JPH0284525A - Surface treatment of carbon fiber - Google Patents

Surface treatment of carbon fiber

Info

Publication number
JPH0284525A
JPH0284525A JP19482488A JP19482488A JPH0284525A JP H0284525 A JPH0284525 A JP H0284525A JP 19482488 A JP19482488 A JP 19482488A JP 19482488 A JP19482488 A JP 19482488A JP H0284525 A JPH0284525 A JP H0284525A
Authority
JP
Japan
Prior art keywords
aqueous solution
mol
stage
carbon fiber
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19482488A
Other languages
Japanese (ja)
Inventor
Hirobumi Uno
宇野 博文
Fujio Nakao
中尾 冨士夫
Naoki Sugiura
直樹 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP19482488A priority Critical patent/JPH0284525A/en
Publication of JPH0284525A publication Critical patent/JPH0284525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve tensile strength in the orthogonal direction to fiber axis of a composite material by performing two-stage electrolysis in an aqueous solution of neutral or alkaline ammonium salt using carbon fiber as anode and under specific condition. CONSTITUTION:An electrolysis treatment of first stage is performed in an aqueous solution of neutral or alkaline ammonium salt of 0.01-0.2mol/l, preferably 0.05-0.15mol/l ammonium ion concentration in the aqueous solution. Then, an electrolysis treatment of second stage is performed in an aqueous solution of neutral or alkaline ammonium salt of 0.2-4.0mol/l, preferably 1.0-3.0mol/l ammonium ion concentration in the aqueous solution. Strength of strand of the carbon fiber used as anode is also improved and breadth of variance of said strength is made to smaller, too.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭素繊維の表面処理に関するものであり、さら
に詳しくは基質強度およびマトリックス樹脂との接着性
に優れた炭素繊維を得るための新規な表面処理方法に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to surface treatment of carbon fibers, and more specifically, to a novel method for obtaining carbon fibers with excellent substrate strength and adhesiveness with matrix resins. This invention relates to a surface treatment method.

〔従来の技術〕[Conventional technology]

複合材の補強材として用いられてき友炭素繊維はマトリ
ックス樹脂との接着性が必ずしも十分ではないためその
表面を活性化させる処理が必要であ)、飼えば薬剤処理
、気相酸化処理、電解酸化処理等の表面処理方法が採用
されてきた。その中でも電解酸化処理法はその操作性の
良δ、活性化処理反応制御の容易さ、省エネルギー等の
見地から実用的な裸面処理方法である。
The carbon fiber used as a reinforcing material for composite materials does not necessarily have sufficient adhesion to the matrix resin, so treatment to activate its surface is required). Surface treatment methods such as surface treatment have been employed. Among these, the electrolytic oxidation treatment method is a practical bare surface treatment method from the viewpoints of good operability, ease of activation treatment reaction control, and energy saving.

炭素繊維に表面処理を施す場合、従来の表面処理方法で
は炭素繊維にダメージを与えることはさけられず、炭素
繊維の基質強度全低下させてしまうためにその表面処理
効果を充分発揮することができなかった。
When applying surface treatment to carbon fibers, conventional surface treatment methods inevitably damage the carbon fibers and reduce the total strength of the carbon fiber matrix, making it impossible to fully demonstrate the surface treatment effect. There wasn't.

従来、複合材料を構成する炭素慎維とマトリックス樹脂
との接着強度を評価するだめの手法として眉間!g断g
i度(以下ILSSと略記)が用いられてきているが、
一般に工L8Bはある一定のレベル以上に表面処理を施
し九炭素繊1唯を用いた複合材では、その表面処理の程
度の斑、その池の処理条件に対して鈍感になり、炭素繊
維とマトリックス樹脂の接着強度を直接反映したものに
なっていない。ところが、複合材を構成する炭素繊維と
マ) IJラックス脂との剥離強度゛を表わす繊維配向
方向と90’ 方向の引張夛強さ(以下TB上と略記)
は、その表面処理の程度、斑、その他の処理条件変更に
よる影響全鋭敏に反映したものとなり複合積層材の設計
上、非常に重要な特性値である。しかるに従来開発嘔れ
できた表面処理方法で処理された炭素繊維を用いた複合
材のTS上は実用的性能レベルにまで達していないのが
実状である。
Conventionally, the method of evaluating the adhesive strength between the carbon fibers that make up the composite material and the matrix resin has been used as a method to evaluate the adhesive strength between the eyebrows! g-cut g
The i degree (hereinafter abbreviated as ILSS) has been used,
In general, when using a composite material that uses nine carbon fibers that have been surface-treated to a certain level or higher, L8B becomes insensitive to unevenness in the surface treatment and to the processing conditions of the pond, and the carbon fibers and matrix It does not directly reflect the adhesive strength of the resin. However, the tensile strength in the fiber orientation direction and the 90' direction (hereinafter abbreviated as TB top), which represents the peel strength between the carbon fibers constituting the composite material and the IJ lux resin,
is a very important characteristic value in the design of composite laminates, as it sensitively reflects the effects of the degree of surface treatment, unevenness, and other changes in processing conditions. However, the reality is that the TS performance of composite materials using carbon fibers treated with conventional surface treatment methods has not reached a practical performance level.

−万、通常の方法により焼成した炭素稙維炎面は、その
焼成過程での急激な加熱、冷却及び伸長或いはローラ一
部との摩擦圧迫環球々な化学的、機械的ダメージを受け
るため脆弱部が形成される。この脆弱部の多くは比較的
結晶性の低い乱れた構造の炭素材より構成されており、
炭素繊維のストランドの引張破壊の際の開始点になる場
合が多く、ストランド強度向上のためにこの脆弱部を除
去してやることが有効である。
- The flame surface of carbon fibers fired by the usual method is susceptible to chemical and mechanical damage due to rapid heating, cooling and elongation during the firing process, or from friction pressure and ring and ball parts with a part of the roller, resulting in fragile parts. is formed. Many of these fragile parts are composed of carbon materials with relatively low crystallinity and a disordered structure.
This is often the starting point for tensile failure of carbon fiber strands, and it is effective to remove these weak parts to improve strand strength.

またこの脆弱部は炭素、繊維基質との結合が弱く剥離し
やすい状態になっているため単に表面処理を行ったもの
を用いて複合材を作ると、七の複合材のTa2は用いた
炭素繊維基質と脆弱部の剥離に支配葛れるらのと考えら
れ表面処理の顕微鏡で観察すると1.或維表層近くのt
il、#1内部で剥離が生じてい/)部分が多く与られ
る。すなわち、炭素繊維の基質濃度を向上させ−また炭
素繊維強化複合材の剥離強度を向上させるVCは、炭素
繊維表面の脆弱部を新たな欠陥部音生ずることなく除去
して最終的に欠陥のない表面tj4出8+!:る事が必
要である。
In addition, this fragile part is in a state where the bond with the carbon and fiber matrix is weak and it is easy to peel off, so if a composite material is made using a material that has simply undergone surface treatment, Ta2 of the composite material No. 7 This is thought to be caused by the separation between the substrate and the fragile part, and when observed with a surface treatment microscope, 1. t near the fiber surface layer
il, peeling has occurred inside #1, and a large amount of the /) portion is given. In other words, VC, which increases the matrix concentration of carbon fibers and also improves the peel strength of carbon fiber reinforced composites, removes the weak parts on the carbon fiber surface without creating new defects and finally creates a defect-free product. Surface tj4 out 8+! : It is necessary to

弾性率の低い炭;g繊維と比較して高弾性炭素繊維は1
1!維基質と脆弱部間の紹曾が特に弱いせいか強度の大
巾な向上効果金得るためには脆弱部をよシ完全に除去す
る必要がるる。
Carbon with low modulus of elasticity; high modulus carbon fiber compared to g-fiber is 1
1! Perhaps because the bond between the fiber matrix and the weakened area is particularly weak, it is necessary to completely remove the weakened area in order to obtain a significant improvement in strength.

しかしながら−旦脆弱部(i−取シ除いた後に官能基を
導入しようとすると再び炭素繊維災面に欠陥部を生じ、
程度の大小はあるものの粧たな脆弱部の形成を避けるこ
とができない。
However, if you try to introduce functional groups after removing the weak parts, defects will occur again on the carbon fiber surface.
Although the degree of damage may vary, it is impossible to avoid the formation of fragile parts.

これらの対策として従来表面処理方法によって受着強度
を向上させることが数多く提案されており、化成的には
例えばアミン?含む1!解液中での′1解処理による含
窒素官能基の導入(特開昭59−82467号、同59
−112068号各公報)や、二段階表面処理(特開昭
61−124677号、同6!l−6162号、同63
−85167号各公報)等である。しかしながらこれら
の方法は必ずしも満足しうるちのではなく列えは二段階
表面処理において異なる電解質を用いるとその間に洗浄
工程が必要となシ工程が非常に複雑になる等の問題点が
ある。
As a countermeasure to these problems, many proposals have been made to improve the adhesion strength using conventional surface treatment methods. Including 1! Introduction of nitrogen-containing functional groups by '1 decomposition treatment in solution (JP-A-59-82467, JP-A-59-82467)
-112068), two-stage surface treatment (JP-A-61-124677, JP-A No. 6!l-6162, JP-A-63
-85167 publications), etc. However, these methods are not always satisfactory, and there are problems such as the use of different electrolytes in two-step surface treatment requires a cleaning step between them, making the process very complicated.

また表面処理によって炭素繊維基質強度全向上させる方
法として炭素繊維を硝酸処理して電子線回折で測定され
る結晶配列あるいはX線光電子分光法(K f30 A
 ’)で測定される酸素濃度を規制し九炭素繊維を製造
することが提案されている(特開昭58−214527
号、同61−225330号各公報)。しかし、これら
の方法では接着強度と基’Jtgi度を同時に向上させ
ることは不可能でるる。
In addition, as a method to completely improve the strength of carbon fiber substrates through surface treatment, carbon fibers are treated with nitric acid and crystal orientation measured by electron beam diffraction or X-ray photoelectron spectroscopy (K f30 A
It has been proposed to produce nine carbon fibers by regulating the oxygen concentration measured in
No. 61-225330). However, with these methods, it is impossible to simultaneously improve adhesive strength and base Jtgi.

このような従来方法に対して、先に本発明者らは第1段
目に比較的高濃度の中性またはアルカリ性のアンモニウ
ム塩水溶液中で電解処理した後、第2段に比較的低濃度
の中性またはアルカリ性のアンモニウム塩水溶液中で電
解処理することによって接着強度と基質強度を同時に向
上さ止ることを提案した(特開昭62−276075号
公報)。本発明はこれを改良するものである。
In contrast to such conventional methods, the present inventors first performed electrolytic treatment in a relatively high concentration neutral or alkaline ammonium salt aqueous solution in the first stage, and then electrolyzed in a relatively low concentration aqueous solution in the second stage. It was proposed that adhesive strength and substrate strength could be simultaneously improved by electrolytic treatment in a neutral or alkaline ammonium salt aqueous solution (Japanese Patent Application Laid-Open No. 62-276075). The present invention improves this.

〔発明が解決しようとする課題」 本発明は、炭素繊維のストランド強度全向上させその変
動中を小さくしそれからなる複合材のTS上を向上させ
ると共に工程が簡便な電解処理方法を提供することを目
的とする。
[Problems to be Solved by the Invention] The present invention aims to provide an electrolytic treatment method that improves the total strand strength of carbon fibers, reduces its fluctuation, improves the TS of a composite material made of the carbon fibers, and has a simple process. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は 炭素繊維を陽極として、水溶液中のアンモニウムイオン
濃度がα01 mol/l以上α2 mol/7未満の
中性またはアルカリ性のアンモニウム塩の水溶液中で第
1段目の電解処理を行った後、さらに該イオン良度が[
12mo”i/l以上A、 Omob/L以下の中性ま
たはアルカリ性のアンモニウム塩の水溶液中で第2段目
のt屏処、理を行う炭素繊維の表面処理方法にある。
The gist of the present invention is to perform the first stage electrolytic treatment in an aqueous solution of a neutral or alkaline ammonium salt in which the ammonium ion concentration in the aqueous solution is α01 mol/l or more and less than α2 mol/7 using carbon fiber as an anode. After that, the ion quality is further increased to [
The present invention provides a method for surface treatment of carbon fibers in which a second stage T-layer treatment is performed in an aqueous solution of a neutral or alkaline ammonium salt of 12 mo"i/l or more A, Omob/L or less.

本発明で規定するアンモニウムイオン濃度は物質−分子
中に含まれるアンモニウム基の11数とその物質の水溶
液中でのモル濃度の積から求めた値のことである。
The ammonium ion concentration defined in the present invention is a value determined from the product of the number of ammonium groups contained in a substance-molecule and the molar concentration of the substance in an aqueous solution.

本発明の特徴は2段階の電解処理を行うことにある。第
1段目で焼成後の炭素繊維を陽甑としてアンモニウムイ
オン濃度がα01 mol/l以上α2 mol/A未
満、より好ましくin、05mol/l以上[115m
ol/l以下である中性またはアルカリ性のアンモニウ
ム塩の水溶液中で電解処理することにより(a維表面に
与えるダメージを抑制しながら、窒素および酸素からな
る官能基の導入を行う。この場合、アンモニウムイオン
濃度がcL2 mol/l以上になると後述するような
表面のエツチングと官能基の導入が拮抗してしまい、官
能基が有効に導入されなくなる。[LO1mol/l未
満では実質的に窒素が導入ちれない。
A feature of the present invention is that a two-stage electrolytic treatment is performed. In the first stage, the ammonium ion concentration is α01 mol/l or more and less than α2 mol/A, more preferably in, 05 mol/l or more [115 m
By electrolytically treating in an aqueous solution of a neutral or alkaline ammonium salt with a concentration of 1.0 mol/l or less (a), functional groups consisting of nitrogen and oxygen are introduced while suppressing damage to the fiber surface. When the ion concentration exceeds cL2 mol/l, the etching of the surface and the introduction of functional groups, which will be described later, compete with each other, and the functional groups are not effectively introduced. [At LO less than 1 mol/l, nitrogen is substantially introduced. Not possible.

第1段目の処理のみでも接7i1強度は向上するが、十
分なものではなく、また基質強度はほとんど向上しない
。これは焼成上がりの炭素繊維の表層に存在する、接着
強度や基質強度の向上を阻害する物質であるケイ素酸化
物及び1宛弱邪の除去が行なわれていないためと考えら
れる。
Although the first stage treatment alone improves the contact 7i1 strength, it is not sufficient and the substrate strength hardly improves. This is thought to be due to the fact that silicon oxide and carbon dioxide, which are substances that inhibit improvements in adhesive strength and substrate strength, present on the surface layer of carbon fibers after firing are not removed.

そこで本発明は上記の処理を施した炭素繊維ましくは1
. Omo’l/l以上五〇 mol/l以下である中
性またはアルカリ性のアンモニウム塩の水溶液中で電解
処理することにより脆弱部やケイ素酸化物等?除去する
。この場合アンモニウムイオン濃度が[12mo1/!
、未満では、この除去効果が弱< 40 mo1/j 
5e越えると除去効果は優几るものの剥離した脆弱部の
水への溶解性電解液よシのアンモニアガスの発生による
作業櫨墳への悪影響、コスト等で不利になってくる。
Therefore, the present invention provides carbon fibers or carbon fibers subjected to the above treatment.
.. By electrolytically treating in an aqueous solution of neutral or alkaline ammonium salt with a concentration of 0 mol/l or more and 50 mol/l or less, fragile parts, silicon oxides, etc. can be removed. Remove. In this case, the ammonium ion concentration is [12 mo1/!
, this removal effect is weak < 40 mo1/j
If it exceeds 5e, the removal effect will be excellent, but it will be disadvantageous in terms of cost, etc. and the generation of ammonia gas from the water-soluble electrolyte in the peeled fragile parts, which will have an adverse effect on the working doshifun.

また、アンモニウムイオン濃度が02 mol/l以上
4.0 mol/l以下の中・注またはアルカリ性のア
ンモニウム塩の水溶液中で電解処理し、−旦表1−の脆
弱部を取り除いた後に本発明に基づく二段階処理を施す
と処理の効果がさらに大きくなる。さらには1橿または
2.1以上の他の表面処理を行った後に本発明の二段階
処理を施すことで六面処理効果の複合化も図ることがで
きる。
In addition, the present invention can be applied after electrolytically treating the ammonium ion concentration in an aqueous solution of medium or alkaline ammonium salt with an ammonium ion concentration of 0.2 mol/l or more and 4.0 mol/l or less to remove the weak parts shown in Table 1. If a two-stage process based on the above is applied, the effect of the process will be even greater. Furthermore, by performing the two-step treatment of the present invention after performing one or more other surface treatments, it is possible to compound the effects of the six-sided treatment.

本発明の方法による炭素繊維表、1jの脆弱部が除去さ
れる原理の詳細は明らかでないが、おそらく比較的結晶
性の低い乱れた構造を有する脆弱部が電解工程で曖先的
に酸化され、4解液中のアンモニウムイオンとの親和性
が上がり、災素鷹、維衣面から容易に除去ざ九るものと
推定される。
Although the details of the principle behind the removal of the weak parts of the carbon fiber surface 1j by the method of the present invention are not clear, it is likely that the weak parts having a disordered structure with relatively low crystallinity are vaguely oxidized in the electrolytic process. It is presumed that the affinity with the ammonium ions in the solution increases and it can be easily removed from the surface of the surface.

また複合材料用マトリックス樹脂との接着性を低下さす
るケイ素酸化物などの不純物も、本発明の方法によって
除去される事がわかった。
It has also been found that impurities such as silicon oxide, which reduce adhesion to the matrix resin for composite materials, can also be removed by the method of the present invention.

このエツチング効果によって表面の官能Mkある程度除
去されるが、1段目と2段目の処理条V+?コントロー
ルすることによって十分な量の官能基を衣面に残存させ
ることができる。
This etching effect removes some of the functional Mk on the surface, but the first and second treatment strips V+? By controlling the amount, a sufficient amount of functional groups can remain on the clothing surface.

以上のような処理を行なうことで脆弱部、ケイ素酸化物
等が存在せず、しかも酸素、窒素を含んだ官能基が導入
された表面を有する接着強度、基質強度に浸れた炭素繊
維を製造することができる。
By performing the above-mentioned treatments, it is possible to produce carbon fibers that are free of fragile parts, silicon oxides, etc., and have a surface that has functional groups containing oxygen and nitrogen introduced, and that have high adhesive strength and substrate strength. be able to.

中でも従来の表面処理では大きな効果の見られなかった
ストランド弾性率が55 t/m”以上の高弾性炭素繊
維の1日上ら大巾に向上させることが可能となる。
In particular, it is possible to significantly improve the strand elastic modulus of high-elastic carbon fibers of 55 t/m'' or more, which has not had a significant effect with conventional surface treatments.

また、本発明は1段目、2段目の電解質を同一のものと
することかり能であるため1段目と2段目の間に異を解
質の混入倉防ぐだめの洗浄工程を設置する必要がなく、
工程上からも簡便な方法であると言える。
In addition, since the present invention uses the same electrolyte in the first and second stages, a cleaning process is installed between the first and second stages to prevent different electrolytes from entering the tank. There is no need to
It can be said that this method is simple from a process standpoint.

本発明で使用する中性またはアルカリ性のアンモニウム
塩は特に制限はないが、カルパミン酸アンモニウム、炭
酸アンモニウム、炭酸水素アンモニウム等rr、i層の
エツチング効果が良好であるため好ましい化合物である
The neutral or alkaline ammonium salt used in the present invention is not particularly limited, but ammonium carpamate, ammonium carbonate, ammonium hydrogen carbonate, etc. are preferred compounds because they have good etching effects on the rr and i layers.

炭素繊維の処理方法は、従来のts処理と同様電流密度
はa1ム/ m 2以上でパッチ式、連続式いずれでも
よく、通電方法もローラー通電方式、電解液接触方式い
ずれでも葛しつかえない。
The carbon fiber treatment method may be either a patch type or a continuous type at a current density of a1 m/m2 or higher, as in the conventional TS treatment, and either a roller energization type or an electrolyte contact type can be used as the energization method.

処理に用いる水溶液の温度は0℃から100℃、好まし
くは室温付近、処理時間は双方の電解液中でそれぞれ数
秒から数十分、好ましくは5秒から5分程度が望ましい
。洗浄効果を上げるために電解液を流動させたシ、不活
性ガスを用いたバブリングや超音波振動?利用すること
もできる。
The temperature of the aqueous solution used in the treatment is from 0° C. to 100° C., preferably around room temperature, and the treatment time is desirably from several seconds to several tens of minutes, preferably from about 5 seconds to 5 minutes, in both electrolytes. Do you use fluidized electrolyte, bubbling with inert gas, or ultrasonic vibration to improve the cleaning effect? You can also use it.

以上のようにして得られた炭素源fak複合材料に用い
る場曾、使用するマ) IJツクヌ樹脂には特に制限は
なく、熱硬化性樹脂としてエポキシ樹脂、イミド樹脂、
不飽和ポリエステル等、熱可塑性樹脂としてポリアミド
、ポリエステル、ホリヌルホン、ポリエーテルエーテル
ケトン、ポリアセタール樹月旨、ポリプロピレン、AB
8、ポリカーボネート等の樹脂が用いられる。
There are no particular restrictions on the IJ Tsukunu resin used in the carbon source FAK composite material obtained as described above, and the thermosetting resin may include epoxy resin, imide resin,
Unsaturated polyester, etc., thermoplastic resins such as polyamide, polyester, folinurfone, polyether ether ketone, polyacetal Jugeji, polypropylene, AB
8. Resin such as polycarbonate is used.

本発明はポリアクリロニトリル系、ピッチ系、レーヨン
系等の炭素繊維、黒鉛繊維等に適用可能である。
The present invention is applicable to polyacrylonitrile-based, pitch-based, rayon-based carbon fibers, graphite fibers, and the like.

〔実施列] 以下実施列によって本発明を具体的に説明する。[Implementation row] The present invention will be specifically explained below with reference to examples.

測定法は次の通りである。The measurement method is as follows.

(11X線光電子分光法による炭素繊維表面のケイ素濃
度(s12p/C,、原子数比)、窒素濃度(”+s/
 CIg原子牧比1、(11,g a K (0,、/
 Cre原子数比)の測定は、VG社裂BS OA装置
ESOALABMK■型を用いてMgKa li!f 
X線源としたときのCH! +  812p+ LH+
  OIg  のシグナル強度からそれぞれのABF値
(α205゜(1170,0,580,(L630)(
il−用いて512p / OIg + N+6/ O
工1 01m/C18を原子斂比として算出した。
(Silicon concentration (s12p/C, atomic ratio) on the carbon fiber surface by 11X-ray photoelectron spectroscopy, nitrogen concentration ("+s/
CIg atomic ratio 1, (11, g a K (0,, /
The MgKa li! f
CH when used as an X-ray source! + 812p+ LH+
From the signal intensity of OIg, each ABF value (α205°(1170, 0,580, (L630)
il-512p/OIg+N+6/O
101m/C18 was calculated as the atomic contrast ratio.

(21TO上はASTM−D301   ヌトランド強
度及び弾性率はJ工8−R7601に記載の試験法にも
とづいて測定した。
(For 21TO, ASTM-D301 Nutland strength and elastic modulus were measured based on the test method described in J Engineering 8-R7601.

尚T8土用試験片及びヌトランド試験片は′炭素繊維を
充分水洗後エポキシ系マトリックヌ樹脂(パイロフィル
◆640.三菱レイヨン(株)製 商標)を用いて作製
した。
The T8 soil test piece and the Nutland test piece were prepared using epoxy matrix resin (Pyrofil ◆640, trademark manufactured by Mitsubishi Rayon Co., Ltd.) after thoroughly washing the carbon fibers with water.

実施例1 第2段目表面処理による表層のエツチング効果 ストランド弾性率が24t/m”である炭素繊維の12
000フイラメントの束tアンモニウムイオン濃度(L
 1 mol/lの炭酸水素アンモニウム水溶液中で該
炭素繊維を陽極として電流密度α5ム/ m 2  処
理時間30秒となるように連続的に第1段目の処理を行
った後、次いで第2段目の処理として表1に記載した各
電解液2を中で処理速度α2m/分、電流密度1.4A
/rH”で10時間連続処理を行い1を解処理終了後の
電解液の透過率を測定し、結果を表1に示した。
Example 1 Etching effect of surface layer by second stage surface treatment
000 filament bundle t ammonium ion concentration (L
After carrying out the first stage treatment continuously using the carbon fiber as an anode in a 1 mol/l ammonium hydrogen carbonate aqueous solution at a current density of α5 μm/m 2 and a treatment time of 30 seconds, the second stage was then carried out. For eye treatment, each electrolyte 2 listed in Table 1 was used at a treatment speed α of 2 m/min and a current density of 1.4 A.
/rH" for 10 hours, and the transmittance of the electrolytic solution after the completion of the solution treatment was measured. The results are shown in Table 1.

電解液から採取した黒色物質を分析したところ一部黒鉛
構造を有する順化物である事がわかった。
Analysis of the black substance collected from the electrolyte revealed that it was an acclimated substance with a partial graphite structure.

以上の結果からアンモニウムイオン譲度が0.2 mo
l/L以上4. Omol/l以下である中性筐たはア
ルカIJ 注のアンモニウム塩の水溶液は炭素繊維表面
の酸化坏れた部分を除去する効果を有することがわかる
From the above results, the ammonium ion yield is 0.2 mo
1/L or more 4. It can be seen that an aqueous solution of ammonium salt in neutral or alkali IJ having a concentration of 0 mol/l or less has the effect of removing the oxidized portion on the surface of the carbon fiber.

衣 対照液に蒸留水を使用して〔λ]=400nmで測定し
九 実施列2 ケイ素の除去効果及び窒素、酸素の導入効果ストランド
弾性率が24 t/m”であるフィラメント数1200
0本の束を表2に記載の条件で処理速度1m/分で電解
処理した場合及び未処理の場合の炭素繊維表面のケイ素
濃度、窒素濃度、酸素#度を測定して表2のような結果
r得た。
Measured at [λ] = 400 nm using distilled water as a coating control solution.Number of filaments with a strand elastic modulus of 24 t/m" 1200
The silicon concentration, nitrogen concentration, and oxygen concentration on the carbon fiber surface were measured when the carbon fibers were subjected to electrolytic treatment at a processing speed of 1 m/min under the conditions listed in Table 2, and when they were not treated. I got the result.

表2よυ本発明によって炭素繊維表面のケイ素酸化物が
取除かれ、同時に窒素及び酸素が効率よく導入される墨
がわかる。
Table 2 shows that the present invention removes silicon oxide from the surface of carbon fibers and at the same time efficiently introduces nitrogen and oxygen.

実施列3 ヌトランド弾性率が55 t/m”であるフィラメント
数12000本の束を1表3に記載の条件で処理速度1
m/分でIIt解処理した炭素繊維及び未処理の炭素繊
維の諸特性を表3に併記した。
Implementation row 3 A bundle of 12,000 filaments with a Nutland modulus of elasticity of 55 t/m" was processed at a processing speed of 1 under the conditions listed in Table 3.
Table 3 also lists various properties of the carbon fibers treated with IIt solution at m/min and the untreated carbon fibers.

本発明によって得られた炭素繊維はストランド強度、υ
合材のTS土がともに良好であることがわかる。
The carbon fiber obtained by the present invention has a strand strength of υ
It can be seen that the TS soil of the composite material is good in both cases.

〔発、明の効果コ 本発明は従来の這解酸化処理法に比較して、複合材のT
s上を大巾に向上させると共に通常の電解処理では低下
してしまうストランド強度を未処理の炭素繊維のストラ
ンド強度以上に大巾に向上させ、またそれらの強度の変
動中を低減させるこ々を可能とする。
[Effects of the invention] Compared to the conventional decomposition oxidation treatment method, the present invention reduces the T of composite materials.
The aim is to significantly improve the strand strength, which would decrease with normal electrolytic treatment, to a level greater than that of untreated carbon fiber, and to reduce the fluctuations in these strengths. possible.

Claims (1)

【特許請求の範囲】 1、炭素繊維を陽極として、水溶液中のアンモニウムイ
オン濃度が0.01mol/l以上0.2mol/l未
満の中性またはアルカリ性のアンモニウム塩の水溶液中
で第1段目の電解処理を行つた後、さらに該イオン濃度
が0.2mol/l以上4.0mol/l以下の中性ま
たはアルカリ性のアンモニウム塩の水溶液中で第2段目
の電解処理を行うことを特徴とする炭素繊維の表面処理
方法。 2、第1段目の電解処理に供する炭素繊維を、予め水溶
液中のアンモニウムイオン濃度が0.2mol/l以上
4.0mol/l以下の中性またはアルカリ性のアンモ
ニウム水溶液中で電解処理する請求項1記載の方法。 3、第1段目の電解処理を行う水溶液中のアンモニウム
イオン濃度が0.05mol/l以上0.15mol/
l以下、第2段目の電解処理を行う水溶液中の該イオン
濃度が1.0mol/l以上3.0mol/l以下であ
る請求項1記載の方法。 4、アンモニウム塩がカルパミン酸アンモニウム、炭酸
アンモニウム又は炭酸水素アンモニウムである請求項1
記載の方法。 5、第1段目の電解質と第2段目の電解質が同一物質で
ある請求項1記載の方法。 6、処理する炭素繊維のストランド弾性率が33t/m
m^2以上である請求項1記載の方法。
[Claims] 1. A carbon fiber is used as an anode in the first stage in an aqueous solution of a neutral or alkaline ammonium salt in which the ammonium ion concentration in the aqueous solution is 0.01 mol/l or more and less than 0.2 mol/l. After the electrolytic treatment, a second electrolytic treatment is further performed in an aqueous solution of a neutral or alkaline ammonium salt with an ion concentration of 0.2 mol/l or more and 4.0 mol/l or less. Carbon fiber surface treatment method. 2. A claim in which the carbon fibers to be subjected to the first stage electrolytic treatment are electrolytically treated in advance in a neutral or alkaline ammonium aqueous solution in which the ammonium ion concentration in the aqueous solution is 0.2 mol/l or more and 4.0 mol/l or less. The method described in 1. 3. The ammonium ion concentration in the aqueous solution subjected to the first stage electrolytic treatment is 0.05 mol/l or more and 0.15 mol/l.
2. The method according to claim 1, wherein the ion concentration in the aqueous solution subjected to the second-stage electrolytic treatment is from 1.0 mol/l to 3.0 mol/l. 4. Claim 1 wherein the ammonium salt is ammonium carpamate, ammonium carbonate or ammonium hydrogen carbonate.
Method described. 5. The method according to claim 1, wherein the first stage electrolyte and the second stage electrolyte are the same substance. 6. Strand elastic modulus of carbon fiber to be treated is 33t/m
The method according to claim 1, wherein m^2 or more.
JP19482488A 1988-08-04 1988-08-04 Surface treatment of carbon fiber Pending JPH0284525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19482488A JPH0284525A (en) 1988-08-04 1988-08-04 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19482488A JPH0284525A (en) 1988-08-04 1988-08-04 Surface treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JPH0284525A true JPH0284525A (en) 1990-03-26

Family

ID=16330864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19482488A Pending JPH0284525A (en) 1988-08-04 1988-08-04 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPH0284525A (en)

Similar Documents

Publication Publication Date Title
US4690738A (en) Method of electrochemically surface treating carbon fibers, fibers treated by the method, and composite materials including such fibers
JPS6262185B2 (en)
EP0374680B1 (en) Carbon fibers having modified surfaces and process for preparing the same
US4839006A (en) Surface treatment process for carbon fibers
JPS62276075A (en) Carbon fiber and its production
JPH0544154A (en) Surface treatment of carbon fiber
JP3755255B2 (en) Carbon fiber and method for producing the same
JPH1025627A (en) Acrylic carbon fiber
US3657082A (en) Treatment of fibrous materials
JPH0284525A (en) Surface treatment of carbon fiber
KR100572995B1 (en) Manufacturing process of nickel-plated carbon fibers by electroplating method
US3865705A (en) Process for modifying the surface characteristics of carbon substrates and composite articles produced from the treated substrates
KR910003351B1 (en) Method for after-treatment of carbon fiber
JP2770038B2 (en) Surface-modified high-elasticity carbon fiber and its manufacturing method
JPH0192470A (en) Surface treatment of carbon fiber
JPH02169763A (en) Surface-improved carbon fiber and production thereof
JP2002180379A (en) Carbon fiber and method for producing the same
JP3057493B2 (en) Method for producing surface-modified carbon fiber
JP2592294B2 (en) Post-processing method of carbon fiber
JPH0478747B2 (en)
JP2668209B2 (en) Acrylic high-performance carbon fiber manufacturing method
JPH02307967A (en) Production of surface-modified carbon fiber
JPH03287860A (en) Production of carbon fiber
JP2946595B2 (en) Surface modification method for carbon fiber
US5472742A (en) Method for activating carbon fiber surfaces