JPS63180050A - Electric expansion valve controller for air conditioner - Google Patents

Electric expansion valve controller for air conditioner

Info

Publication number
JPS63180050A
JPS63180050A JP1174087A JP1174087A JPS63180050A JP S63180050 A JPS63180050 A JP S63180050A JP 1174087 A JP1174087 A JP 1174087A JP 1174087 A JP1174087 A JP 1174087A JP S63180050 A JPS63180050 A JP S63180050A
Authority
JP
Japan
Prior art keywords
opening
refrigerant
expansion valve
electric expansion
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1174087A
Other languages
Japanese (ja)
Other versions
JPH0733931B2 (en
Inventor
幸雄 重永
隆 松崎
法文 丸山
樋口 晶夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1174087A priority Critical patent/JPH0733931B2/en
Publication of JPS63180050A publication Critical patent/JPS63180050A/en
Publication of JPH0733931B2 publication Critical patent/JPH0733931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷媒循環系統に電動膨張弁を配置した空気調
和機において、該電動膨張弁の開度を制御するようにし
た空気調和機の電動膨張弁制御装置の改良に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an air conditioner in which an electric expansion valve is arranged in a refrigerant circulation system, and the opening degree of the electric expansion valve is controlled. This invention relates to improvements to electric expansion valve control devices.

(従来の技術) 従来より、この種の空気調和機の電動膨張弁制御装置と
して、例えば、特開昭61−96376号公報に開示さ
れるように、室温を検出する室温検出手段と、該室温検
出手段で検出した実際室温と室鴇目標値との偏差を演算
し、該温度偏差に応じて電動膨張弁の目標開度値を演算
する目標開度演算手段とを備え、電動膨張弁の現在開度
値が目標開度値に対して大きい場合には、その開度を所
定の微小開度づつ減少させる一方、逆に現在開度値が目
標開度値に対して小さい場合には、その開度を微小開度
づつ増大させて、電動膨張弁の開度を目標開度値に漸次
収束させることにより、空調能力をほぼ空調負荷に対応
させて、室内の快適空調を行うようにしたものが知られ
ている。尚、上記従来のものでは、蒸発器での冷媒の湿
り状態を抑制すべく、冷媒の過熱度に応じて電動膨張弁
の目標開度値を適宜補正するようにしている。
(Prior Art) Conventionally, as an electric expansion valve control device for this type of air conditioner, as disclosed in Japanese Patent Laid-Open No. 61-96376, for example, a room temperature detection means for detecting room temperature, and a room temperature detection means for detecting the room temperature; Target opening calculation means calculates the deviation between the actual room temperature detected by the detection means and the room temperature target value, and calculates the target opening value of the electric expansion valve according to the temperature deviation, When the opening value is larger than the target opening value, the opening is decreased by a predetermined small opening. On the other hand, when the current opening value is smaller than the target opening value, the opening is decreased by a predetermined small opening. By increasing the opening degree in small increments and gradually converging the opening degree of the electric expansion valve to the target opening value, the air conditioning capacity almost corresponds to the air conditioning load, providing comfortable indoor air conditioning. It has been known. In the above-mentioned conventional system, in order to suppress the wet state of the refrigerant in the evaporator, the target opening value of the electric expansion valve is appropriately corrected according to the degree of superheating of the refrigerant.

(発明が解決しようとする問題点) ところで、上記の如き電動膨張弁の開度制御時において
、開度の増大時には、冷媒の過熱度の低下に伴い冷媒の
湿り状態を招き易い。逆に、開度の減少時には、蒸発器
での蒸発能力の低下に伴い、冷媒の蒸発温度が低下し、
蒸発器の凍結が生じる傾向がある。
(Problems to be Solved by the Invention) By the way, when controlling the opening degree of the electric expansion valve as described above, when the opening degree increases, the degree of superheating of the refrigerant decreases and the refrigerant tends to become wet. Conversely, when the opening degree decreases, the evaporation temperature of the refrigerant decreases due to the decrease in the evaporation capacity of the evaporator.
Evaporator freezing tends to occur.

しかるに、上記従来の如く電動膨張弁の開度を目標開度
値に調整制御する場合、その開度の増減制御の途中で冷
媒の湿り状態や蒸発器の凍結が生じ始めても、そのまま
開度の増大又は減少制御が続行されてその現象が逐次進
行し、遂には圧縮機の湿り圧縮を生じたりして、室内の
快適空調が損なわれる欠点が生じる。
However, when controlling the opening of the electric expansion valve to the target opening as in the conventional method described above, even if the refrigerant becomes wet or the evaporator begins to freeze during the control to increase or decrease the opening, the opening will continue to be adjusted. As the increase or decrease control is continued, the phenomenon progresses one after another, eventually resulting in wet compression of the compressor, resulting in the disadvantage that comfortable indoor air conditioning is impaired.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、電動膨張弁の開度制御を、冷媒の湿り状態や蒸麺
器の凍結の様子を見ながら行うようにすることにより、
この冷媒の湿り状態や蒸発器の凍結が生じ始める時には
、以後の開度の増大又は減少制御を停止して、冷媒の湿
り状態や蒸発器の凍結を有効に防止し、よって室内空調
を良好に確保することにおる。
The present invention has been made in view of the above, and its purpose is to control the opening of the electric expansion valve while monitoring the wetness of the refrigerant and the freezing of the steamer.
When the refrigerant becomes wet or the evaporator begins to freeze, the subsequent increase or decrease control of the opening degree is stopped to effectively prevent the refrigerant from becoming wet or the evaporator freeze, thereby improving indoor air conditioning. We are trying to secure it.

(問題点を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、第1
図に示すように、冷媒循環系統(14)に電動膨張弁(
11)を配置した空気調和機を前提とする。
(Means for solving the problem) In order to achieve the above object, the solving means of the present invention is as follows:
As shown in the figure, an electric expansion valve (
11) is installed.

そして、室温を検出する室温検出手段(TH1)と、該
室温検出手段(TH1)の出力を受け、室温と室温目標
値との偏差に応じて上記電動膨張弁(11)の目標開度
値を演算する目標開度演算手段(50)と、上記電動膨
張弁(11)の開度を検出する開度検出手段(51)と
を設ける。また、低圧液冷媒の温度を検出する冷媒温度
検出手段(TH2)と、冷媒の過熱度を検出する過熱度
検出手段(52)と、上記目標開度演算手段(50)及
び開度検出手段(51)並びに該両検出手段(7H2)
、 (52)の出力を受け、電動膨張弁(11)の現在
開度値が目標開度値を越えるときには、該電動膨張弁(
11)を低圧液冷媒の温度に応じて閉じ、現在開度値が
目標開度値未満のときには、電動膨張弁(11)を冷媒
の過熱度に応じて開くよう制御する制御手段(53)と
を設ける構成としたものである。
Then, a room temperature detection means (TH1) detects the room temperature, and upon receiving the output of the room temperature detection means (TH1), the target opening value of the electric expansion valve (11) is determined according to the deviation between the room temperature and the room temperature target value. A target opening calculating means (50) for calculating the opening and an opening detecting means (51) for detecting the opening of the electric expansion valve (11) are provided. Further, the refrigerant temperature detection means (TH2) for detecting the temperature of the low pressure liquid refrigerant, the superheat degree detection means (52) for detecting the degree of superheat of the refrigerant, the target opening calculation means (50) and the opening detection means ( 51) and both detection means (7H2)
, (52), and when the current opening value of the electric expansion valve (11) exceeds the target opening value, the electric expansion valve (
11) according to the temperature of the low-pressure liquid refrigerant, and when the current opening value is less than the target opening value, the electric expansion valve (11) is controlled to open according to the degree of superheat of the refrigerant; The configuration is such that the

(作用) 以上の構成により、本発明では、空調運転時、電動膨張
弁(11)の目標開度値が目標開度演算手段(50)で
実際室温と室温目標値との偏差に応じて演算され、この
目標開度値になるよう電動膨張弁(11)の開度が制御
手段(53)により増大又は減少制御される。
(Function) With the above configuration, in the present invention, during air conditioning operation, the target opening value of the electric expansion valve (11) is calculated by the target opening calculation means (50) according to the deviation between the actual room temperature and the target room temperature value. The opening degree of the electric expansion valve (11) is controlled to increase or decrease by the control means (53) so as to reach this target opening value.

その際、電動膨張弁(11)の実際開度が目標開度値未
満の場合には、開度の増大制御が行われ、この開度増大
時には冷媒の過熱度が小さくなって冷媒の湿り状態を招
き易くなるが、上記開度の増大制御が冷媒の過熱度に応
じて行われるので、冷媒の湿り状態が生じ始める直前の
過熱度の時点で、予め開度の増大制御を停止することが
できて、冷媒の湿り状態の発生が有効に防止される。
At this time, if the actual opening of the electric expansion valve (11) is less than the target opening, control is performed to increase the opening, and when this opening increases, the degree of superheating of the refrigerant decreases, resulting in a wet state of the refrigerant. However, since the above-mentioned opening increase control is performed according to the degree of superheat of the refrigerant, it is possible to stop the opening increase control in advance at the point of superheat just before the refrigerant starts to become wet. This effectively prevents the refrigerant from becoming wet.

また、電動膨張弁(11)の実際開度が目標開度値を越
える場合には、開度の減少制御が行われ、この開度減少
時には蒸発器(10)での蒸発能力の低下に伴い冷媒の
蒸発温度が低下するものの、上記開度の減少制御が低圧
液冷媒の温度(例えば冷媒の蒸発温度)に応じて行われ
るので、蒸発器(10)の凍結が生じる直前の蒸発温度
の時点で、開度の減少制御を停止することができて、蒸
発器の凍結が有効に防止される。
Furthermore, if the actual opening of the electric expansion valve (11) exceeds the target opening, control is performed to reduce the opening, and when this opening is reduced, the evaporation capacity of the evaporator (10) is reduced. Although the evaporation temperature of the refrigerant decreases, since the opening reduction control described above is performed according to the temperature of the low-pressure liquid refrigerant (for example, the evaporation temperature of the refrigerant), the evaporation temperature immediately before freezing of the evaporator (10) occurs. Therefore, the opening reduction control can be stopped, and freezing of the evaporator can be effectively prevented.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明をマルチ型式の空気調和機に適用した実
施例を示し、(A)は室外ユニット、(B)〜(F)は
同一内部構成の5台の室内ユニットであって、上記室外
ユニット(A)の内部には、互いに並列に接続された第
1圧縮機(1)及び第2圧縮機(2)と、四路切換弁(
3)と、市外送風ファン(4a)を有する室外熱交換器
(4)と、膨張弁(5)とが備えられ、該各機器(1)
〜(5)は各々冷媒配管(6)・・・で冷媒の流通可能
に接続されている。また、上記各室内ユニット(B)〜
(F)は、各々、室内送風ファン(10a)を有する室
内熱交換器(10)と、空調能力調整用の室内電動膨張
弁(11)とを備え、該各機器(10)、 (11)は
冷媒配管(12)・・・で冷媒の流通可能に接続されて
いる。
FIG. 2 shows an embodiment in which the present invention is applied to a multi-type air conditioner, in which (A) is an outdoor unit, (B) to (F) are five indoor units with the same internal configuration, and the above Inside the outdoor unit (A), there are a first compressor (1) and a second compressor (2) connected in parallel to each other, and a four-way switching valve (
3), an outdoor heat exchanger (4) having an outdoor ventilation fan (4a), and an expansion valve (5), and each of the devices (1)
~(5) are connected to each other through refrigerant pipes (6) so that refrigerant can flow therethrough. In addition, each of the above indoor units (B) ~
(F) each includes an indoor heat exchanger (10) having an indoor ventilation fan (10a) and an indoor electric expansion valve (11) for adjusting air conditioning capacity, and each of the devices (10), (11) are connected by refrigerant piping (12) so that refrigerant can flow therethrough.

そして、上記5台の室内ユニット(B)〜(F)は、各
々冷媒配管(13)・・・で互いに並列に接続されて上
記室外ユニット(A)に冷媒の循環可能に接続されて冷
媒循環系統(14)が形成されていて、冷房運転時には
、四路切換弁(3)を図中破線の如く切換えて冷媒を図
中破線矢印の如く循環させることにより、各室内熱交換
器(10)・・・で室内から吸熱した熱量を室外熱交換
器(4)で外気に放熱することを繰返して各室内を冷房
する一方、暖房運転時には、四路切換弁(3)を図中実
線の如く切換えて冷媒を図中実線矢印の如く循環させる
ことにより、熱量の授受を上記とは逆にして、室内を暖
房するようにしている。
The five indoor units (B) to (F) are connected in parallel to each other through refrigerant piping (13), and connected to the outdoor unit (A) so that the refrigerant can be circulated. A system (14) is formed, and during cooling operation, the four-way switching valve (3) is switched as shown by the broken line in the figure to circulate the refrigerant as shown by the broken line arrow in the figure, thereby connecting each indoor heat exchanger (10). The heat absorbed from the room is repeatedly radiated to the outside air by the outdoor heat exchanger (4) to cool each room, while during heating operation, the four-way selector valve (3) is turned on as shown by the solid line in the figure. By switching the refrigerant and circulating the refrigerant as shown by the solid arrow in the figure, the amount of heat exchanged is reversed to heat the room.

また、上記第1圧縮機(1)にはインバータ(15)が
接続されていて、圧縮機(1)の運転周波数の高低調整
によりその容量が複数段階に増減調整されると共に、第
2圧縮機(2)はアンロード機構(2a)を有し、該ア
ンロード機構(2a)は、そのパイロット圧導入通路(
16)のパイロット電磁弁(17)の開時に高圧が作用
して第2圧縮機(2)の容量をフルロードにする一方、
パイロット電磁弁(17)の開時には低圧が作用して第
2圧縮は(2)の容量を50%にアンロードするもので
ある。
Further, an inverter (15) is connected to the first compressor (1), and its capacity is adjusted to increase or decrease in multiple stages by adjusting the operating frequency of the compressor (1). (2) has an unloading mechanism (2a), and the unloading mechanism (2a) has a pilot pressure introduction passage (
16) When the pilot solenoid valve (17) is opened, high pressure is applied to fully load the capacity of the second compressor (2), while
When the pilot solenoid valve (17) is opened, low pressure is applied, and the second compression unloads the capacity of (2) to 50%.

また、第2図において、(20)は四路切換弁(3)前
後の冷媒配管(6)、(6)(吐出管と吸入管)とを接
続する均圧ホットガスバイパス回路であって、該バイパ
ス回路(20)には、冷房運転状態での低負荷時及び室
外熱交換器(4)の除霜運転時等に開作動するホットガ
ス電磁弁(21)が介設されている。
In addition, in FIG. 2, (20) is a pressure equalizing hot gas bypass circuit that connects the refrigerant pipes (6), (6) (discharge pipe and suction pipe) before and after the four-way switching valve (3), The bypass circuit (20) is provided with a hot gas solenoid valve (21) that is opened during low load during cooling operation and during defrosting operation of the outdoor heat exchanger (4).

ざらに、(22)は暖房運転時に吐出管となる冷媒配管
(6)に接続された暖房過負荷時バイパス回路であって
、該バイパス回路(22)には、補助コンデンサ(23
)及び、冷媒の高圧時に開く高圧制御弁(24)が介設
されており、暖房過負荷時に圧縮機(1)。
Roughly speaking, (22) is a heating overload bypass circuit connected to the refrigerant pipe (6) which becomes a discharge pipe during heating operation, and the bypass circuit (22) is equipped with an auxiliary capacitor (23).
) and a high-pressure control valve (24) that opens when the refrigerant pressure is high.

(2)からの冷媒を該バイパス回路(22)を介して各
室内熱交換器(10)・・・をバイパスして、各室内熱
交換器(10)・・・下流側の冷媒配管(6)にバイパ
スするようにしている。
(2) through the bypass circuit (22) and bypasses each indoor heat exchanger (10)...downstream refrigerant piping (6). ).

加えて、(25)は上記暖房過負荷時バイパス回路(2
2)の補助コンデンサ(23)下流側を、四路切換弁(
3)下流側の冷媒配管(6)(吸入管)に接続するリキ
ッドインジェクションバイパス回路であって、該リキッ
ドインジェクションバイパス回路(25)には圧縮機(
1) 、 (2)の作動に連動して開閉するインジェク
ション用N磁弁(26)と、膨張弁(27)とが介設さ
れている。
In addition, (25) is the heating overload bypass circuit (2
The downstream side of the auxiliary condenser (23) of 2) is connected to the four-way selector valve (
3) A liquid injection bypass circuit connected to the refrigerant pipe (6) (suction pipe) on the downstream side, and the liquid injection bypass circuit (25) is equipped with a compressor (
An injection N solenoid valve (26) and an expansion valve (27) that open and close in conjunction with the operations of 1) and (2) are interposed.

また、(30)はレシーバ、(31)はアキュムレータ
、(32)は過冷却コイル、(33)は油分離器であっ
て、核油分離器(33)で分離された潤滑油は油通路(
34)を介して両正縮機(1) 、 (2)に戻される
Further, (30) is a receiver, (31) is an accumulator, (32) is a supercooling coil, and (33) is an oil separator, and the lubricating oil separated by the core oil separator (33) is passed through the oil passage (
34) and then returned to the double compressors (1) and (2).

さらに、各室内ユニット(8)〜(F)において、(■
旧)は対応する室内の空気の温度(吸込空気温度)を検
出する室温検出手段としての室温センサ、(丁H2)及
び(TH3)は各々冷房運転時に蒸発器として作用する
室内熱交換器(10)・・・前後の冷媒温度を検出する
温度センサでおって、室内熱交換器(10)前位の温度
センサ(TH2)により、低圧液冷媒の温度を検出する
冷媒温度検出手段を構成している。
Furthermore, in each indoor unit (8) to (F), (■
(old) is a room temperature sensor as a room temperature detection means that detects the temperature of the corresponding indoor air (intake air temperature), (TH2) and (TH3) are indoor heat exchangers (10 )...A temperature sensor that detects the temperature of the refrigerant before and after the indoor heat exchanger (10). There is.

また、室外ユニット(A)において、(TH4)は第1
及び第2圧縮機(1) 、 (2)の冷媒吐出温度を検
出する冷媒吐出温度センサ、(TH5)は暖房運転時に
室外熱交換器(4)での冷媒の蒸発温度を検出する蒸発
温度センサ、(T)1B)は第1及び第2圧縮機(1)
、(2)への吸入ガス温度を検出する吸入ガス温度セン
サである。また、(Pl)は暖房運転時には吐出ガス圧
力を、冷房運転時には吸入ガス圧力を各々検出する圧力
センサ、(HPS)は圧縮機保護用の高圧圧力開閉器で
ある。
In addition, in the outdoor unit (A), (TH4) is the first
and a refrigerant discharge temperature sensor that detects the refrigerant discharge temperature of the second compressors (1) and (2), and (TH5) an evaporation temperature sensor that detects the evaporation temperature of the refrigerant in the outdoor heat exchanger (4) during heating operation. , (T)1B) are the first and second compressors (1)
, (2) is an intake gas temperature sensor that detects the temperature of intake gas to the intake gas. Further, (Pl) is a pressure sensor that detects the discharge gas pressure during heating operation and the suction gas pressure during cooling operation, and (HPS) is a high pressure switch for protecting the compressor.

次に、上記各室内ユニット(B)〜(F)に各々内蔵す
る室内制御装置(40)の内部構成を第3図に示す。同
図において、室内制御装置(40)には、在室者により
操作され、空温目標値Ts等を設定するためのリモート
コントロール装置(41)と、上記室外ユニット(A)
に内蔵される室外制御装置(42)とが各々信号の授受
可能に接続されていると共に、上記室内電動膨張弁(1
1)と、室内送風ファン(10a)の送風ファンモータ
(H「)とが接続され、該送風ファンモータ(H「)の
給電回路(46)には、その回転数を4段階に調整する
3つの常開接点(RYl)〜(RY3)が介設されてい
る。また、該室内制御装置(40)には、室内CP t
J (45)が備えられ、該室内CPU(45)には、
上記室温センサ(THI)及び過熱度把握用の2個の温
度センサ(TH2) 、 (TH3)の各検出信号が入
力されていて、該室内CP U (45)により、上記
各検出信号に基いて冷媒の過熱度や空調負荷を演算して
、室内電動膨張弁(11)の開度と、上記3つの常開接
点(RYl)〜(RY3)を有する制御リレー(図示せ
ず)とを各々作動制御するようになされている。
Next, FIG. 3 shows the internal configuration of the indoor control device (40) built in each of the indoor units (B) to (F). In the figure, the indoor control device (40) includes a remote control device (41) operated by a person in the room to set the air temperature target value Ts, etc., and the outdoor unit (A).
The indoor electric expansion valve (1) is connected to the indoor electric expansion valve (42) so as to be able to send and receive signals.
1) and the blower fan motor (H'') of the indoor blower fan (10a) are connected, and the power supply circuit (46) of the blower fan motor (H'') has a 3. Two normally open contacts (RYl) to (RY3) are provided.The indoor control device (40) also has indoor CP t
J (45), and the indoor CPU (45) includes:
Detection signals from the room temperature sensor (THI) and the two temperature sensors (TH2) and (TH3) for determining the degree of superheating are input, and the indoor CPU (45) performs a process based on the detection signals. The degree of superheat of the refrigerant and the air conditioning load are calculated to operate the opening degree of the indoor electric expansion valve (11) and the control relay (not shown) having the above three normally open contacts (RYl) to (RY3). It is designed to be controlled.

次に、上記室内CP U (45)による室内電動膨張
弁(11)の開度制御を第4図及び第5図に基いて冷房
運転時を例に挙げて説明する。先ず、第4図の状態遷移
図から説明するに、図中■の冷房運転時の通常時には、
この運転中の室内ユニット(B)〜(F)に属する室内
電動膨張弁(11)の開度EVを室温(吸込空気温度T
a)に応じて可変制御する。そして、この通常時に室温
が室温目標値以下になった退学調時のサーモフラグTO
F=Oの場合には、図中■の停止時に移行して、開度E
Vを零値に制御する。また、この停止時に室温が上昇し
て上記サーモフラグTOF=1になった場合には、図中
■の過渡時に移行して開度EVを設定中間開度値Asに
制御した後、上記図中■の通常時に移行する。
Next, the opening degree control of the indoor electric expansion valve (11) by the indoor CPU (45) will be explained based on FIGS. 4 and 5, taking the case of cooling operation as an example. First, to explain from the state transition diagram in Figure 4, during normal cooling operation as shown by ■ in the diagram,
The opening degree EV of the indoor electric expansion valves (11) belonging to the indoor units (B) to (F) during operation is set to room temperature (intake air temperature T).
Variable control is performed according to a). Then, during this normal time, the thermo flag TO is set when the room temperature falls below the room temperature target value.
In the case of F=O, the transition occurs at the stop shown in ■ in the figure, and the opening degree E
Control V to zero value. In addition, if the room temperature rises during this stop and the thermo flag TOF becomes 1, the transition time shown in the figure is shifted to the opening EV, which is controlled to the set intermediate opening value As. ■Transfer to normal time.

また、上記図中■の通常時において、圧縮機(1)、 
(2)への潤滑油の回収を要求する油回収運転フラグD
AF=1になった場合には、図中■の運転中油回収時に
移行して、開度EVを最大開度値EVMに制御し、逆に
この運転中油回収時に油回収運転フラグDAF=Oにな
った場合には、図中■の過渡時に移行して開度EVを設
定中間開度値Asに制御した後、図中■の通常時に移行
する。
In addition, in the normal state shown in ■ in the figure above, the compressor (1),
(2) Oil recovery operation flag D requesting recovery of lubricating oil
When AF = 1, the transition is made to the oil recovery during operation shown in ■ in the figure, and the opening EV is controlled to the maximum opening value EVM, and conversely, the oil recovery operation flag DAF = O is set at the time of oil recovery during operation. In this case, the process shifts to the transient period (■) in the figure and controls the opening EV to the set intermediate opening value As, and then shifts to the normal time (■) in the figure.

一方、上記図中■の停止時において、他の室内ユニット
の作動に起因して圧縮IN(1)、 (2)の潤滑油不
足が生じた油回収運転フラグDAF=1になった場合に
は、図中■の停止中油回収時に移行して、開度EVを最
大開度@EVMよりも所定開度小さい開度値EVにに制
御し、その後、油回収が終了して油回収運転フラグDA
F=Oになった場合には、直ちに図中■の停止時に移行
する。また、上記図中■の運転中油回収時に運転フラグ
NDF=Qになった停止時には、上記図中■の停止中油
回収時に移行して、開度EVを最大開度値EVMよりも
所定開度小ざい開度値に制御し、その後、運転フラグN
O「=1になった運転開始時には、再び図中■の運転中
油回収時に移行して、開度EVを最大開度値EVMに制
御する。
On the other hand, when the oil recovery operation flag DAF becomes 1 due to the lack of lubricating oil in compression IN (1) and (2) due to the operation of other indoor units during the stop indicated by ■ in the above figure, , the transition is made to oil recovery during stoppage (■ in the figure), the opening EV is controlled to an opening value EV that is a predetermined opening smaller than the maximum opening @EVM, and then oil recovery is completed and the oil recovery operation flag DA is set.
When F=O, the process immediately shifts to the stop time indicated by ■ in the figure. In addition, when the operation flag NDF=Q is reached during oil recovery during operation (■ in the figure above), the operation transitions to the oil recovery during stop operation (■ in the figure above), and the opening EV is set to a predetermined opening smaller than the maximum opening value EVM. Control to the approximate opening value, and then set the operation flag N.
At the start of operation when O' = 1, the flow shifts again to the period of oil recovery during operation (■ in the figure), and the opening degree EV is controlled to the maximum opening value EVM.

次いで、上記■の通常時の開度制御を第5図の制御フロ
ーに基いて説明する。
Next, the normal opening degree control in (2) above will be explained based on the control flow shown in FIG.

スタートして、ステップS1で室温センサ(TH1)か
らの室温(吸込空気温度Ta)信号を入力し、この吸込
空気温度値1’−aに定数に1を乗算して、該吸込空気
温度値Taにおいて冷媒の湿り状態を防止し得る室内電
動膨張弁(11)の最大開度値AmaXを演算する。ま
た、ステップS2でこの通常運転への過渡時での膨張弁
開度(初期値)を、上記最大開度値A maxに基いて
下記式 %式% (K2;定数で例えば0.7) で中間設定開度値ASに算出すると共に、通常運転時で
の最小開度値Am1nを下記式 %式% (K3;定数で例えば0.4) で算出する。
After starting, the room temperature (suction air temperature Ta) signal from the room temperature sensor (TH1) is input in step S1, and this suction air temperature value 1'-a is multiplied by a constant 1 to obtain the suction air temperature value Ta. In this step, the maximum opening value AmaX of the indoor electric expansion valve (11) that can prevent the refrigerant from becoming wet is calculated. In addition, in step S2, the expansion valve opening (initial value) at the time of transition to normal operation is determined by the following formula % formula % (K2; constant, for example 0.7) based on the maximum opening value A max. In addition to calculating the intermediate setting opening value AS, the minimum opening value Am1n during normal operation is calculated using the following formula % formula % (K3; constant, for example, 0.4).

しかる俊、ステップS3で除湿運転時か否かを判別し、
除湿運転時でないNOの場合には、ステップS4で室内
電動膨張弁(11)の目標開度値ARを、吸込空気温度
値Taと室温目標値Tsとの温度偏差(Ta −Ts 
)及び最大開度値A maxに基いて該温度偏差(Ta
 −Ts )に応じた値になるよう下記式 %式% に4;定数 で算出する一方、除湿運転時のYESの場合には、ステ
ップS5で目標開度値ARを最大開度値Ama×に固定
設定する。
Shikarutoshi, in step S3, determines whether or not dehumidifying operation is in progress,
In the case of NO when the dehumidification operation is not in progress, the target opening value AR of the indoor electric expansion valve (11) is set to the temperature deviation (Ta - Ts) between the suction air temperature value Ta and the room temperature target value Ts.
) and the temperature deviation (Ta
- Ts ) is calculated using the following formula % formula % 4; constant, while if YES during dehumidification operation, the target opening value AR is set to the maximum opening value Amax in step S5. Set as fixed.

その後、ステップS6で室内電動膨張弁(11)の現在
開度値EVを把握して、目標開度値ARと現在開度値E
Vの偏差ΔA(ΔA=AR−EV)を算出すると共に、
冷媒の過熱度把握用の2個の温度センサ(TH2)、 
(TH3)の検出信号を入力して、室内熱交換器(10
)前後の冷媒温度T2 、T3の温度差(T3  T2
)により冷媒の過熱度5H(SH=T3−T2 )を算
出する。そして、ステップS7で現在開度値EVが全開
(EV=O)か否かを判別し、EV=0のYESの場合
には、運転の停止時から通常時(冷房運転時)への過渡
時と判断して、ステップS8で開度EVを中間設定開度
値Asの初期値に制御する。また、ステップS9で油回
収運転フラグDAFが「1」値からrOJ値に変化した
時、つまり油回収運転から通常時への過渡時か否かを判
別し、この過渡時のYESの場合には、上記ステップS
8に戻って開度[Vを中間設定開度値ASの初期値に制
御する。
After that, in step S6, the current opening value EV of the indoor electric expansion valve (11) is grasped, and the target opening value AR and the current opening value E are determined.
While calculating the deviation ΔA of V (ΔA=AR-EV),
Two temperature sensors (TH2) for determining the degree of superheating of the refrigerant,
(TH3) detection signal is input to the indoor heat exchanger (10
) Temperature difference between refrigerant temperature T2 and T3 before and after (T3 T2
) to calculate the degree of superheating 5H (SH=T3-T2) of the refrigerant. Then, in step S7, it is determined whether the current opening value EV is fully open (EV=O), and if EV=0 (YES), the transition from the stop of operation to the normal operation (cooling operation) is performed. Then, in step S8, the opening EV is controlled to the initial value of the intermediate setting opening value As. In addition, in step S9, when the oil recovery operation flag DAF changes from the "1" value to the rOJ value, it is determined whether or not it is a time of transition from oil recovery operation to normal operation, and if YES at this time of transition, , above step S
8, the opening [V is controlled to the initial value of the intermediate setting opening value AS.

一方、通常時(冷房運転中)の場合には、開度EVを可
変制御して該開度EVを目標開度値ARに収束させるよ
う、ステップShoで冷媒の過熱度SHを、冷媒の湿り
状態が生じ始める直前の所定過熱度値SHOと大小比較
すると共に、ステップ3nで低圧液冷媒の温度(室内熱
交換器入口温度T2でほぼ蒸発温度)を、室内熱交換器
(10)の凍結が生じ始める直前の所定温度値T2 o
と大小比較し、311>SHoの場合及びT2 >T2
 oの場合には、各々冷媒の湿り状態及び室内熱交換器
(10)に凍結の無い良好な状態と判断して、ステップ
312及び313で上記目標開度値ARとの開度偏差Δ
Aを+側の微小値(例えば16パルス分に相当する開度
値)と−側の微小値(例えば−16パルス分に相当する
開度値)と大小比較し、ΔA〉16の開度量の状態では
、開度EVを増大すべく、ステップ314で1回分の制
御幅ΔEVを、現在の冷媒の過熱度SHと上記所定過熱
度値SHoとの偏差(St−1−3HO)に応じて下記
式 %式%) : に基いて算出設定し、ΔA<−16の開度大の状態では
、開度[Vを減少すべく、ステップS’sで1回分の制
御幅ΔEVを、上記冷媒の蒸発温度T2と所定冷媒温度
値T20との偏差(T2  T2O)に応じて下記式 %式%) に基いて算出設定し、−16くΔAく16のほぼ目標開
度値ARに収束している場合には、ステップS+sで1
回分の制御幅ΔEVを「O」値に設定する。
On the other hand, in the case of normal operation (during cooling operation), the superheat degree SH of the refrigerant is adjusted in step Sho so that the opening degree EV is variably controlled so that the opening degree EV converges to the target opening value AR. The temperature of the low-pressure liquid refrigerant (approximately the evaporation temperature at the indoor heat exchanger inlet temperature T2) is compared in step 3n with the predetermined superheat degree value SHO immediately before the condition starts to occur, and the Predetermined temperature value T2 o immediately before it starts to occur
Compare the size with 311>SHo and T2>T2
In the case of o, it is determined that the refrigerant is wet and the indoor heat exchanger (10) is in a good state without freezing, and the opening deviation Δ from the target opening value AR is determined in steps 312 and 313.
Compare A with a small value on the + side (for example, an opening value corresponding to 16 pulses) and a small value on the - side (for example, an opening value corresponding to -16 pulses), and calculate the opening amount of ΔA>16. In this state, in order to increase the opening degree EV, the control width ΔEV for one time is set as follows in step 314 according to the deviation (St-1-3HO) between the current degree of superheating SH of the refrigerant and the predetermined degree of superheating value SHo. Calculated and set based on the formula % formula %): In the state of large opening of ΔA<-16, in order to decrease the opening [V, one control width ΔEV is set in step S's by the refrigerant. It is calculated and set based on the following formula (% formula %) according to the deviation (T2 T2O) between the evaporation temperature T2 and the predetermined refrigerant temperature value T20, and it has almost converged to the target opening value AR of -16 × ΔA × 16. In this case, 1 in step S+s
The batch control width ΔEV is set to the "O" value.

一方、上記ステップShoでSH≦SHOのYESの場
合、つまり外気温度の変化等に伴い冷媒の湿り状態が生
じ、恐れのある場合には、開度偏差△Aの大小に拘らず
上記ステップ314に進んで1回分の制御幅ΔEVを過
熱度SHに応じた負値に設定し、開度EVを強制的に小
さくして過熱度311の増大制御を行うこととする。
On the other hand, if SH≦SHO is YES in the above step Sho, that is, if there is a possibility that the refrigerant becomes wet due to changes in the outside air temperature, etc., the step 314 is performed regardless of the magnitude of the opening deviation ΔA. Next, the control width ΔEV for one time is set to a negative value according to the degree of superheat SH, and the opening degree EV is forcibly reduced to perform control to increase the degree of superheat 311.

また、上記ステップSoでT2≦T20のYESの場合
、つまり室内熱交換器(10)の凍結が生じる恐れのあ
る場合には、開度偏差△Aの大小に拘らず上記ステップ
315に進んで、1回分の制御幅ΔEVを蒸発温度T2
に応じた正値に設定して、開度EVを強制的に大きくし
、蒸発温度T2の上昇制御を行うこととする。
In addition, if T2≦T20 is YES in step So, that is, if there is a risk that the indoor heat exchanger (10) may freeze, the process proceeds to step 315 regardless of the magnitude of the opening deviation ΔA. The control width ΔEV for one time is the evaporation temperature T2
The opening degree EV is set to a positive value corresponding to , the opening degree EV is forcibly increased, and the evaporation temperature T2 is controlled to increase.

そして、その後、各々ステップ317で制御後の仮定開
度EVを式 EV= EV+△EVで算出する。
Then, in step 317, the assumed opening degree EV after control is calculated using the formula EV=EV+ΔEV.

その後、ステップS’sで仮定開度EVの値を最大開度
値EVMと大小比較し、EV>EVMのYESの場合に
は、ステップS19で仮定開度EVを最大開度値EVM
に修正する。また、ステップ320で仮定開度EVが最
小開度値Am1n未満の場合には、ステップS21で開
度EVを最小開度値Am1nに修正する。そして、ステ
ップ322でタイマをカウントし、ステップS23でこ
のタイマ値TH3がサンプリング周期(例えば20秒)
を経過したYESの場合には、上記ステップS1戻る。
Thereafter, in step S's, the value of the assumed opening degree EV is compared with the maximum opening value EVM, and if EV>EVM (YES), the assumed opening degree EV is compared with the maximum opening value EVM in step S19.
Correct it to Further, if the assumed opening degree EV is less than the minimum opening value Am1n in step 320, the opening degree EV is corrected to the minimum opening value Am1n in step S21. Then, in step 322, the timer is counted, and in step S23, the timer value TH3 is set to the sampling period (for example, 20 seconds).
If the answer is YES, the process returns to step S1.

また、TH3<20秒のNOの場合には、ステップ32
4及び325で各々油回収運転フラグDAF及びサーモ
フラグTOFの値を判別し、DAF=1の場合には、上
記第4図の■の運転中油回収時の開度制御を行うべく、
運転中油回収時フロー(図示せず)に進む。また、TO
F=Qの場合には、第4図の■の停止時での開度制御を
行うべく、停止時フロー(図示せず)に進む。
In addition, if TH3<20 seconds is NO, step 32
4 and 325, respectively, determine the values of the oil recovery operation flag DAF and the thermo flag TOF, and if DAF=1, in order to perform the opening degree control during oil recovery during the operation of (■) in Fig. 4 above,
Proceed to the oil recovery flow during operation (not shown). Also, T.O.
In the case of F=Q, the flow proceeds to the stop flow (not shown) in order to perform the opening degree control at the time of stop shown in (2) in FIG.

よって、上記第5図の制御フローのステップS4により
、室温センサ(TH1)の出力を受け、室温(吸込空気
温度Ta)と室温目標値Tsとの偏差(Ta −Ts 
)に応じて室内電動膨張弁(11)の目標開度値ARを
逐次演算するようにした目標開度演算手段(50)を構
成していると共に、ステップS6により、室内電動膨張
弁(11)の開度を検出する開度検出手段(51)と、
2個の温度センサ(TH2)。
Therefore, in step S4 of the control flow shown in FIG. 5, the output of the room temperature sensor (TH1) is received and the deviation (Ta - Ts
), the target opening calculation means (50) is configured to sequentially calculate the target opening value AR of the indoor electric expansion valve (11), and in step S6, the indoor electric expansion valve (11) opening detection means (51) for detecting the opening of the
2 temperature sensors (TH2).

(TH3)の出力信号に基いて冷媒の過熱度SHを検出
する過熱度検出手段(52)を構成している。また、ス
テップ312〜323により、上記目標開度演算手段(
50)及び開度検出手段(51)並びに温度センサ(T
H2)(冷媒温度検出手段)及U過熟度検出手段(52
)の出力を受け、室内電動膨張弁(11)の現在開度値
EVが目標開度値ARを越えるとき(ΔA<−16のと
ぎ)には、1回分の制御幅Δ[Vを蒸発温度T2に応じ
て負値に設定して、室内電動膨張弁(11)を低圧液冷
媒の温度(蒸発温度T2 )に応じて閉じ、現在開度値
EVが目標開度値AR未満のとき(ΔA〉16のとき)
には、1回分の制御幅ΔEVを冷媒の過熱度SHに応じ
て正値に設定して、室内電動膨張弁(11)を冷媒の過
熱度SHに応じて開くよう制御するようにした制御手段
(53)を構成している。
It constitutes superheat degree detection means (52) that detects the superheat degree SH of the refrigerant based on the output signal of (TH3). Further, in steps 312 to 323, the target opening calculation means (
50), opening detection means (51), and temperature sensor (T
H2) (refrigerant temperature detection means) and U supermaturity detection means (52
), when the current opening value EV of the indoor electric expansion valve (11) exceeds the target opening value AR (ΔA<-16), one control width Δ[V is converted to the evaporation temperature T2 is set to a negative value to close the indoor electric expansion valve (11) according to the temperature of the low-pressure liquid refrigerant (evaporation temperature T2), and when the current opening value EV is less than the target opening value AR (ΔA 〉16 years old)
The control means is configured to control the indoor electric expansion valve (11) to open according to the degree of superheating SH of the refrigerant by setting the control width ΔEV for one time to a positive value according to the degree of superheating SH of the refrigerant. (53).

したがって、上記実施例においては、各室内ユニット(
B)〜(F)の冷房運転時、各室温(吸込空気温度Ta
)が各々室温センサ(TH1)・・・で検出されると、
該各室ITa・・・とこれに対応する室温目標値Ts・
・・との偏差(Ta ”Ts )に応じて各室内電動膨
張弁(11)・・・の目標開度値AR・・・が目標開度
演算手段(50)で各々演算され、この各目標開度値A
R・・・になるよう各室内電動膨張弁(11)・・・の
開度EVが制御手段(53)で増減制御される。
Therefore, in the above embodiment, each indoor unit (
During cooling operation of B) to (F), each room temperature (suction air temperature Ta
) are detected by the room temperature sensor (TH1)...,
Each room ITa... and the corresponding room temperature target value Ts.
The target opening degree calculation means (50) calculates the target opening value AR... of each indoor electric expansion valve (11) according to the deviation (Ta"Ts) from... Opening value A
The opening degree EV of each indoor electric expansion valve (11) is controlled to increase or decrease by the control means (53) so that R...

その際、各室内電動膨張弁(11)・・・の実際開度E
Vと目標開度値ARとの偏差ΔA(AR−EV)が負値
の時、つまり実際開度EVが目標開度値ARを越える場
合には、開度EVの減少制御が行われる。そして、この
開度EVの減少制御時には、各室内熱交換器(10)・
・・での蒸発能力の低下に伴い冷媒の蒸発温度が低下し
て、該各室内熱交換器(10)・・・の凍結を生じる傾
向となるが、この場合には、該各室内電動膨張弁(11
)・・・の開度EVの減少制御が、低圧液冷媒の温度(
蒸発温度T2 )に応じて行われるので、この冷媒の蒸
発温度T2が上記室内熱交換器(10)の凍結を生じる
直前の冷媒温度値T20にまで低下すると、開度[Vの
減少制御を停止させることができて、蒸発温度T2のそ
れ以上の低下が防止され、各室内熱交換器(10)・・
・の凍結が有効に防止されることになる。
At that time, the actual opening degree E of each indoor electric expansion valve (11)...
When the deviation ΔA (AR-EV) between V and the target opening value AR is a negative value, that is, when the actual opening EV exceeds the target opening value AR, the opening EV is controlled to decrease. When controlling the opening degree EV to decrease, each indoor heat exchanger (10)
As the evaporation capacity of the refrigerant decreases, the evaporation temperature of the refrigerant decreases, and each indoor heat exchanger (10) tends to freeze.In this case, each indoor electric expansion Valve (11
) is controlled to reduce the opening EV of the low-pressure liquid refrigerant (
Therefore, when the evaporation temperature T2 of the refrigerant decreases to the refrigerant temperature value T20 immediately before freezing of the indoor heat exchanger (10), the control to reduce the opening [V is stopped. This prevents the evaporation temperature T2 from further decreasing, and each indoor heat exchanger (10)...
・Freezing will be effectively prevented.

一方、逆に、実際開度EVと目標開度値ARとの偏差△
A(AR−EV)が正値の時、つまり実際開度EVが目
標開度値AR未満の場合には、開度[Vの増大制御が行
われ、この開度EVの増大制御時には、冷媒の過熱度S
Hが小さくなって、冷媒の湿り状態が発生し易くなるも
ののの、この開度EVの増大制御が冷媒の過熱度SHに
応じて行われるので、この冷媒の過熱度SHが冷媒の湿
り状態の発生する直前の過熱度値SHOにまで小さくな
る時点で、開度EVの増大制御を停止させることができ
て、過熱度SHのそれ以上の低下が防止され、冷媒の湿
り状態の発生が有効に防止されることになる。
On the other hand, conversely, the deviation between the actual opening EV and the target opening value AR is
When A(AR-EV) is a positive value, that is, when the actual opening EV is less than the target opening value AR, an increase control of the opening [V is performed. degree of superheating S
Although H becomes smaller and the refrigerant becomes more likely to become wet, since the opening degree EV is controlled to increase according to the refrigerant superheat degree SH, the refrigerant superheat degree SH becomes more likely to occur in the refrigerant wet state. At the point when the degree of superheating decreases to the value SHO immediately before the superheating occurs, the increase control of the opening degree EV can be stopped, and further decrease in the degree of superheating SH is prevented, and the occurrence of a wet state of the refrigerant becomes effective. This will be prevented.

よって、室内電動膨張弁(11)・・・の開度の増減制
御途中での各室内熱交換器(10)・・・の凍結や冷媒
の湿り状態の発生を有効に防止して、冷房運転時での空
気゛調和性能の向上を図ることができる。
Therefore, freezing of each indoor heat exchanger (10) and occurrence of a wet state of the refrigerant during the increase/decrease control of the opening degree of the indoor electric expansion valve (11) are effectively prevented, and the cooling operation is maintained. It is possible to improve the air conditioning performance at different times.

尚、上記実施例では、低圧液冷媒の温度を湿度センサ(
TH2)で検出したが、その他、低圧液冷媒の温度に相
当する圧力を圧力センサで検出して、低圧液冷媒の温度
を間接的に検出してもよい。また、上記実施例では、冷
房運転時を例に挙げて説明したが、暖房運転時でも同様
に適用できるのは勿論のこと、マルチ型式の空気調和機
に限らず、その他、1台の室外ユニットに対して1台の
室内ユニットが対応する通常の空気調和機や、室内及び
空鉢ユニットを一体化したものに対しても同様に適用で
きるのは言うまでもない。
In the above embodiment, the temperature of the low-pressure liquid refrigerant is measured by a humidity sensor (
Although the temperature of the low-pressure liquid refrigerant is detected in TH2), the temperature of the low-pressure liquid refrigerant may be indirectly detected by detecting the pressure corresponding to the temperature of the low-pressure liquid refrigerant with a pressure sensor. In addition, although the above embodiment has been explained using the cooling operation as an example, it is of course applicable to the heating operation as well, and is applicable not only to multi-model air conditioners but also to other outdoor units. Needless to say, the present invention can be similarly applied to a normal air conditioner in which a single indoor unit corresponds to the air conditioner, or to an integrated indoor and empty air conditioner.

(発明の効果) 以上説明したように、本発明の空気調和機の電動膨張弁
制御装置によれば、電動膨張弁の開度制御を、目標開度
値への増大制御時には冷媒の過熱度に応じて増大し、目
標開度値への減少制御時には低圧液冷媒の温度に応じて
減少させたので、開度の増減変化に伴う蒸発器の凍結や
冷媒の湿り状態の発生の直前で上記開度の増減制御を停
止できて、その現象の発生を有効に防止でき、空気調和
性能の向上を図ることかできる。
(Effects of the Invention) As explained above, according to the electric expansion valve control device for an air conditioner of the present invention, the opening degree control of the electric expansion valve is performed based on the degree of superheating of the refrigerant when increasing the opening degree to the target opening value. The temperature of the low-pressure liquid refrigerant increases when the opening is controlled to decrease to the target opening value, so the opening is increased immediately before the evaporator freezes or the refrigerant becomes wet due to changes in the opening. The temperature increase/decrease control can be stopped, the occurrence of this phenomenon can be effectively prevented, and air conditioning performance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図ないし第5図は本発明の実施例を示し、第2図は
マルチ型式の空気調和機に適用した冷媒配管系統図、第
3図は室内制御装置の内部構成図、第4図は通常時と特
殊時との間の状態遷移図、第5図は室内制御装置の作動
を示すフローチャート図でおる。 (11)・・・室内電動膨張弁、(TH+ )・・・室
温センサ、(TH2)・・・温度センサ、(14)・・
・冷媒配管系統、(50)・・・目標開度演算手段、(
51)・・・開度検出手段、(52)・・・過熱度検出
手段、(53)・・・制御手段。 “−Zに;目−1 第4図 第3図
FIG. 1 is a block diagram showing the configuration of the present invention. Figures 2 to 5 show embodiments of the present invention, Figure 2 is a refrigerant piping system diagram applied to a multi-type air conditioner, Figure 3 is an internal configuration diagram of an indoor control device, and Figure 4 is a diagram of an internal configuration of an indoor control device. FIG. 5, which is a state transition diagram between normal times and special times, is a flowchart showing the operation of the indoor control device. (11)... Indoor electric expansion valve, (TH+)... Room temperature sensor, (TH2)... Temperature sensor, (14)...
・Refrigerant piping system, (50)...Target opening calculation means, (
51)... Opening degree detection means, (52)... Superheat degree detection means, (53)... Control means. “-Z; eye-1 Figure 4 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1) 冷媒循環系統(14)に電動膨張弁(11)を
配置した空気調和機において、室温を検出する室温検出
手段(TH_1)と、該室温検出手段(TH_1)の出
力を受け、室温と室温目標値との偏差に応じて上記電動
膨張弁(11)の目標開度値を演算する目標開度演算手
段(50)と、上記電動膨張弁(11)の開度を検出す
る開度検出手段(51)とを備えるとともに、低圧液冷
媒の温度を検出する冷媒温度検出手段(TH_2)と、
冷媒の過熱度を検出する過熱度検出手段(52)と、上
記目標開度演算手段(50)及び開度検出手段(51)
並びに該両検出手段(TH_2),(52)の出力を受
け、電動膨張弁(11)の現在開度値が目標開度値を越
えるとき該電動膨張弁(11)を低圧液冷媒の温度に応
じて閉じ、現在開度値が目標開度値未満のとき電動膨張
弁(11)を冷媒の過熱度に応じて開くよう制御する制
御手段(53)とを備えたことを特徴とする空気調和機
の電動膨張弁制御装置。
(1) In an air conditioner in which an electric expansion valve (11) is arranged in a refrigerant circulation system (14), there is a room temperature detection means (TH_1) for detecting the room temperature, and an output from the room temperature detection means (TH_1) is received to detect the room temperature. target opening calculation means (50) that calculates a target opening value of the electric expansion valve (11) according to the deviation from the room temperature target value; and opening detection that detects the opening of the electric expansion valve (11). refrigerant temperature detection means (TH_2) for detecting the temperature of the low-pressure liquid refrigerant;
Superheat degree detection means (52) for detecting the degree of superheat of the refrigerant, the target opening degree calculation means (50) and the opening degree detection means (51).
In addition, upon receiving the outputs of both the detection means (TH_2) and (52), when the current opening value of the electric expansion valve (11) exceeds the target opening value, the electric expansion valve (11) is adjusted to the temperature of the low-pressure liquid refrigerant. and control means (53) for controlling the electric expansion valve (11) to close according to the degree of superheat of the refrigerant and to open the electric expansion valve (11) when the current opening value is less than the target opening value. Electric expansion valve control device for the machine.
JP1174087A 1987-01-21 1987-01-21 Electric expansion valve controller for air conditioner Expired - Lifetime JPH0733931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174087A JPH0733931B2 (en) 1987-01-21 1987-01-21 Electric expansion valve controller for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174087A JPH0733931B2 (en) 1987-01-21 1987-01-21 Electric expansion valve controller for air conditioner

Publications (2)

Publication Number Publication Date
JPS63180050A true JPS63180050A (en) 1988-07-25
JPH0733931B2 JPH0733931B2 (en) 1995-04-12

Family

ID=11786423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174087A Expired - Lifetime JPH0733931B2 (en) 1987-01-21 1987-01-21 Electric expansion valve controller for air conditioner

Country Status (1)

Country Link
JP (1) JPH0733931B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229554A (en) * 1989-03-02 1990-09-12 Tabai Espec Corp Method for controlling temperature drop
JPH02229555A (en) * 1989-03-02 1990-09-12 Tabai Espec Corp Method for controlling temperature rise
JP2013108685A (en) * 2011-11-22 2013-06-06 Fujitsu General Ltd Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229554A (en) * 1989-03-02 1990-09-12 Tabai Espec Corp Method for controlling temperature drop
JPH02229555A (en) * 1989-03-02 1990-09-12 Tabai Espec Corp Method for controlling temperature rise
JP2013108685A (en) * 2011-11-22 2013-06-06 Fujitsu General Ltd Air conditioner

Also Published As

Publication number Publication date
JPH0733931B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
JPH02208469A (en) Air conditioner
JP2689599B2 (en) Operation control device for air conditioner
JPS63180050A (en) Electric expansion valve controller for air conditioner
JP2684845B2 (en) Operation control device for air conditioner
JP2526716B2 (en) Air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JPH052902B2 (en)
JP3303689B2 (en) Binary refrigeration equipment
JPS63180051A (en) Humid operation protective device for air conditioner
JPH0814435B2 (en) Refrigerator protection device
JPS63161342A (en) Electrical expansion valve control device for air conditioner
JPS63176968A (en) Low-temperature protective device for air conditioner
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
JPH07101130B2 (en) Operation control device for air conditioner
JP3337264B2 (en) Air conditioner defroster
JPH0527019B2 (en)
JPH02195145A (en) Device for controlling oil-recovery operation in air-conditioning apparatus
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPS63302265A (en) Heat pump type air conditioner
JPS63187070A (en) Air conditioner
JPH04222351A (en) Operation controller for air conditioner
JPH07122521B2 (en) Capacity control device for compressor of refrigeration equipment
JPH01174863A (en) Controller for refrigerator
JPH02230063A (en) Capacity control device for air conditioner
JPH0814432B2 (en) Refrigerator overload control device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term