が得られ又耐炎性繊維自体と
しても品質が向上しているため、紡績性が改善される。
By subsequently carbonizing such a flame-resistant fiber (1), a high-strength fiber can be obtained, and the quality of the flame-resistant fiber itself is improved, resulting in improved spinnability.

本発明にa3いてアクリロニトリル系樹脂は、高強度の
炭素繊維を得るには、特にアクリロニトリル95モル%
以上とアクリロニトリルと共重合合しつるビニル系単吊
体j)モル%Lストからなる小合体よりtqら1′1に
ものが好ましい。
In the present invention, in order to obtain high-strength carbon fibers, the acrylonitrile resin in a3 is particularly 95 mol% acrylonitrile.
It is preferable to use tq et al.

几中合成分であるビニル系単量体は、通常アクリロニト
リル系繊維の製造に使用されるものであり、例えば、ア
クリル酸メチル、アクリル酸エチル、酢酸ビニル等の中
性単量体やアクリル酸、メタクリル酸、イタコン酸又は
それらの珈、アリルスルホン酸ソーダ、メタリルスルホ
ン酸ソータ等の酸性基含右単吊体、さらにビニルピリジ
ン、ビニルイミダゾール等の塩基性基含有単量体が挙げ
られる。
Vinyl monomers, which are synthetic components, are normally used in the production of acrylonitrile fibers, and include neutral monomers such as methyl acrylate, ethyl acrylate, and vinyl acetate, acrylic acid, Examples include acidic group-containing monohanging bodies such as methacrylic acid, itaconic acid or their bases, sodium allylsulfonate, sorta methallylsulfonate, and basic group-containing monomers such as vinylpyridine and vinylimidazole.

上記アクリロニトリル系繊維を製造するには、従来既知
の方法で行う事ができる。即ち例えばアクリロニトリル
或いはアクリロニトリルとこれど共重合しうるビニル系
単量体とを原料としてポリアクリロニトリル用の溶剤(
例えばジメチルホルムアミド、濃厚塩化亜鉛系水溶液、
ジメチルスルホキサイド、ジメチルアセトアミド、など
)中で触媒(例えば過酸化ベンゾイル、過酸化水素、過
硫酸ソータなど)を用いて重合反応りる。か<L/tt
rik通常分子量4(+、(1(10へ・100、00
0のj7クリロニ1〜リル系重合体の溶液を溶剤の希溶
液中に細孔を通してJf出し、n;2溶〜1したのら乾
燥、延伸、弛緩等を/l1i1゜得られたものは通常0
.1〜3.0デーニルの単繊維が500〜100,00
0木集合した繊維束からなっ(いる。
The above-mentioned acrylonitrile fibers can be produced by conventionally known methods. That is, for example, a solvent for polyacrylonitrile (
For example, dimethylformamide, concentrated zinc chloride aqueous solution,
The polymerization reaction is carried out using a catalyst (eg, benzoyl peroxide, hydrogen peroxide, persulfuric acid sorter, etc.) in dimethyl sulfoxide, dimethyl acetamide, etc.). ka<L/tt
rik Normal molecular weight 4(+, (1(to 10・100, 00
A solution of 0's j7 cryloni 1 to lyl polymer is passed through a pore into a dilute solution of a solvent, and after dissolving n; 2 to 1, it is dried, stretched, relaxed, etc. 0
.. 1-3.0 denier single fiber 500-100,000
It consists of fiber bundles that are assembled together.

本発明にa3いてアクリロニトリル系繊6イ1に対して
付着させるノ7ン七−ウム塩は、前記一般式(△)又は
([3)ぐ示される脂肪酸1スラル又は脂肪酸アミドの
)7ンしニウム塩である。
In the present invention, the 7-7-ium salt to be attached to the acrylonitrile fiber 6-1 in a3 is the 7-7 salt of the fatty acid 1 sral or fatty acid amide represented by the general formula (△) or ([3)]. It is a nium salt.

式中1テ、は炭素数11〜17個の脂肪族炭化水素水素
基、特に直鎖状飽和脂肪飲代化水素、R2〜R,は、水
素原子、メチル基、土デルλt、等の炭素数1〜3のア
ルキル基、ヒト目キシル基、ヒト11キシイソブL」ピ
ル基を表わし、Xはイjl幾或いは無機の酸の陰イオン
例えば塩素イΔン、^1酸イオン、乳酸イオン、リン酸
イオン、ta酸イオン、ホウ酸イオン、硝酸イオン、小
スホリルジAキシ1.タノールイオンで・ある。
In the formula, 1 is an aliphatic hydrocarbon group having 11 to 17 carbon atoms, especially a linear saturated aliphatic hydrocarbon group, and R2 to R are hydrogen atoms, methyl groups, carbon atoms such as λt, etc. It represents an alkyl group of numbers 1 to 3, a xyl group, a pyl group, or an anion of an inorganic acid such as chloride, acid ion, lactic acid ion, phosphorus. Acid ion, ta-acid ion, borate ion, nitrate ion, small sulforyldiA-xy 1. It is tanol ion.

これら一般式に含まれるアンt−ニウム塩の11Φ又は
2秒以−1使用りる。脂肪酸1スラルのアン上ニウム塩
と脂肪酸アミドのj7ン七ニウ塩の混合物を用いてもよ
い。
Ant-nium salts included in these general formulas are used for 11Φ or 2 seconds or more. A mixture of a monosalt of a fatty acid and an amide salt of a fatty acid amide may be used.

上記一般式(Δ〕で示される化合物どしては、例えば次
の如きものである。
Examples of the compounds represented by the above general formula (Δ) are as follows.

上記の一般式〔[3〕ぐ示される化合物としては例えば
次の如きものがある。
Examples of the compounds represented by the above general formula [3] include the following.

特に好ましい化合物は、化合物(A)のうち(1)、(
4)、(5)、(9)、及び化合物〔]3〕のうち(1
0)、(13)、(14)であり高強度の炭素繊維を1
17るのに一層右利である。
Among the compounds (A), particularly preferred compounds are (1), (
4), (5), (9), and compound []3] (1
0), (13), and (14), and the high strength carbon fiber is
Even though he is 17 years old, he is even more right-handed.

これ等のアンモニウム塩の製法は、下記の反応に基づい
て行われる。
The method for producing these ammonium salts is carried out based on the following reaction.

化合物(Δ)の製造法 化合物(B)の製造法 (式中R+RzR*及びXは前記のbのと同じらのを指
す) 何れの製造法に於ても反応物はすべて当モルを使用し、
第1段の反応では010−、200℃ではげしく攪拌し
、5〜15時間反応させ、第2段の反応では、150〜
200℃で5〜15時間反応さlる。
Manufacturing method of compound (Δ) Manufacturing method of compound (B) (In the formula, R + RzR * and X refer to the same as in b above) In all manufacturing methods, equimolar amounts of all reactants are used. ,
In the first stage reaction, stir vigorously at 010-200°C and react for 5 to 15 hours, and in the second stage reaction,
React at 200°C for 5 to 15 hours.

本発明に使用されるアンモニウム塩は、N原子にヒドロ
キシル基を1以上含有する立体的に大きな化合物である
ために、水への溶解、分散性がきわめて帰れでいるとい
う特徴を有しているにもかかわらず、繊維内部への浸透
力は弱く繊維表面に均一に被覆するように付着するとい
う特性を有している。
Since the ammonium salt used in the present invention is a sterically large compound containing one or more hydroxyl groups in the N atom, it is characterized by extremely good solubility and dispersibility in water. However, it has a characteristic that it has a weak ability to penetrate into the fibers and adheres to the fiber surfaces uniformly.

しかも、耐炎化初期の段階で、更に大きな分子へと反応
すると共にアクリル系繊維表面層ども化学反応りるとい
う特異な性質を有している。
Furthermore, it has the unique property of reacting to larger molecules and chemically reacting with the surface layer of the acrylic fiber at the initial stage of flame resistance.

このために、繊維表層の分子の熱運動に伴う収縮、分子
配向の乱れを抑制するという働きをする。
For this reason, it functions to suppress shrinkage and disturbance of molecular orientation caused by thermal movement of molecules on the fiber surface layer.

一般にアクリニトリル系繊維の製造においては、紡糸の
脱溶媒後、延伸、乾燥、弛緩等の処理が行われる。本発
明のアンモニウム塩の付着処理は、アクリロニトリル系
繊維の製造工程における脱溶媒後から繊維製造完了まで
あるいは繊維製造完了後の何れかの段階で行われる。即
ち上記の少くとも1つの処理工程において、或いは1つ
の処理工程と次の処理工程との間において行なわれる。
Generally, in the production of acrinitrile fibers, treatments such as stretching, drying, and relaxation are performed after the solvent is removed during spinning. The ammonium salt adhesion treatment of the present invention is carried out at any stage from after solvent removal in the acrylonitrile fiber manufacturing process until the fiber manufacturing is completed or after the fiber manufacturing is completed. That is, it is carried out in at least one of the above-mentioned processing steps or between one processing step and the next processing step.

アンモニウム塩の付着処理に当つては、所定のアンモニ
ウム塩の1種又は2秒以上を水に溶解又は分散させた液
を繊維に付着させる。通常はこの液を繊維にスプレーす
るか、又はこの液の浴中に繊維束を浸漬させる事によっ
て付着処理が行われる。アンモニウム塩を繊維束の単繊
維間に十分侵入させるためには、好ましくは浴温20〜
70℃で1〜5分浸漬を行う。
In the ammonium salt attachment treatment, a solution prepared by dissolving or dispersing one or more predetermined ammonium salts in water for at least 2 seconds is attached to the fibers. The deposition process is usually carried out by spraying the liquid onto the fibers or by immersing the fiber bundles in a bath of the liquid. In order to sufficiently infiltrate the ammonium salt between the single fibers of the fiber bundle, the bath temperature is preferably 20~20°C.
Immersion is performed at 70°C for 1 to 5 minutes.

70℃より高いと、該化合物が水中で凝集する傾向を示
すため、付着班を生ずることや、繊維内部への浸透性を
増すなどのため、得られる炭素繊組の強度が低くなる。
If the temperature is higher than 70°C, the compound tends to aggregate in water, resulting in formation of adhesion spots and increased permeability into the fibers, resulting in a decrease in the strength of the resulting carbon fiber assembly.

他方20℃より低い場合、水への溶解分散が難しいこと
、分散した粒子が大きすぎるために、逆に付着班を生じ
膠着を発生させるので好ましくない。液の濃度としては
通常1〜20g/lが使用される。又アンモニウム塩含
有液のpH条件が製品性能に影響を与え、一層高品質の
耐炎性繊維及び炭素繊維を得るにはpH4以下が好まし
い。pH4より高くなると、該化合物が凝集し易くなり
、膠着を増加さける傾向となるので好ましくない。
On the other hand, if the temperature is lower than 20°C, it is not preferable because it is difficult to dissolve and disperse in water and the dispersed particles are too large, resulting in adhesion spots and sticking. The concentration of the liquid is usually 1 to 20 g/l. In addition, the pH condition of the ammonium salt-containing liquid affects product performance, and a pH of 4 or less is preferred in order to obtain higher quality flame-resistant fibers and carbon fibers. If the pH is higher than 4, the compound tends to aggregate, which tends to increase adhesion, which is not preferable.

pHは4以下ならいくらでもいいが通常1以上好ましく
は2〜3.5が良い。また、pHの調整は、好ましくは
、該化合物のXと同種の陰イオンを有する酸或は苛性ソ
ーダで行なう。付着量は繊維重量に対し、0.01〜0
.5%がよい。付着量が0.01%未満では、膠着防止
効果が充分に得られず又0.5%を越えると炭素化処理
の際繊維表面で炭化物を生じやすく、炭素繊維の強度も
それだけ低下する。付着量を0.3%以下とするとアン
モニウム塩の繊維内部への浸透が少い為特に高強度の炭
素繊維を製造するのに良い。
The pH may be any value as long as it is 4 or less, but it is usually 1 or more, preferably 2 to 3.5. Further, the pH is preferably adjusted using an acid or caustic soda having an anion of the same type as X of the compound. The amount of adhesion is 0.01 to 0 based on the fiber weight.
.. 5% is good. If the adhesion amount is less than 0.01%, a sufficient anti-sticking effect cannot be obtained, and if it exceeds 0.5%, carbides are likely to be formed on the fiber surface during carbonization treatment, and the strength of the carbon fiber is reduced accordingly. When the amount of adhesion is 0.3% or less, the ammonium salt permeates into the interior of the fibers to a small extent, which is particularly suitable for producing high-strength carbon fibers.

アンモニウム塩を含有する液を付着させた後乾燥を行う
。乾燥は繊維を炭素繊維とした場合の強電が低下しない
様注意して行う。例えば、織材1がゲル状の場合は70
−、140℃の間の温度C徐々に昇温しながら行う。繊
維がゲル状Cない場合は通常100へ一150℃に於て
乾燥を行う。イ「お、アンモニウ塩の付着量の測定は、
ソックスレー抽出器を用いて付着繊維をアルコール及び
ベンゼンの等量混合液で3時間抽出して行う。
After applying the liquid containing ammonium salt, drying is performed. Drying is carried out with care so as not to reduce the strong electric current when carbon fiber is used as the fiber. For example, if the woven material 1 is gel-like, 70
- and 140°C while gradually increasing the temperature. If the fibers do not have gel-like C, they are usually dried at a temperature of 100 to 150°C. B: “Oh, to measure the amount of ammonium salt attached,
The attached fibers are extracted with a mixture of equal amounts of alcohol and benzene for 3 hours using a Soxhlet extractor.

本発明のアンモニウム塩を付着させたアクリロニトリル
繊維を200〜300℃に加熱するとアンモニウム塩は
反応して水不溶性の化合物に1,7る。又アクリロニト
リル系繊維とら反応しているど考えられる変化が認めら
れる。これによって膠着防止が認められる。これによっ
て膠着防止が認められる。
When the acrylonitrile fiber to which the ammonium salt of the present invention is attached is heated to 200 to 300°C, the ammonium salt reacts and converts into a water-insoluble compound. In addition, changes that are thought to be caused by a reaction with acrylonitrile fibers are observed. This helps prevent sticking. This helps prevent sticking.

本発明においてはアンモニウム塩を付着させたアクリロ
ニトリル系繊維を耐炎化処理前に200〜300℃の間
で少くとも0.7分間予め加熱処理をし、アンモニウム
塩を上記の如く変化させておく事もできる。
In the present invention, the acrylonitrile fibers to which ammonium salts have been attached may be heat-treated for at least 0.7 minutes at 200 to 300°C before flame-retardant treatment to change the ammonium salts as described above. can.

この加熱処理の際の好ましい加熱温度は230℃以上で
あるが、温度を200℃よりも高くする場合は昇温速度
を10℃/秒以下、通常1〜5℃/秒にづると膠着防止
の点で一層大きな効果が得られ、高強度の炭素繊維を得
るのに適した繊維どなる。この様に200℃を越えて昇
温速度10℃/秒以下で200〜300℃で熱処理され
たアリロニトリル系繊維は、一旦巻きとった後耐炎化処
理工程に供しくも良く、ヌこの熱処理工程を耐炎化工程
と連続的に行っても良い。
The preferred heating temperature for this heat treatment is 230°C or higher, but if the temperature is higher than 200°C, the heating rate should be 10°C/second or less, usually 1 to 5°C/second, to prevent sticking. This fiber is suitable for obtaining high-strength carbon fibers. Arylonitrile fibers that have been heat-treated at 200 to 300°C with a temperature increase rate of 10°C/sec or less over 200°C may be once rolled up and then subjected to a flame-retardant treatment process. It may be performed continuously with the oxidation step.

アンモニウム塩付着アクリロニトリル系繊維は上記のご
とき熱処理後或いはこの処理を行わずに耐炎化処理され
る。耐炎化処理は従来公知の方法で行われる。即ち酸化
性雰囲気、例えば空気中200〜300℃、好ましくは
250〜300℃の温度で0.1〜15時間、耐炎化処
理を行う。高強度の炭素繊維を得るためには、200m
g/デニール以上の張力下で、また更に高強度の炭素繊
維を得るためには、10〜100mg/デニールの張力
下で行うのが好ましい。耐炎化処理は、繊維の比重が1
.30〜1.45g/cm’どなるまで行うことが好適
である。
The ammonium salt-attached acrylonitrile fibers are subjected to flame-retardant treatment after or without heat treatment as described above. The flameproofing treatment is performed by a conventionally known method. That is, flameproofing treatment is carried out in an oxidizing atmosphere, for example in air, at a temperature of 200 to 300°C, preferably 250 to 300°C, for 0.1 to 15 hours. In order to obtain high strength carbon fiber, 200m
In order to obtain carbon fibers with even higher strength, it is preferable to carry out the process under a tension of 10 to 100 mg/denier. The flame-retardant treatment reduces the specific gravity of the fiber to 1.
.. It is preferable to carry out the process until it reaches 30 to 1.45 g/cm'.

このようにして得られた耐炎化繊組は、膠着が極めて少
くこれを炭化して高強度炭素繊維を製造りるのに適しく
いる。耐炎化繊維の炭素化処理は、窒素、アルゴン、ヘ
リウムのごとき不活性雰囲気中1000−1500℃で
行う。この際高強度の炭素繊維を得るためには、10〜
100mg/デニールの張力下で行うのが好ましい、。
The flame-resistant synthetic fiber set thus obtained has extremely little agglutination and is suitable for carbonizing it to produce high-strength carbon fibers. The carbonization treatment of the flame-resistant fibers is carried out at 1000-1500° C. in an inert atmosphere such as nitrogen, argon, or helium. At this time, in order to obtain high-strength carbon fiber, 10 to
Preferably, it is carried out under a tension of 100 mg/denier.

以トの如くして本発明のアクリロニトリル系繊維から得
られた炭素繊維は極めて高い強度を有する。
The carbon fiber obtained from the acrylonitrile fiber of the present invention as described above has extremely high strength.

以下実施例を挙げて本発明を具体的に説明りるつ実施例
中「%」、「部」とあるのは特に記載のない限り重量基
準である。
The present invention will be specifically explained below with reference to Examples. In the Examples, "%" and "part" are based on weight unless otherwise specified.

実施例1゜ 60%塩化亜鉛水溶液1000部中に、アクリロニトリ
ル98%アクリル酸0.5モル%、アクリル酸メチル1
,5モル%とからなる単量体混合物100部及び過硫酸
アンモニウム1部を溶解し、55℃で4時間重合して、
スタウジンガー式で求められる分子量55、000の粘
度98ポイズを有するアクリロニトリル系重合体溶液を
得た。
Example 1 In 1000 parts of a 60% zinc chloride aqueous solution, 98% acrylonitrile, 0.5 mol% acrylic acid, 1 mol% methyl acrylate
, 5 mol% and 1 part of ammonium persulfate were dissolved and polymerized at 55°C for 4 hours,
An acrylonitrile polymer solution having a molecular weight of 55,000 and a viscosity of 98 poise as determined by the Stausinger equation was obtained.

このものを、直径0.05mm、孔数10,000ノ/
スルを通して25%塩化亜鉛系水溶液中に圧出し、水洗
によって脱塩化亜鉛しつつ3倍延伸し、次いで乾燥した
。乾燥繊維を120℃の飽和水溶液中で、さらに5倍延
伸して単繊維デニール1.0、乾燥度5.5g/デニー
ル、引張伸度10%を有するアクリロニトリル系繊維を
得た。
This material has a diameter of 0.05 mm and a hole count of 10,000 holes/
The film was extruded into a 25% zinc chloride aqueous solution through a sieve, stretched 3 times while washing with water to remove zinc chloride, and then dried. The dried fibers were further stretched 5 times in a saturated aqueous solution at 120° C. to obtain acrylonitrile fibers having a single fiber denier of 1.0, a degree of dryness of 5.5 g/denier, and a tensile elongation of 10%.

別に、ステアリン酸と当モルのトリエタノールアミンの
の混合物を165℃で10時間加熱し1次いで得られた
化合物に対して当モルの36%塩酸と50°Cで加熱し
又(Δ)−(1)式で示されるステアリン酸エステルの
アンモニウム塩を得た。
Separately, a mixture of stearic acid and an equimolar amount of triethanolamine was heated at 165°C for 10 hours, and then the resulting compound was heated with an equimolar amount of 36% hydrochloric acid at 50°C and (Δ)-( 1) An ammonium salt of stearic acid ester represented by the formula was obtained.

この反応物に水を加え十記化合物を5g/l含むpH3
.6の水分散液中に前記アクリロニトリル系繊維を50
℃、0.5分浸漬し、次いで110℃で乾燥した。得ら
れIこアリンモニウム塩イ4着繊維10gをソックスレ
ー抽出器によりアルコール及びベンゼンの等量混合液1
00mlで抽出して付着吊を測定したところ0.05%
の値が得られた。
Water was added to this reaction product and pH 3 containing 5 g/l of Juki compounds was added.
.. 50 of the acrylonitrile fibers in the aqueous dispersion of No. 6
℃ for 0.5 minutes and then dried at 110°C. 10 g of the obtained fibers were extracted with a mixture of equal amounts of alcohol and benzene using a Soxhlet extractor.
When extracted with 0.00ml and measured for adhesion, it was 0.05%.
The value of was obtained.

このようにして得られたアクリロニトリル系繊維を空気
中260℃、張力30mg/dのもとて1.5時間耐炎
化処理した(200℃から26(1℃まぐのが濡速度は
約8°C/secとし!、:)Q得られ1、:耐炎化繊
維は比重1.40g/CC1引張り強度3.3g/d’
、仲;(10%を右し、電子顕微鏡tこj、る観察では
単繊維間に膠着は認められなかった。
The acrylonitrile fiber thus obtained was subjected to flame-retardant treatment in air at 260°C under a tension of 30mg/d for 1.5 hours. /sec!, :)Q Obtained 1, :The flame-resistant fiber has a specific gravity of 1.40g/CC1 tensile strength of 3.3g/d'
(10%) When observed under an electron microscope, no adhesion between single fibers was observed.

この耐炎化繊維を窒素気流中1400℃、3()mす/
dの張力下で1分間炭素化して、引張強度380kQ/
mm’、引張弾性率24,5t/1m’の高い強度を有
する炭素繊維を得た。この炭素繊維によって同様の観察
を行ったところ単繊維間の膠着は認められなかった。
This flame-resistant fiber was heated at 1400°C in a nitrogen stream for 3 () m/
Carbonized for 1 minute under a tension of d to obtain a tensile strength of 380 kQ/
Carbon fibers having high strength with a tensile modulus of 24.5 t/1 m' and a tensile modulus of 24.5 t/1 m' were obtained. When similar observations were made using this carbon fiber, no adhesion between single fibers was observed.

実施例2゜ 実施例1にd3りるど同様、アクリロトトリル系重合体
溶液を紡糸し、水洗、説塩化曲鉛しつつ3倍延伸した。
Example 2 In the same manner as in Example 1, an acrylototril polymer solution was spun, washed with water, and stretched 3 times while being bent with chloride.

別にステアリン酸と当■ルのジェタノールジエチレンジ
アミンを180℃、15時間反応させ、さらにこの反応
物と当モルの99%酢酸とを90℃で反応させて得た(
B)−(10)で示されるステアリン酸アミドのアンモ
ニウム塩を含む液を酢酸と酢酸アンモニウムからなる緩
衝液でpH3,5に調整し、アンモニウム塩を4g/l
含む水分散液を得た。この水分散液中に前記の3倍延伸
後の繊維を60℃で0.2分浸漬したのら、120℃で
乾燥した。次いで連続的に飽和水蒸気125℃中で4.
5倍延伸して、単繊維デニール1.1、引張強度5.3
g/d、引張り伸度12%を有するアクリロニトリル系
繊維を得た。
Separately, stearic acid and the same jetanol diethylenediamine were reacted at 180°C for 15 hours, and this reactant was further reacted with equimolar 99% acetic acid at 90°C to obtain (
B) - Adjust the solution containing the ammonium salt of stearic acid amide shown in (10) to pH 3.5 with a buffer consisting of acetic acid and ammonium acetate, and add 4 g/l of the ammonium salt.
An aqueous dispersion containing the following was obtained. The 3-fold stretched fibers were immersed in this aqueous dispersion at 60°C for 0.2 minutes, and then dried at 120°C. 4. Then continuously in saturated steam at 125°C.
Stretched 5 times, single fiber denier 1.1, tensile strength 5.3
Acrylonitrile fibers having g/d and tensile elongation of 12% were obtained.

このものについてアンモニウム塩の付着量を測定したと
ころ0.025%であった。
The amount of ammonium salt deposited on this product was measured and found to be 0.025%.

このようにして得たアクリロニトリル系繊維を空気中に
おいて255℃、張力50mg/d、の十で40分、次
いで280℃、張力40mg/dの下で20分間耐炎化
処理をした(200℃から255℃までの昇温速度は3
0℃/seaである。)得られた耐炎化繊維は比重1.
39g/cc、引張強度3.4g/d、引張伸度13%
であり電子顕微鏡による観察では単繊維間に膠着は認め
られなかった。
The acrylonitrile fiber thus obtained was subjected to flame-retardant treatment in air at 255°C and a tension of 50 mg/d for 40 minutes, and then at 280°C and a tension of 40 mg/d for 20 minutes (from 200°C to 255°C). The heating rate to ℃ is 3
0°C/sea. ) The obtained flame-resistant fiber has a specific gravity of 1.
39g/cc, tensile strength 3.4g/d, tensile elongation 13%
However, no agglutination was observed between the single fibers when observed using an electron microscope.

この耐炎化繊頼を、窒素気流中1300℃、50mg/
dの張力下で40秒間炭素化した。得られた炭素繊組は
引張強度402kg/mm’、引張弾性率24.41/
mm’の高い強度を右し、またこのものも同様の観察で
中楳絹間の膠着は認められなかったつ 実施例3゜ 実施例2においτ^1酸の代りに乳酸、硫酸、り酎を反
応させて得た化合物(△)−(2)、(5)、(9)及
び化合物〔Δ)(−2>と(Δ〕(9)の等用混合物を
含むII+−1:3.3の4g/g水分散液を4秤類調
整した。
This flame-resistant synthetic fiber was heated at 1300°C in a nitrogen stream at 50 mg/kg.
Carbonization was carried out for 40 seconds under a tension of d. The obtained carbon fiber composite had a tensile strength of 402 kg/mm' and a tensile modulus of 24.41/mm'.
mm', and in the same observation, no adhesion between the silks was observed. II+-1:3.3 containing an equal mixture of compounds (Δ)-(2), (5), (9) and compounds [Δ)(-2> and (Δ)](9) obtained by the reaction A 4 g/g aqueous dispersion of 4 g/g was prepared in 4 weighing scales.

pHの調整は36%塩酸と苛性ソーダを使用した。The pH was adjusted using 36% hydrochloric acid and caustic soda.

上記4種のものをそれぞれ用いて、実施例2におけると
同様にして4種のアンモニウム塩付着アクリロニトリル
系繊維を得た。これらの繊維はすべて引張強度5.4〜
5,6g/d、引張伸度11〜12%で繊度は1.1デ
ニールであった。
Using each of the above four types, four types of ammonium salt-attached acrylonitrile fibers were obtained in the same manner as in Example 2. All these fibers have a tensile strength of 5.4~
It had a tensile elongation of 5.6 g/d, a tensile elongation of 11 to 12%, and a fineness of 1.1 denier.

上記4種の繊維をそれぞれ実施例2におけると同様にし
て耐炎化処理し次いで炭素化処理し炭素繊維を得た。
Each of the above four types of fibers was treated to be flame resistant in the same manner as in Example 2, and then carbonized to obtain carbon fibers.

耐炎化繊維はいずれも引張強度度3.0〜3.3g/d
、引張伸度13〜14%、比重1.4g/ccであり、
単繊維間の膠着は認められなかった。
All flame-resistant fibers have a tensile strength of 3.0 to 3.3 g/d.
, tensile elongation of 13 to 14%, specific gravity of 1.4 g/cc,
No adhesion between single fibers was observed.

炭素繊維の性質は第1表の通りであり、耐炎化繊維にお
りると同様、膠着は認められなかった。
The properties of the carbon fibers are shown in Table 1, and as with the flame-resistant fibers, no adhesion was observed.

第1表 比較例1゜ アンモニウム塩の代りに、ポリオキシエチレン15モル
付加シロキサン4g/lを含むpH3.3、50℃の水
分散液を用いて、実施例2と同様の処理を行った。得ら
れたアクリロニトリル系繊維ど耐炎化繊維については物
性及び膠着性番よ実施例3ど同様であった。得られた炭
素繊維は、引張強度345kg/mm’、引張弾性率2
4.2t/mm’eあり本発明のアンモニウム塩を用い
た場合に比し引張強度において見劣りがした。
Table 1 Comparative Example 1 The same treatment as in Example 2 was carried out using, in place of the ammonium salt, an aqueous dispersion at pH 3.3 and 50° C. containing 4 g/l of siloxane added with 15 moles of polyoxyethylene. The obtained flame-resistant fibers such as acrylonitrile fibers had the same physical properties and adhesion properties as those of Example 3. The obtained carbon fiber had a tensile strength of 345 kg/mm' and a tensile modulus of 2.
The tensile strength was 4.2 t/mm'e, which was inferior to the case where the ammonium salt of the present invention was used.

なお得られた炭素繊維に膠着は認められなかったが繊維
内にシリコンの存在が認められ、これが引張強度の低い
原因と思われる。
Although no adhesion was observed in the obtained carbon fibers, the presence of silicon was observed within the fibers, which is thought to be the cause of the low tensile strength.

実施例4゜ 実施例1においてステアリン酸エステルのアンモニウム
塩の付着量を0.015%、0.025%、0.038
%になるように浴温度を調整して付着させた以外は、実
施例1におりると同様にして炭素繊維を得た。得られた
繊維の引張の強度はそれぞれ415kg/mm2、40
5kg/mm2、358kg、/mm’であり、引張弾
性率はいずれも24.5t/mm’であった。
Example 4゜In Example 1, the adhesion amount of ammonium salt of stearic acid ester was changed to 0.015%, 0.025%, 0.038%.
Carbon fibers were obtained in the same manner as in Example 1, except that the bath temperature was adjusted so that the carbon fibers were deposited. The tensile strengths of the obtained fibers are 415 kg/mm2 and 40 kg/mm2, respectively.
5 kg/mm2 and 358 kg/mm', and the tensile modulus was 24.5 t/mm' in both cases.

実施例5゜ 実施例1においてステアリン酸エステルのアンモニウム
塩の水分散液のpHを塩酸を用いて3.0に又苛性ソー
ダを用いて4.8のふたとA3りに調整させて付着を行
った以外は、実施例1ど同様にして炭素繊維を得た。得
られた繊維の引張強度はそれぞれ415kg/mm’、
360kg/mm’であり、引張弾性率はいずれも24
.41/mm’であった。
Example 5 In Example 1, the pH of the aqueous dispersion of the ammonium salt of stearic acid ester was adjusted to 3.0 using hydrochloric acid, and the pH was adjusted to 4.8 and A3 using caustic soda, and the adhesion was carried out. Except for this, carbon fibers were obtained in the same manner as in Example 1. The tensile strength of the obtained fibers was 415 kg/mm', respectively.
360 kg/mm', and the tensile modulus is 24 in both cases.
.. It was 41/mm'.

比較例2゜ 本発明のアンモニウム塩に属さないト記式のアンモニウ
ム塩においてn=1、n=5、n=20の3種類のもの
を用いて、実施例2と同様にして耐炎化処理し、次いで
炭素化処理を行つた。
Comparative Example 2 Flame-retardant treatment was performed in the same manner as in Example 2 using three types of ammonium salts of the formula T that do not belong to the ammonium salts of the present invention, n = 1, n = 5, and n = 20. Then, carbonization treatment was performed.

得られた炭素繊維の引張強度は下記のと通りでありいず
れも低い値を示した 1ト1の場合++30kg/mm’ ll−5n32QN ++=−2On308n 実施例6゜ 60%塩化亜鉛水溶液1000部中にアクリロニトリル
97モル%、アクリル酸メチル2.5モル%、メタリル
スルホン酸ナトリウム0.5モル%とからなる単量体混
合物95部及び過硫酸アンモニウム0185部を溶解し
、50で5時間重合してスタウジンガー式で求められる
分子量75,000、粘度100ポイズ(45℃)を有
するアクリロニトリル重合体溶液を得た。このものを直
径0.06mm、孔数48、000のノズルを通して2
8%塩化亜鉛系水溶液中に圧出し、水洗によって脱塩化
亜鉛しつつ2.5倍延伸し、更に(A)−(1)式で示
されるステアリン酸エステルのアンモニウム塩の7g/
l水分散液中に45℃に於て0.2分間通して105℃
において10分、120℃に於て15分間乾燥した。
The tensile strengths of the obtained carbon fibers are as follows, and in the case of 1 to 1 which all showed low values ++30 kg/mm'll-5n32QN ++=-2On308n Example 6゜In 1000 parts of 60% zinc chloride aqueous solution 95 parts of a monomer mixture consisting of 97 mol% of acrylonitrile, 2.5 mol% of methyl acrylate, and 0.5 mol% of sodium methallylsulfonate and 0.185 parts of ammonium persulfate were dissolved in the solution, and polymerized at 50 °C for 5 hours. An acrylonitrile polymer solution having a molecular weight of 75,000 and a viscosity of 100 poise (45° C.) determined by the Stausinger equation was obtained. This material is passed through a nozzle with a diameter of 0.06 mm and a number of holes of 48,000.
It was extruded into an 8% zinc chloride-based aqueous solution, stretched to 2.5 times while removing zinc by washing with water, and further added with 7 g of ammonium salt of stearic acid ester represented by formula (A)-(1).
105°C for 0.2 min at 45°C in an aqueous dispersion.
It was dried for 10 minutes at 120° C. for 15 minutes.

次いで、連続的に115℃の飽和水蒸気中(更に5.5
倍延伸し、次いで120℃で30分間飽和水蒸気中で4
%収縮し、単繊維デニール1.5、引張強度5g/d、
引張伸度15%のアクリロニトリル系繊維を得た。
Then, continuously in saturated steam at 115°C (additionally 5.5
Stretched twice, then 40 minutes in saturated steam at 120°C for 30 minutes.
% shrinkage, single fiber denier 1.5, tensile strength 5 g/d,
Acrylonitrile fibers with a tensile elongation of 15% were obtained.

この繊維を第1図に示すごとき多段ローラー群を有する
耐炎化炉を用いて耐炎化を行った。
This fiber was made flameproof using a flameproofing furnace having a multistage roller group as shown in FIG.

第1図にA3いで1は耐炎化炉、2はローラー、3はア
クリロニトリル系繊維、4は耐炎化繊維である。耐炎化
処理はト一タルの収縮率が10%となるようにして、2
50℃2時間行った(200℃から250℃までの昇温
速度は10℃/secである)。
In FIG. 1, A3 indicates a flame-resistant furnace 1, a roller 2, an acrylonitrile fiber 3, and a flame-resistant fiber 4. The flame-retardant treatment was made so that the total shrinkage rate was 10%.
The heating was carried out at 50°C for 2 hours (the temperature increase rate from 200°C to 250°C is 10°C/sec).

得られた耐炎化繊維は比重1.42g/cc、引張り強
度3.1g/d、引張り伸度15%を有し、単繊維間の
膠着は認められなかった。
The obtained flame-resistant fiber had a specific gravity of 1.42 g/cc, a tensile strength of 3.1 g/d, and a tensile elongation of 15%, and no adhesion between single fibers was observed.

この耐炎繊維をターボステープラーにてスライバーとし
たのちリング紡績機にて紡績糸としたこところ糸切れ、
毛羽立ら等の問題なく、紡績糸とりることかでさた。
This flame-resistant fiber was made into sliver using a turbo stapler, and then spun into yarn using a ring spinning machine.
I was able to remove the spun yarn without any problems such as fluffing.

またこのようにして得られた耐炎繊維を実施例1と同条
件で炭素化処理して得た炭素繊維の引張強度は415k
g/mm’(”あり非小に優れていた。
Furthermore, the tensile strength of the carbon fiber obtained by carbonizing the flame-resistant fiber thus obtained under the same conditions as in Example 1 was 415K.
g/mm'("Excellent.

比較例S3 本発明のアンモニウム塩に属さないデシルトリメチルア
ンモニウムクロライドを実施例6で使用した(Δ)−(
1)式で示されるステアリン酸エステルのアンモニウム
塩の代りに用いる以外、実施例6と同様tこしくアクリ
ロニトリル系繊維としたのち、耐炎化処理し、次いC実
施例1ど同一条件で炭素化処理を行った。得られた炭素
繊維の引張強度は320kg/mmであり、これは実施
例6で得られた炭素繊維に比べ非常に劣っていた。
Comparative Example S3 Decyltrimethylammonium chloride, which does not belong to the ammonium salts of the present invention, was used in Example 6 (Δ)-(
1) Except for using the ammonium salt of the stearic acid ester shown by the formula, the same method as in Example 6 was made into acrylonitrile-based fiber, which was then subjected to flame-retardant treatment, and then carbonized under the same conditions as in Example 1. processed. The tensile strength of the obtained carbon fiber was 320 kg/mm, which was very inferior to the carbon fiber obtained in Example 6.

実施例7゜ 実施例6ど同様にしてアンモニウム塩を付着したアクリ
にトリル系繊卸をMJnし、連続して3%の収縮をりえ
ながら200TJ、す2!10℃まで7℃/secで昇
温し、250℃で1分間処理してアンモニウム塩に熱変
化を起させた。
Example 7 In the same manner as in Example 6, tolyl-based fibers were applied to acrylic coated with ammonium salt, and heated at 7°C/sec to 200 TJ and 10°C while continuously shrinking by 3%. The ammonium salt was heated and treated at 250° C. for 1 minute to cause a thermal change in the ammonium salt.

この繊維は毛羽の発生すなく、単繊維デニール1.55
、引張強5g/d、引張伸度18%の膠着のない繊維で
あった。
This fiber does not generate fluff and has a single fiber denier of 1.55.
It was a non-stick fiber with a tensile strength of 5 g/d and a tensile elongation of 18%.

この繊維を実施例6ど同様にして耐炎化処理し、次いぐ
実施例1ど同様にして炭素化して引張強度425kg/
mm2どきわめ−C凸い強度をイiし、(」つ電子顕微
鏡でM察しIこ結宋肋りのない炭素綴紐が得られた。
This fiber was subjected to flame-retardant treatment in the same manner as in Example 6, and then carbonized in the same manner as in Example 1 to give a tensile strength of 425 kg/
The carbon binding cord without ribs was obtained by inspecting it with an electron microscope and confirming its convex strength in mm2.

実施例8゜ 実施例6で得た、アンモニウム塩を付着したアクリロニ
トリル系繊維を更に連続して下記第2表の如き条件で耐
炎化処理前に熱処理して得たアクリロニトリル系繊維を
出発原料として第1図に示すごとき耐炎化炉で、実施例
1と同様にしく耐炎化し次いで窒素気流中1400℃、
30mg/dの張力下で1分間炭素化し炭素繊維どした
。この炭素繊維について引張強度を測定した結果を第2
表に示す。
Example 8 The acrylonitrile fibers obtained in Example 6 with the ammonium salt attached were further heat-treated under the conditions shown in Table 2 below before flame-retardant treatment. It was made flameproof in the same way as in Example 1 in a flameproofing furnace as shown in Figure 1, and then heated at 1400°C in a nitrogen stream.
The carbon fiber was carbonized under a tension of 30 mg/d for 1 minute. The results of measuring the tensile strength of this carbon fiber are
Shown in the table.

第2表 注1)200℃以上の温度での滞留時間は、200℃に
達したのら、第2表の昇温速度・で熱処理最高温度まで
昇温する時間と最高温度での保持時間の合計で示す。
Table 2 Note 1) The residence time at a temperature of 200°C or higher is the time to raise the temperature to the maximum heat treatment temperature and the holding time at the maximum temperature at the temperature increase rate shown in Table 2 after reaching 200°C. Shown in total.

第2表に明らかなことく、本発明のアンモニウム塩化合
物を付着させたアクリロニトリル系繊練を一反特殊な胃
温速度でR渇して一定時間熱処理して耐炎化に供づる場
合、史に高い強度の炭素繊維が得られるので、一層有利
であるという特性をも有している。
Although it is not clear from Table 2, when the acrylonitrile-based fines to which the ammonium salt compound of the present invention is attached are dried at a special gastric temperature rate and then heat-treated for a certain period of time to provide flame resistance, the temperature is higher than ever before. It also has the advantageous property of producing stronger carbon fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアクリロニトリル系繊維を耐炎化処理する装置
の1例を示すものである。 1:耐炎化路、2:ローラー、3:アクリル系繊維、4
:耐炎化繊維
FIG. 1 shows an example of an apparatus for flame-proofing acrylonitrile fibers. 1: Flame-resistant path, 2: Roller, 3: Acrylic fiber, 4
:Flame resistant fiber

Claims (1)

【特許請求の範囲】 (1)一般式 (式中R1は炭素数11〜17個の脂肪族炭化水素基、
R2,1で1は水素原子、低級アルキル基、ヒドロキシ
エチル基、ヒドロキシイソプロピル基Xは酸の陰イオン
、或いはR2又番R、がヒドロキシイソプロピル基の場
合は塩素原子を表わす。)で示される脂肪酸1スiル及
び脂肪酸アミドのアンモニウム塩の少なくとも1種を付
着した耐炎性繊維製造用又は炭素繊維製造用のアクリロ
ニトリル系繊維。 (2)アクリロニトリル系繊維がアクリロニトリル95
%モル%以上と、アクリロニトリルと共重合しうるビニ
ル系単量体5モル%以下とからなる重合体より得られた
ものである特許請求の範囲(1)の繊維。 (3)一般式中の×が塩素イオン、酢酸イオン、乳酸イ
オン、リン酸イオン、硫酸イオン、ホウ酸イオン、硝酸
イオン、ホスホリルジオキシエタノールイオン、あるい
は塩素原子である特許請求の範囲〈1〉の繊維。 (4)一般式〔Δ〕で示される化合物がである特許請求
の範囲(1)の繊維。 (5)一般式(B)で示される化合物がである特許請求
の範囲(1)の繊維。 (6)アンモニウム塩の付着量が繊維重量に対し0.0
1〜0.5%である特許請求の範囲(1〉の繊維。 (7)アクリロニトリル系繊維の製造工程における脱溶
媒後から繊維製造完了まであるいは完了後の何れかの段
階で前記一般式〔△〕([3〕で示される脂肪酸ニスデ
ル及び脂肪酸アミドのアンモニウム塩の少なくとも1種
を付着処理した後熱処理することを特徴とりる耐炎性繊
組製造用又は炭素繊維製造用のアクリロニトリル系繊維
の製造法。 (8)アンモニウム塩の付着処理該塩を含むpl−I4
以十の水溶液又は水分散液によつて行うことを特徴とす
る特許請求の範囲(l)の製造法。 (り>pHが2〜3.5である特許請求の範囲(8)の
製造方法。 (10)アンモニウム塩の水溶液又は水分散液の温度が
70℃以下である特許請求の範囲(7)の製造方法。 (10)温度が20℃以上である特許請求の範囲(1)
の製造方法。 (12)アンモニウム塩の付着後更にアンモニウム塩が
水不溶化づるまで200へ・:300℃にー(加熱処理
をすることを特徴とする特許請求の範囲(1)の製造方
法。 (13)加熱を230〜300℃で行う特許請求の範囲
(12)の製造方法。 (14)湿度が200℃に達した後加熱を1〜10℃/
secの昇温速度で行うことを特徴とする特許請求の範
囲(13)の製造方法。 (15)特許請求の範囲(1)(+2)又は(14)で
製造されたアクリロニトリル系繊維を使用することを特
徴とする耐炎性繊維の製法。 (16)特許請求の範囲(15)の方法で作られた耐炎
繊維を炭素化して炭素繊維を製造する方法。
[Claims] (1) General formula (wherein R1 is an aliphatic hydrocarbon group having 11 to 17 carbon atoms,
In R2,1, 1 represents a hydrogen atom, a lower alkyl group, a hydroxyethyl group, a hydroxyisopropyl group, X represents an acid anion, or a chlorine atom when R2 or R is a hydroxyisopropyl group. ) Acrylonitrile fibers for producing flame-resistant fibers or for producing carbon fibers, to which at least one of ammonium salts of fatty acid 1sil and fatty acid amide is attached. (2) Acrylonitrile fiber is acrylonitrile 95
% mol % or more and 5 mol % or less of a vinyl monomer copolymerizable with acrylonitrile. (3) Claim 1 in which x in the general formula is a chloride ion, acetate ion, lactate ion, phosphate ion, sulfate ion, borate ion, nitrate ion, phosphoryldioxyethanol ion, or chlorine atom fiber. (4) The fiber according to claim (1), wherein the compound represented by the general formula [Δ] is. (5) The fiber according to claim (1), wherein the compound represented by general formula (B) is. (6) The amount of ammonium salt attached is 0.0 relative to the fiber weight.
1 to 0.5% of the fiber of claim (1). (7) The above general formula [△ ] (A method for producing acrylonitrile-based fibers for producing flame-resistant fibers or carbon fibers, which comprises applying heat treatment after adhering at least one of the ammonium salts of fatty acid Nisder and fatty acid amide shown in [3] (8) Ammonium salt attachment treatment pl-I4 containing the salt
The manufacturing method according to claim (l), characterized in that the manufacturing method is carried out using an aqueous solution or an aqueous dispersion. (10) The manufacturing method according to claim (8), in which the pH is 2 to 3.5. Manufacturing method. (10) Claim (1) in which the temperature is 20°C or higher
manufacturing method. (12) The manufacturing method according to claim (1), characterized in that after the attachment of the ammonium salt, further heat treatment is performed at 200° C. to 300° C. until the ammonium salt becomes water-insolubilized. (13) Heating. The manufacturing method according to claim (12), which is carried out at 230 to 300°C. (14) After the humidity reaches 200°C, heating is carried out at 1 to 10°C/
The manufacturing method according to claim (13), characterized in that the manufacturing method is carried out at a temperature increase rate of sec. (15) A method for producing flame-resistant fibers, characterized in that the acrylonitrile fiber produced in claim (1) (+2) or (14) is used. (16) A method for producing carbon fiber by carbonizing the flame-resistant fiber produced by the method according to claim (15).
JP11740582A 1982-07-06 1982-07-06 Acrylonitrile fiber and method Granted JPS599272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11740582A JPS599272A (en) 1982-07-06 1982-07-06 Acrylonitrile fiber and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11740582A JPS599272A (en) 1982-07-06 1982-07-06 Acrylonitrile fiber and method

Publications (2)

Publication Number Publication Date
JPS599272A true JPS599272A (en) 1984-01-18
JPH0255549B2 JPH0255549B2 (en) 1990-11-27

Family

ID=14710830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11740582A Granted JPS599272A (en) 1982-07-06 1982-07-06 Acrylonitrile fiber and method

Country Status (1)

Country Link
JP (1) JPS599272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183320A (en) * 1984-09-26 1986-04-26 Nikkiso Co Ltd Production of carbon fiber
JPS61119717A (en) * 1984-11-14 1986-06-06 Toho Rayon Co Ltd Bundle of water-absorbing carbon fiber of high performance
JP2010024582A (en) * 2008-07-22 2010-02-04 Matsumoto Yushi Seiyaku Co Ltd Finishing agent for acrylic fiber for production of carbon fiber and method for producing carbon fiber by using the same
JP2013076202A (en) * 2012-12-19 2013-04-25 Matsumoto Yushi Seiyaku Co Ltd Oil agent for acrylic fiber for producing carbon fiber, and method for producing carbon fiber using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105274U (en) * 1974-01-31 1975-08-29
JPS5137776U (en) * 1974-09-13 1976-03-22
JPS52156280U (en) * 1976-05-22 1977-11-28
JPS54113972A (en) * 1978-02-25 1979-09-05 Kazuo Muraoka Washing auxiliary portion material
JPS57112410A (en) * 1980-12-27 1982-07-13 Toho Rayon Co Ltd Acrylonitrile fiber and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137776B2 (en) * 1972-09-01 1976-10-18

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50105274U (en) * 1974-01-31 1975-08-29
JPS5137776U (en) * 1974-09-13 1976-03-22
JPS52156280U (en) * 1976-05-22 1977-11-28
JPS54113972A (en) * 1978-02-25 1979-09-05 Kazuo Muraoka Washing auxiliary portion material
JPS57112410A (en) * 1980-12-27 1982-07-13 Toho Rayon Co Ltd Acrylonitrile fiber and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183320A (en) * 1984-09-26 1986-04-26 Nikkiso Co Ltd Production of carbon fiber
JPS61119717A (en) * 1984-11-14 1986-06-06 Toho Rayon Co Ltd Bundle of water-absorbing carbon fiber of high performance
JP2010024582A (en) * 2008-07-22 2010-02-04 Matsumoto Yushi Seiyaku Co Ltd Finishing agent for acrylic fiber for production of carbon fiber and method for producing carbon fiber by using the same
JP2013076202A (en) * 2012-12-19 2013-04-25 Matsumoto Yushi Seiyaku Co Ltd Oil agent for acrylic fiber for producing carbon fiber, and method for producing carbon fiber using the same

Also Published As

Publication number Publication date
JPH0255549B2 (en) 1990-11-27

Similar Documents

Publication Publication Date Title
US4536448A (en) Preoxidized fiber and process for producing the same
JPS6323285B2 (en)
JPS59228069A (en) Acrylonitrile fiber
JPS599272A (en) Acrylonitrile fiber and method
JPS6197477A (en) Raw yarn for producing carbon fiber
JPS6052206B2 (en) Method for manufacturing acrylic carbon fiber
JPS63203878A (en) Production of precursor fiber for producing carbon fiber
JPH02242920A (en) Carbon fiber containing composite metal
JP3002549B2 (en) Manufacturing method of graphite fiber
US4869856A (en) Method for producing carbon fibers from acrylonitrile fiber strands
JPH11117123A (en) Acrylic precursor fiber for carbon fiber excellent in resistance to pre-oxidation
JP2016166435A (en) Carbon fiber precursor acrylic fiber and carbon fiber
US4237109A (en) Process for producing carbon fabric
JP3303424B2 (en) Method for producing acrylic carbon fiber
JPH0637724B2 (en) Carbon fiber manufacturing method
JP2018145561A (en) Carbon fiber precursor acrylic fiber bundle, carbon fiber bundle, and manufacturing method of carbon fiber bundle
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP2007332498A (en) Method for producing carbon fiber bundle
JP3002698B2 (en) Manufacturing method of graphite fiber
JPS5982421A (en) Production of carbon fiber
JPS58214518A (en) Acrylic precursor yarn bundle
JPS6183374A (en) Acrylic precursor fiber bundle
JPH05339813A (en) Acrylonitrile fiber and its production
JPH09176923A (en) Precursor for carbon fiber, its production and production of carbon fiber