JPH0814435B2 - Refrigerator protection device - Google Patents

Refrigerator protection device

Info

Publication number
JPH0814435B2
JPH0814435B2 JP62135564A JP13556487A JPH0814435B2 JP H0814435 B2 JPH0814435 B2 JP H0814435B2 JP 62135564 A JP62135564 A JP 62135564A JP 13556487 A JP13556487 A JP 13556487A JP H0814435 B2 JPH0814435 B2 JP H0814435B2
Authority
JP
Japan
Prior art keywords
capacity
compressor
discharge gas
temperature
gas temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62135564A
Other languages
Japanese (ja)
Other versions
JPS63297784A (en
Inventor
隆 松崎
法文 丸山
尚 梅尾
修 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP62135564A priority Critical patent/JPH0814435B2/en
Publication of JPS63297784A publication Critical patent/JPS63297784A/en
Publication of JPH0814435B2 publication Critical patent/JPH0814435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧縮機からの吐出ガス温度の過上昇を防止
するようにした冷凍装置の保護装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a refrigerating device protection device for preventing an excessive rise in the temperature of gas discharged from a compressor.

(従来の技術) 一般に、冷凍装置においては、圧縮機からの吐出ガス
温度が過上昇した場合には、圧縮機用潤滑油が炭化し
て、その潤滑性能が低下し、圧縮機の焼損を招く危険性
が高くなる。
(Prior Art) Generally, in a refrigeration system, when the temperature of the gas discharged from the compressor rises excessively, the lubricating oil for the compressor is carbonized and its lubricating performance deteriorates, resulting in burnout of the compressor. Higher risk.

そのため、従来、例えば特公昭60−28935号公報に開
示される空気調和機のものでは、吐出ガス温度の特性、
つまり圧縮機の吸込過熱度が大になると吐出ガス温度を
上昇する関係を利用し、冷媒の吸込過熱度が大きくなる
と、リキッドインジェクションを行って冷却し、圧縮機
の吸込過熱度を下げて一定に保持することにより、吐出
ガス温度の過上昇を防止している。
Therefore, conventionally, in the air conditioner disclosed in, for example, Japanese Patent Publication No. 60-28935, the characteristics of the discharge gas temperature,
In other words, by utilizing the relationship that the discharge gas temperature rises when the suction superheat of the compressor becomes large, when the suction superheat of the refrigerant becomes large, liquid injection is performed to cool it, and the suction superheat of the compressor is lowered to a constant level. By holding it, the discharge gas temperature is prevented from rising excessively.

(発明が解決しようとする課題) しかしながら、吐出ガス温度の特性は、上記冷媒の吸
込過熱度との関係に加えて、圧縮機での冷媒の圧縮比と
も関係し、圧縮比が大になると吐出ガス温度も上昇す
る。そして、一台の熱源側熱交換器に複数台の負荷側熱
交換器を並列に接続した,いわゆるマルチ型式の空気調
和装置の如く、熱源側熱交換器と負荷側熱交換器との能
力が大きく異なる場合には、負荷のバランス次第で吐出
圧力と吸入圧力との差が大きくなるのに伴ない、上記圧
縮比は大きくなる特性がある。従って、この種の空気調
和装置等では、圧縮比の増大に伴い吐出ガス温度が過上
昇し、この過上昇が顕著な場合には圧縮機の保護装置が
作動する場合もあり、連続運転が困難になる欠点が生じ
る。特に、冷媒の蒸発温度や凝縮温度を設定値に保持す
るよう圧縮機の容量を増減制御する場合には、他方の凝
縮温度や蒸発温度が下り勝手又は上り勝手になるため、
その分、圧縮比の増大は顕著になる。
(Problems to be solved by the invention) However, the characteristics of the discharge gas temperature are related to the compression ratio of the refrigerant in the compressor in addition to the relationship with the suction superheat degree of the refrigerant, and when the compression ratio becomes large, the discharge is performed. The gas temperature also rises. And, like a so-called multi-type air conditioner in which a plurality of load side heat exchangers are connected in parallel to one heat source side heat exchanger, the capacity of the heat source side heat exchanger and the load side heat exchanger is If the difference is large, there is a characteristic that the compression ratio increases as the difference between the discharge pressure and the suction pressure increases depending on the load balance. Therefore, in this type of air conditioner, etc., the discharge gas temperature rises excessively as the compression ratio increases, and if this excessive rise is significant, the compressor protection device may operate, making continuous operation difficult. There is a drawback that In particular, when increasing or decreasing the capacity of the compressor to keep the evaporation temperature or the condensation temperature of the refrigerant at the set value, the other condensation temperature or the evaporation temperature is down or up,
As a result, the compression ratio is significantly increased.

本発明は斯かる点に鑑みてなされたものであり、その
目的は、吐出ガス温度を直接検出し、この温度値に応じ
て圧縮機の容量の上限値を規制することを繰返し行うこ
とにより、上記吐出ガス温度の過上昇原因が圧縮比の増
大にある場合にも、この過上昇を保護装置の作動前に有
効に防止して、潤滑油の潤滑性能を良好に保持すると共
に、運転を連続的に行うことにある。
The present invention has been made in view of such a point, and an object thereof is to directly detect the discharge gas temperature, and by repeatedly controlling the upper limit value of the capacity of the compressor according to this temperature value, Even when the cause of the excessive rise in the discharge gas temperature is due to the increase in the compression ratio, this excessive rise is effectively prevented before the protection device is activated, and the lubricating performance of the lubricating oil is kept good and the operation is continued. To do so.

(課題を解決するための手段) 上記目的を達成するため、本発明の具体的な解決手段
は、第1図に示すように、容量の調節自在に圧縮機(1,
2)と、熱源側熱交換器(4)と、膨張機構(5,11)
と、負荷側熱交換器(10)とで冷媒循環系統(14)を構
成した冷凍装置を対象とする。そして、上記冷媒循環系
統(14)における負荷側熱交換器(10)の冷媒圧力相当
飽和温度が所定温度になるように上記圧縮機(1,2)の
容量を調節する容量可変手段(50)(が設けられてい
る。更に、上記圧縮機(1,2)からの吐出ガス温度を検
出する吐出ガス温度検出手段(TH4)が設けられてい
る。加えて、該吐出ガス温度検出手段(TH4)の出力を
受け、上記容量可変手段(50)に対し、吐出ガス温度が
圧縮機用潤滑油の潤滑性能を維持できる限界近傍の所定
範囲を越えるときには上記圧縮機(1,2)の容量の上限
値であって容量可変手段(50)の調節の上限値を低く規
制し、上記所定範囲内にあるときにはその時の容量の上
限値を維持し、所定範囲を下回るときには容量の上限値
の規制を解除することを所定時間毎に繰返す容量制御手
段(52)が設けられている。
(Means for Solving the Problems) In order to achieve the above object, a concrete means for solving the problems of the present invention is, as shown in FIG.
2), heat source side heat exchanger (4), expansion mechanism (5, 11)
And a load side heat exchanger (10) to form a refrigerant circulation system (14). And a capacity varying means (50) for adjusting the capacity of the compressor (1, 2) so that the refrigerant pressure equivalent saturation temperature of the load side heat exchanger (10) in the refrigerant circulation system (14) becomes a predetermined temperature. (Discharge gas temperature detection means (TH4) for detecting the discharge gas temperature from the compressor (1, 2) is provided. In addition, the discharge gas temperature detection means (TH4) ) Output to the capacity varying means (50), when the discharge gas temperature exceeds a predetermined range near the limit at which the lubricating performance of the compressor lubricating oil can be maintained, the capacity of the compressor (1, 2) is The upper limit of the adjustment of the capacity varying means (50) is regulated low, the upper limit of the capacity at that time is maintained when it is within the predetermined range, and the upper limit of the capacity is regulated when it falls below the predetermined range. A capacity control means (52) is provided to repeat the release at predetermined time intervals. It is.

(作用) 以上の構成により、本発明では、冷凍運転時、通常、
容量可変手段(50)が負荷側熱交換器(10)側の冷媒圧
力相当飽和温度が所定温度になるように上記圧縮機(1,
2)の容量を調節している。
(Operation) With the above configuration, in the present invention, during the freezing operation, normally,
The compressor (1, 1) controls the capacity varying means (50) so that the saturation temperature corresponding to the refrigerant pressure on the load side heat exchanger (10) side becomes a predetermined temperature.
The capacity of 2) is adjusted.

この冷凍運転時において、吐出ガス温度が所定範囲を
越えた場合には、圧縮機(1,2)の容量を上限値が容量
規制手段(52)で低く規制され、その分、その容量が下
がる。その結果、圧縮機(1,2)での圧縮比が小さくな
って、その分、圧縮機(1,2)の吐出ガス温度が低下す
る。その後、所定時間を経過する毎に、吐出ガス温度が
検出され、この吐出ガス温度が所定範囲を未だ越える場
合には、更に圧縮機(1,2)の容量の上限値が容量規制
手段(52)で低く規制されて容量が下がり、吐出ガス温
度の低下制御が繰返される一方、所定範囲を下回る場合
には、吐出ガス温度は過上昇の無い安全範囲にあるの
で、上記規制が解除され、容量が増大する。また、上記
所定範囲内にある場合には、容量の上限値の規制がその
まま維持されて、吐出ガス温度の過上昇が有効に防止さ
れる。
When the discharge gas temperature exceeds the predetermined range during this refrigeration operation, the upper limit of the capacity of the compressor (1, 2) is restricted to a low value by the capacity restriction means (52), and the capacity decreases accordingly. . As a result, the compression ratio in the compressor (1, 2) becomes smaller, and the discharge gas temperature of the compressor (1, 2) lowers accordingly. After that, the discharge gas temperature is detected every time a predetermined time elapses, and if the discharge gas temperature still exceeds the predetermined range, the upper limit of the capacity of the compressor (1, 2) is further determined by the capacity regulating means (52). ), The capacity decreases and the discharge gas temperature decrease control is repeated.On the other hand, when the discharge gas temperature falls below the predetermined range, the discharge gas temperature is in a safe range without excessive rise, so the above restriction is released and the capacity is reduced. Will increase. Further, when it is within the above-mentioned predetermined range, the regulation of the upper limit of the capacity is maintained as it is, and the excessive rise of the discharge gas temperature is effectively prevented.

その場合、上記容量の上限値の規制は、圧縮比の増大
に伴う吐出ガス温度の過上昇時に行われるので、マルチ
型式の空気調和装置での熱源側熱交換器と負荷側熱交換
器間で能力が大きく相違する場合にも、圧縮比の増大に
起因する吐出ガス温度の過上昇を有効に防止でき、ひい
ては保護装置の作動を招かずに連続運転を可能にでき
る。
In that case, the regulation of the upper limit of the capacity is performed when the discharge gas temperature rises excessively with the increase of the compression ratio, and therefore, between the heat source side heat exchanger and the load side heat exchanger in the multi-type air conditioner. Even when the capacities greatly differ, it is possible to effectively prevent the discharge gas temperature from excessively increasing due to the increase in the compression ratio, and it is possible to enable continuous operation without inviting the operation of the protective device.

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説
明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は本発明をマルチ型式の空気調和装置に適用し
た実施例を示し、(A)は室外ユニット、(B)〜
(F)は同一内部構成の2台の室内ユニットである。上
記室外ユニット(A)の内部には、互に並列に接続され
た第1の圧縮機(1)及び第2の圧縮機(2)と、四路
切換弁(3)と、室外送風ファン(4a)を有する熱源側
熱交換器(4)と、膨張弁(5)とが備えられ、該各機
器(1)〜(5)は各々冷媒配管(6)…で冷媒の流通
可能に接続されている。また、上記各室内ユニット
(B)〜(F)は、各々、室内送風ファン(10a)を有
する負荷側熱交換器(10)と、膨張弁(11)とを備え、
該膨張弁(11)は、その弁開度が電気的に増減調整でき
る空調能力調整用の室内電動膨張弁で構成されていて、
該各機器(10),(11)は冷媒配管(12)…で冷媒の流
通可能に接続されている。
FIG. 2 shows an embodiment in which the present invention is applied to a multi-type air conditioner, where (A) is an outdoor unit and (B)-
(F) is two indoor units having the same internal configuration. Inside the outdoor unit (A), a first compressor (1) and a second compressor (2) connected in parallel to each other, a four-way switching valve (3), and an outdoor blower fan ( A heat source side heat exchanger (4) having 4a) and an expansion valve (5) are provided, and each of the devices (1) to (5) is connected to a refrigerant pipe (6) so that the refrigerant can flow therethrough. ing. Further, each of the indoor units (B) to (F) includes a load side heat exchanger (10) having an indoor blower fan (10a) and an expansion valve (11),
The expansion valve (11) is composed of an indoor electric expansion valve for adjusting the air-conditioning capacity, the valve opening degree of which can be electrically increased or decreased.
The respective devices (10), (11) are connected to each other through a refrigerant pipe (12) so that the refrigerant can flow therethrough.

そして、上記5台の室内ユニット(B)〜(F)は、
各々冷媒配管(13)…で互いに並列に接続されて上記室
外ユニット(A)に冷媒の循環可能に接続されて冷媒循
環系統(14)が形成されていて、冷房運転時には、四路
切換弁(3)を図中破線の如く切換えて冷媒を図中破線
矢印の如く循環させることにより、各負荷側熱交換器
(10)…で室内から吸熱した熱量を熱源側熱交換器
(4)で外気に放熱すること繰返して各室内を冷房する
一方、暖房運転時には、四路切換弁(3)を図中実線の
如く切換えて冷媒を図中実線矢印の如く循環させること
により、熱量の授受を上記とは逆にして、室内を暖房す
るようにしている。
The five indoor units (B) to (F) are
Refrigerant circulation systems (14) are formed by being connected in parallel to each other by refrigerant pipes (13) and being circulated to the outdoor unit (A) so that a refrigerant circulation system (14) is formed. 3) is switched as indicated by the broken line in the figure and the refrigerant is circulated as indicated by the dashed arrow in the figure, so that the heat absorbed from the inside of each load side heat exchanger (10) ... While heating each room by repeatedly radiating heat, the four-way switching valve (3) is switched as shown by the solid line in the drawing to circulate the refrigerant as shown by the solid line in the drawing, thereby transferring heat. On the contrary, the room is heated.

また、上記第1の圧縮機(1)にはインバータ(15)
が接続されていて、該インバータ(15)の30%から10%
刻みの周波数設定信号の出力により、圧縮機(1)の運
転周波数を8段階に高低調整して、その容量を複数段階
(停止時を含んで9段階)に増減調整するようになされ
ている。
In addition, the first compressor (1) has an inverter (15).
Is connected, and 30% to 10% of the inverter (15)
The operating frequency of the compressor (1) is adjusted in eight levels by the output of the frequency setting signal in increments, and the capacity thereof is adjusted to be increased or decreased in a plurality of steps (9 steps including the stop time).

また、第2圧縮機(2)は、第3図に詳示すように、
密閉ケーシング(2b)に吸込口(2c)と吐出口(2d)と
が形成され、該密閉ケーシング(2b)内には、モータ
(2e)により駆動軸(2f)を介して駆動されるピストン
(2g)が配置され、該ピストン(2g)により圧送される
ガス(吐出ガス)を吐出ガス通路(2h)から該吐出ガス
通路(2b)に開口する吐出ガス管(2i)を介して、上記
吐出口(2d)に導くようになっている。そして、上記吐
出ガス通路(2h)の途中には、アンロード機構(2a)が
配置され、該アンロード機構(2a)は、吐出ガス通路
(2h)の隔壁(2j)に設けた開口(2k)を開閉する弁体
(21)と、該弁体(21)を開弁方向に付勢するスプリン
グ(2m)と、弁体(21)の後方に圧力室(2n)とを有す
る。そして、上記弁体(21)は、圧力室(2n)に連通す
るパイロット圧導入通路(16)に設けたパイロット電磁
弁(17)の閉時に高圧(吐出ガス圧)が作用することに
より、上記開口(2k)を弁体(21)で閉じて、吐出ガス
の全量を吐出口(2d)に導き、第2圧縮機(2)の容量
をフルロード(100%)にする一方、パイロット電磁弁
(17)の開時には低圧が作用することにより、スプリン
グ(2m)の付勢力で弁体(21)を図中右方向に付勢して
開口(2k)を開き、吐出ガスの一部を該開口(2k)を介
して密閉ケーシング(2b)内下部にバイパスして、第2
圧縮機(2)の容量を50%にアンロードするものであ
る。
Further, the second compressor (2), as shown in detail in FIG.
A suction port (2c) and a discharge port (2d) are formed in the closed casing (2b), and in the closed casing (2b), a piston (driven by a motor (2e) via a drive shaft (2f) ( 2g) is disposed and discharges gas (discharge gas) pumped by the piston (2g) from the discharge gas passage (2h) to the discharge gas passage (2b) through the discharge gas pipe (2i). It leads to the exit (2d). An unload mechanism (2a) is arranged in the middle of the discharge gas passage (2h), and the unload mechanism (2a) is provided with an opening (2k) provided in a partition (2j) of the discharge gas passage (2h). ) Is opened and closed, a spring (2m) for urging the valve body (21) in the valve opening direction, and a pressure chamber (2n) behind the valve body (21). The valve body (21) is acted upon by high pressure (discharging gas pressure) when the pilot solenoid valve (17) provided in the pilot pressure introducing passage (16) communicating with the pressure chamber (2n) is closed. The opening (2k) is closed by the valve body (21) and the entire amount of discharge gas is guided to the discharge port (2d) to make the capacity of the second compressor (2) full load (100%), while the pilot solenoid valve When the low pressure is applied when (17) is opened, the valve (21) is urged to the right in the figure by the urging force of the spring (2m) to open the opening (2k), and a part of the discharge gas is discharged. Bypass to the lower part inside the closed casing (2b) through the opening (2k)
It unloads the capacity of the compressor (2) to 50%.

よって、上記インバータ(15)及びアンロード機構
(2a)により、第1及び第2の圧縮機(1),(2)の
合計容量を可変調整するようにした容量可変手段(50)
を構成している。
Therefore, the inverter (15) and the unloading mechanism (2a) variably adjust the total capacity of the first and second compressors (1) and (2) to adjust the capacity.
Is composed.

また、第2図において、(20)は四路切換弁(3)前
後の冷媒配管(6),(6)(吐出管と吸入管)を接続
する均圧ホットガスバイパス回路であって、該バイパス
回路(20)には、冷房運転状態での低負荷時及び熱源側
交換器(4)の除霜運転時等に開作動するホットガス電
磁弁(21)が介設されている。
Further, in FIG. 2, (20) is a pressure equalizing hot gas bypass circuit that connects the refrigerant pipes (6), (6) (the discharge pipe and the suction pipe) before and after the four-way switching valve (3), The bypass circuit (20) is provided with a hot gas solenoid valve (21) that is opened during a low load in the cooling operation state and during the defrosting operation of the heat source side exchanger (4).

さらに、(22)は暖房運転時に吐出管となる冷媒配管
(6)に接続された暖房過負荷時バイパス回路であっ
て、該バイパス回路(22)には、補助コンデンサ(23)
及び、冷媒の高圧部に開く高圧制御弁(24)が介設され
ており、暖房過負荷時に圧縮機(1),(2)からの冷
媒を該バイパス回路(22)を介して各室内熱交換器(1
0)…をバイパスして、各室内熱交換器(10)…下流側
の冷媒配管(6)にバイパスするようにしている。
Further, (22) is a heating overload bypass circuit connected to the refrigerant pipe (6) serving as a discharge pipe during the heating operation, and the bypass circuit (22) includes an auxiliary capacitor (23).
In addition, a high pressure control valve (24) that opens to the high pressure portion of the refrigerant is provided so that the refrigerant from the compressors (1) and (2) is heated by the bypass circuit (22) in each room heat when the heating is overloaded. Exchanger (1
0) are bypassed, and each indoor heat exchanger (10) is bypassed to the refrigerant pipe (6) on the downstream side.

加えて、(25)は上記暖房過負荷時バイパス回路(2
2)の補助コンデンサ(23)下流側を、四路切換弁
(3)下流側の冷媒配管(6)(吸入管)に接続するリ
キッドインジェクションバイパス回路であって、該リキ
ッドインジェクションバイパス回路(25)には圧縮機
(1),(2)の作動に連動して開閉するインジェクシ
ョン用電磁弁(26)と、膨張弁(27)とが介設されてい
て、このリキッドインジェクションにより、高圧液冷媒
を減圧して第1及び第2の圧縮機(1),(2)に供給
して冷却し、該第1及び第2の圧縮機(1),(2)へ
の吸込過熱度を小さくするようにしている。
In addition, (25) is the bypass circuit (2
A liquid injection bypass circuit for connecting the downstream side of the auxiliary condenser (23) of 2) to the refrigerant pipe (6) (intake pipe) on the downstream side of the four-way switching valve (3), the liquid injection bypass circuit (25). An electromagnetic valve (26) for injection, which opens and closes in conjunction with the operation of the compressors (1), (2), and an expansion valve (27) are interposed between the two, and by this liquid injection, high-pressure liquid refrigerant is transferred. The pressure is reduced and supplied to the first and second compressors (1) and (2) to be cooled so that the suction superheat degree to the first and second compressors (1) and (2) is reduced. I have to.

また、(30)はレシーバ、(31)はアキュムレータ、
(32)は過冷却コイル、(33)は油分離器であって、該
油分離器(33)で分離された潤滑油は油通路(34)を介
して両圧縮機(1),(2)に戻される。
Also, (30) is the receiver, (31) is the accumulator,
(32) is a supercooling coil, (33) is an oil separator, and the lubricating oil separated by the oil separator (33) passes through an oil passage (34) to both compressors (1), (2 ).

さらに、各室内ユニット(B)〜(F)において、
(TH1)は対応する室内の空気の温度(吸込空気温度)
を検出する室温センサ、(TH2)及び(TH3)は各々冷房
運転時に蒸発器として作用する負荷側熱交換器(10)…
前後の冷媒温度を検出する温度センサである。また、室
外ユニット(A)において、(TH4)は第1及び第2圧
縮機(1),(2)の冷媒吐出ガス温度を検出する吐出
ガス温度検出手段としての温度センサ、(TH5)は暖房
運転時に熱源側熱交換器(4)での冷媒の蒸発温度を検
出する蒸発温度センサ、(TH6)は第1及び第2圧縮器
(1),(2)への吸入ガス温度を検出する吸入ガス温
度センサである。また(P1)は暖房運転時には吐出ガス
圧力を、冷房運転時には吸入ガス圧力を各々検出する圧
力センサ、(HPS)は圧縮機保護用の高圧圧力開閉器で
ある。
Furthermore, in each indoor unit (B)-(F),
(TH1) is the temperature of the corresponding indoor air (suction air temperature)
The room temperature sensors for detecting (TH2) and (TH3) are load side heat exchangers (10) that act as evaporators during cooling operation.
It is a temperature sensor that detects the temperature of the refrigerant before and after. Further, in the outdoor unit (A), (TH4) is a temperature sensor as discharge gas temperature detecting means for detecting the refrigerant discharge gas temperature of the first and second compressors (1), (2), and (TH5) is heating. An evaporation temperature sensor that detects the evaporation temperature of the refrigerant in the heat source side heat exchanger (4) during operation, and (TH6) is an intake that detects the intake gas temperature to the first and second compressors (1), (2). It is a gas temperature sensor. Further, (P1) is a pressure sensor for detecting the discharge gas pressure during heating operation, and the suction gas pressure during cooling operation, and (HPS) is a high pressure switch for protecting the compressor.

次に、容量可変手段(50)の上記第1及び第2圧縮機
(1),(2)の容量制御を冷媒運転時を例に挙げて第
4図の制御フローに基いて説明する。尚、この容量制御
は、室外ユニット(A)内に備える室外制御部(図示せ
ず)により行われる。
Next, the capacity control of the first and second compressors (1) and (2) of the capacity varying means (50) will be described based on the control flow of FIG. 4 by taking the operation of the refrigerant as an example. Note that this capacity control is performed by an outdoor control unit (not shown) provided in the outdoor unit (A).

第4図において、スタートして、ステップS1で圧力セ
ンサ(P1)により検出した吸入空気量ガス圧力を相当飽
和温度に換算して得られる冷媒温度T2、つまり蒸発温度
(暖房運転時には冷媒の凝縮温度)を検出した後、この
蒸発温度が設定値(目標値T2O)を保持するように、圧
縮機(1),(2)の合計容量をフィードバック制御す
べくPI制御(比例−積分制御)を行うこととし、ステッ
ブS2で圧縮機(1),(2)の目標合計容量L1を、上記
蒸発温度T2とその目標値T2Oとの偏差の,今回と前回の
値e(t),e(t−Δt)に基いて、蒸発温度T2がその
目標値T2Oになるよう下記式 L1=LO+Kc[e(t)−e(t−Δt) +{Δt/2Ti}{e(t)+e(t−Δt)}] LO;現在の合計容量 Kc;ゲイン(定数) Ti;積分定数 Δt;サンプリング時間 で演算する。
In FIG. 4, after starting, the refrigerant temperature T 2 obtained by converting the intake air amount gas pressure detected by the pressure sensor (P 1 ) in step S 1 into the equivalent saturation temperature, that is, the evaporation temperature (the refrigerant during heating operation, After detecting the condensation temperature of the compressor, PI control (proportional-integral) is performed to feedback control the total capacity of the compressors (1) and (2) so that this evaporation temperature maintains the set value (target value T 2O ). Control) and the target total capacity L 1 of the compressors (1) and (2) is changed by the step S 2 to obtain the deviation e between the evaporation temperature T 2 and the target value T 2O of this time and the previous value e. Based on (t), e (t-Δt), the following equation L 1 = L O + Kc [e (t) -e (t-Δt) + {Δt] so that the evaporation temperature T 2 becomes the target value T 2O. / 2Ti} {e (t) + e (t-Δt)}] L O ; Current total capacity Kc; Gain (constant) Ti; Integration constant Δt; Sampling time Calculate.

しかる後、ステップS3で下記の第1表の合計容量マッ
プに基いて上記合計目標容量L1に対応した圧縮機
(1),(2)の合計容量を把握して、この合計容量に
対応する第2表の各圧縮機(1),(2)の実際の容量
マップに基いて第1の圧縮機(1)の容量をインバータ
(15)で制御すると共に、第2の圧縮機(2)の容量を
アンロード機構(2a)で調整する。そして、ステップS4
でサンプリング時間Δtの経過を待って上記ステップS1
に戻って、以上の動作を繰返す。
Thereafter, in step S 3 based on the total volume map of the first table below the compressor corresponding to the total target volume L 1 (1), to grasp the total amount of (2), corresponding to the total volume The capacity of the first compressor (1) is controlled by the inverter (15) based on the actual capacity maps of the compressors (1) and (2) in Table 2 and the second compressor (2 ) Capacity is adjusted by the unloading mechanism (2a). And step S 4
At the step S 1
Then, the above operation is repeated.

ここに、上記第1表の合計容量マップは、圧縮機
(1),(2)の制御すべき合計容量が零値の場合と、
30%値から漸次10%づつ増大して200%値に至る多段階
(19段階)に区分されていると共に、合計目標容量L1
範囲が容量の増大時と減少時とで区別されている。
Here, the total capacity map in Table 1 above shows that the total capacity of the compressors (1) and (2) to be controlled is zero.
It is divided into multiple stages (19 stages) from the 30% value to the 200% value by gradually increasing by 10%, and the range of the total target capacity L 1 is distinguished when the capacity increases and when it decreases. .

また、上記第2表の各圧縮機(1),(2)の容量マ
ップは、合計容量が30%から100%までの範囲におい
て、第1の圧縮機(1)の容量が10%刻みで増大すると
共に、第2の圧縮機(2)の容量が0%(停止)を保持
する第1マップと、合計容量が80%から150%までの範
囲において、第1の圧縮機(1)の容量が上記と同様に
10%刻みで増大し、第2の圧縮機(2)の容量が50%を
保持する第2のマップと、合計容量が130%から200%ま
での範囲において、第1の圧縮機(1)の容量が10%刻
みで増大し、第2の圧縮機(2)の容量が100%を保持
する第3マップとからなる。そして、上記第1マップで
合計容量が増減し、第1の圧縮機(1)の容量が最大値
(100%)の状態で、合計容量が110%に増大すると、第
2マップに移行して、第2の圧縮機(2)の容量がアン
ロード機構(2a)で0%から50%に増大調整されると共
に、第1の圧縮機(1)の容量がインバータ(15)で10
0%から60%に減少調整され、その後は、合計容量の増
減変化に応じてこの第2マップの各容量値を取り、第1
の圧縮機(1)の容量値が最小値の30%の状態で合計容
量が80%から70%に減少する場合には、上記第1マップ
に移行して、第2の圧縮機(2)の容量が0%に調整さ
れると共に、第1の圧縮機(1)の容量がインバータ
(15)で70%に調整される。
In addition, the capacity maps of the compressors (1) and (2) in Table 2 above show that when the total capacity is in the range of 30% to 100%, the capacity of the first compressor (1) is in steps of 10%. In the first map where the capacity of the second compressor (2) increases and the capacity of the second compressor (0) keeps 0% (stop), and the total capacity of the first compressor (1) is 80% to 150%. Capacity is the same as above
In the second map where the capacity of the second compressor (2) keeps 50% and increases in 10% increments, and the total capacity ranges from 130% to 200%, the first compressor (1) The capacity of the second compressor (2) increases by 10%, and the capacity of the second compressor (2) holds 100%. Then, when the total capacity increases or decreases in the first map and the total capacity increases to 110% in the state where the capacity of the first compressor (1) is the maximum value (100%), the process moves to the second map. , The capacity of the second compressor (2) is adjusted to be increased from 0% to 50% by the unload mechanism (2a), and the capacity of the first compressor (1) is adjusted by the inverter (15) to 10%.
It is adjusted to decrease from 0% to 60%, and then each capacity value of this second map is taken according to the increase and decrease of the total capacity,
When the total capacity decreases from 80% to 70% when the capacity value of the compressor (1) is 30% of the minimum value, the second compressor (2) is moved to the first map. Is adjusted to 0% and the capacity of the first compressor (1) is adjusted to 70% by the inverter (15).

同様に、第2マップで合計容量が増減し、第1の圧縮
機(1)の容量が最大値(100%)の状態で、合計容量
が150%から160%に増大すると、第3マップに移行し
て、第2の圧縮機(2)の容量がアンロード機構(2a)
で50%から100%に増大調整されると共に、第1の圧縮
機(1)の容量がインバータ(15)で100%から60%に
減少調整される。その後は、合計容量の増減変化に応じ
てこの第3マップの各容量値を取り、第1の圧縮機
(1)の容量値が最小値の30%の状態で合計容量が130
%から120%に減少する場合には、上記第2マップに移
行して、第2の圧縮機(2)の容量が100%から50%に
減少調整されると共に、第1の圧縮機(1)の容量がイ
ンバータ(15)で70%に調整される。
Similarly, if the total capacity increases or decreases on the second map and the total capacity increases from 150% to 160% with the capacity of the first compressor (1) at the maximum value (100%), the third map will appear. After the transition, the capacity of the second compressor (2) becomes the unload mechanism (2a).
The capacity of the first compressor (1) is adjusted to be reduced from 100% to 60% by the inverter (15) while being adjusted to be increased from 50% to 100%. After that, each capacity value of this third map is taken according to the increase or decrease in the total capacity, and the total capacity is 130% when the capacity value of the first compressor (1) is 30% of the minimum value.
When the first compressor (1) is reduced from 120% to 120%, the second map is moved to adjust the capacity of the second compressor (2) from 100% to 50%. ) Capacity is adjusted to 70% by the inverter (15).

上記のように、第4図の制御フローにより、冷媒循環
系統(14)における室内熱交換器(10)…の冷媒圧力相
当飽和温度T2が所定温度になるように上記圧縮機(1,
2)の容量を調節する容量可変手段(50)を構成してい
る。
As described above, according to the control flow of FIG. 4, the compressor (1, 1,) is adjusted so that the refrigerant pressure equivalent saturation temperature T 2 of the indoor heat exchangers (10) in the refrigerant circulation system (14) becomes a predetermined temperature.
A capacity changing means (50) for adjusting the capacity of 2) is configured.

而して、上記室外制御部(図示せず)は、上記第2図
のインジェクション用電磁弁(26)の開閉制御によるリ
キッドインジェクションにより、第1及び第2の圧縮機
(1),2)への吸込過熱度を所定値に保持制御するよう
機能すると共に、圧縮機(1),(2)からの吐出ガス
温度Tdの保護制御を第5図の制御フローに基いて行う機
能を併有する。
Then, the outdoor control unit (not shown) is connected to the first and second compressors (1), 2) by liquid injection by the opening / closing control of the injection solenoid valve (26) shown in FIG. Of the compressor (1) and (2) is protected based on the control flow of FIG. 5.

次に、この第5図の吐出ガス温度の保護フローを説明
する。スタートして、ステップSP1で吐出ガス温度保護
フラグF(保護時に1)の値を判別し、通常時はF=0
であるので、ステップSP2に進み、該ステップSP2で吐出
温度センサ(TH4)からの吐出ガス温度Tdの値を、圧縮
機(1),(2)の潤滑油の潤滑性能が良好に確保され
る上限温度値(例えば120℃)と大小比較し、Td>120℃
の場合には、吐出ガス温度の低下制御の必要時と判断し
て、ステップSP3で吐出ガス温度保護フラグFをF=1
に設定した後、ステップSP4で圧縮機(1),(2)の
合計容量の上限値Fmax(当初は200%)を10%下げる。
このことにより、200%の合計容量時には190%に低下し
て、圧縮比が下がり、その分、吐出ガス温度Tdも低下す
る。その後は、ステップSP5で吐出ガス温度Tdの制御周
期TMdのカウント用のタイマをリセットして上記ステッ
プS1戻る。
Next, the flow of protecting the discharge gas temperature in FIG. 5 will be described. After the start, the value of the discharge gas temperature protection flag F (1 at the time of protection) is determined at step S P1 , and F = 0 at the normal time.
Since it is, the process proceeds to step S P2, the value of the discharge gas temperature Td from the discharge temperature sensor (TH4) in the step S P2, the compressor (1), lubricating performance of the lubricating oil is secured satisfactorily in (2) Compared with the upper limit temperature value (for example, 120 ℃), Td> 120 ℃
In the case of, it is judged that it is necessary to control the decrease of the discharge gas temperature, and the discharge gas temperature protection flag F is set to F = 1 in step S P3.
Then, in step S P4 , the upper limit value Fmax (initially 200%) of the total capacity of the compressors (1) and (2) is reduced by 10%.
As a result, when the total capacity is 200%, it decreases to 190%, the compression ratio decreases, and the discharge gas temperature Td also decreases accordingly. After that, in step S P5 , the timer for counting the control cycle TMd of the discharge gas temperature Td is reset, and the process returns to step S 1 .

そして、以上の如く吐出ガス温度Tdの低下制御を開始
した後は、ステップSP1で吐出ガス温度保護フラグF=
1であるので、ステップSP6に進み、該ステップSP6で吐
出ガス温度Tdを、上記上限温度値(120℃)近傍の所定
範囲(例えば120℃≧Td≧110℃)の下限温度値(110
℃)と大小比較し、Td≧110℃の場合(NOの場合)は、
ステップSP7で圧縮機(1),(2)が運転中であるこ
とを条件に、ステップSP8で吐出ガス温度Tdの制御周期
(サンプリング時間)TMd(例えば15分)が経過してい
れば、ステップSP9で再び吐出ガス温度Tdを上限温度値
(120℃)と大小比較して、Td>120℃の場合には、その
低下制御を再び行うべく、ステップSP4に進んで圧縮機
(1),(2)の合計容量を10%下げる。一方、Td≦12
0℃の場合、つまり限界範囲内(120℃≧110℃)の場合
には、適正制御中と判断して、そのままステップSP1
戻る。
The above as is after the start of the reduction control of the discharged gas temperature Td, the discharge gas temperature protection flag F in step S P1 =
1, so that the process proceeds to step S P6, the discharge gas temperature Td in the step S P6, the upper temperature limit (120 ° C.) lower limit temperature value in a predetermined range in the vicinity (e.g. 120 ℃ ≧ Td ≧ 110 ℃) (110
℃), if Td ≧ 110 ℃ (NO),
If the compressors (1) and (2) are operating in step S P7 and the control cycle (sampling time) TMd (for example, 15 minutes) of the discharge gas temperature Td has elapsed in step S P8 , , In step S P9 , the discharge gas temperature Td is again compared with the upper limit temperature value (120 ° C.). If Td> 120 ° C., the process proceeds to step S P4 in order to perform the reduction control again, and the compressor ( Reduce the total capacity of 1) and (2) by 10%. On the other hand, Td ≦ 12
In the case of 0 ° C., that is, within the limit range (120 ° C. ≧ 110 ° C.), it is determined that the proper control is being performed, and the process directly returns to step S P1 .

一方、上記ステップSP6で吐出ガス温度TdがTd<110℃
の場合(YESの場合)には、潤滑油の性能が良好に確保
される安全領域にあるから、ステップSP10で吐出ガス温
度保護フラグFをF=0の初期設定した後、ステップS
P11で圧縮機(1),(2)の合計容量上限値Fmaxを200
%に戻して、ステップSP1に戻る。
On the other hand, in step S P6 above, the discharge gas temperature Td is Td <110 ° C.
In the case of (YES), it is in the safety region where the performance of the lubricating oil is well secured, so after the discharge gas temperature protection flag F is initialized to F = 0 in step S P10 ,
Set the total capacity upper limit Fmax of compressors (1) and (2) to 200 on P11.
%, And returns to step S P1 .

よって、上記第5図の制御フローにより、吐出温度セ
ンサ(TH4)からの吐出ガス温度Td信号を受け、吐出ガ
ス温度Tdが圧縮機用潤滑油の潤滑性能を良好に維持でき
る限界近傍の所定範囲(120℃≧Td≧110℃)を越えると
きには、上記圧縮機(1,2)の容量の上限値Fmaxを10%
低く規制し、上記所定範囲(120℃≧Td≧110℃)内にあ
るときにはその時に容量の上限値を維持し、この所定範
囲を下回るときには、容量の上限値の規制を解除して20
0%に戻すことを所定時間TMd(15分)毎に繰返すように
した容量規制手段(52)を構成している。
Therefore, according to the control flow of the above FIG. 5, the discharge gas temperature Td signal from the discharge temperature sensor (TH4) is received, and the discharge gas temperature Td is within a predetermined range near the limit where the lubricating performance of the compressor lubricating oil can be maintained well. When it exceeds (120 ° C ≧ Td ≧ 110 ° C), the upper limit Fmax of the capacity of the compressor (1,2) is set to 10%.
When the temperature is regulated to a low level and is within the above-mentioned predetermined range (120 ° C ≧ Td ≧ 110 ° C), the upper limit of the capacity is maintained at that time.
The capacity regulating means (52) is configured to repeat returning to 0% every predetermined time TMd (15 minutes).

したがって、上記実施例においては、室内ユニット
(B)〜(F)の冷房運転時、圧縮機(1),(2)の
合計目標容量L1が蒸発温度T2に基いて演算されると、こ
の目標合計容量L1に対応する容量段になるよう、インバ
ータ(15)及びアンロード機構(2a)が作動制御され
て、第1及び第2のの圧縮機(1),(2)の合計容量
が上記合計目標容量L1に精度良く調整される。その結
果、冷媒の蒸発温度T2がその目標値T2Oに良好に収束し
て、各室内が良好に冷房空調される。
Therefore, in the above embodiment, when the total target capacity L 1 of the compressors (1) and (2) is calculated based on the evaporation temperature T 2 during the cooling operation of the indoor units (B) to (F), The inverter (15) and the unload mechanism (2a) are operation-controlled so that the capacity stage corresponds to the target total capacity L 1, and the total of the first and second compressors (1) and (2) is The capacity is accurately adjusted to the above total target capacity L 1 . As a result, the evaporation temperature T 2 of the refrigerant is well converged to the target value T 2O , and each room is well cooled and air-conditioned.

その際、インジェクション用電磁弁(26)の開閉制御
により、リキッドインジェクションが行われて、圧縮機
(1),(2)への吸込過熱度が所定値に保持制御され
るものの、熱源側熱交換器(4)と各負荷側熱交換器
(10)…との間の大きな能力差に起因して負荷のバラン
ス次第では圧縮器(1),(2)の圧縮比が大きくな
り、その結果、吐出ガス温度Tdが上限温度値(120℃)
を越える場合がある。しかし、この場合には、圧縮機
(1),(2)の合計容量の上限値が容量規制手段(5
2)で10%低く規制されるので、圧縮機(1),(2)
の圧縮比がその分低くなって、吐出ガス温度Tdが低下す
る。
At that time, liquid injection is performed by opening / closing control of the injection solenoid valve (26), and suction superheat degree to the compressors (1) and (2) is controlled to be maintained at a predetermined value, but heat exchange on the heat source side. The compression ratio of the compressors (1) and (2) increases depending on the load balance due to the large capacity difference between the heat exchanger (4) and the load side heat exchangers (10). The discharge gas temperature Td is the upper limit temperature value (120 ° C)
May be exceeded. However, in this case, the upper limit value of the total capacity of the compressors (1) and (2) is the capacity regulating means (5
Since it is regulated 10% lower in 2), compressors (1), (2)
The compression ratio becomes lower by that amount, and the discharge gas temperature Td lowers.

そして、この吐出ガス温度Tdの低下制御後は、Td>12
0℃の場合には更に圧縮機(1),(2)の合計容量の
上限値が10%低く規制され、所定範囲内(120℃≧Td≧1
10℃)の場合にはその上限値を保持し、所定範囲を下回
れば合計容量の上限値の規制を解除して200%に戻すこ
とが所定時間TMd(15分)毎に繰返されるので、圧縮機
(1),(2)の合計容量の可及的高い値でもって運転
が続行されながら、吐出ガス温度Tdが低く制御されて、
常に上限温度値(120℃)未満に保持される。よって吐
出ガス温度Tdの過上昇に伴う保護装置の作動を未然に防
止して、運転の続行が可能になると共に、圧縮機用潤滑
油の潤滑性能を良好に維持して、圧縮機(1),(2)
の焼損を防止でき、その信頼制の向上を図ることができ
る。
After the discharge gas temperature Td is lowered, Td> 12
At 0 ° C, the upper limit of the total capacity of the compressors (1) and (2) is regulated to be 10% lower and within the predetermined range (120 ° C ≧ Td ≧ 1
In the case of 10 ° C), the upper limit value is maintained, and if it falls below the predetermined range, the regulation of the upper limit value of the total capacity is reset and returned to 200% is repeated every predetermined time TMd (15 minutes), so compression The discharge gas temperature Td is controlled low while the operation is continued with the highest possible value of the total capacity of the machines (1) and (2),
It is always kept below the upper temperature limit (120 ° C). Therefore, the operation of the protective device due to the excessive rise of the discharge gas temperature Td is prevented in advance, and the operation can be continued. At the same time, the lubricating performance of the lubricating oil for the compressor is maintained well, and the compressor (1) , (2)
Can be prevented and the reliability can be improved.

尚、上記実施例では、2台の圧縮機(1),(2)を
備えた空気調和装置に適用したが、その他、1台の圧縮
機のみを備えるものに対しても同様に適用できるのは勿
論のこと、暖房運転時でも同様に適用できる。
In the above embodiment, the air conditioner provided with the two compressors (1) and (2) is applied, but the present invention can be similarly applied to an air conditioner provided with only one compressor. Of course, the same can be applied during heating operation.

(発明の効果) 以上説明したように、本発明の冷凍装置の保護装置よ
れば、圧縮機の吐出ガス温度を検出し、所定時間毎の制
御時に該吐出ガス温度が圧縮機用潤滑油の性能を良好に
維持できる限界近傍の所定範囲に対して取る温度値に応
じて、圧縮機の容量値の上限値を規制,及びその解除を
行ったので、熱源側熱交換器と負荷側熱交換器との間で
能力が大きく異なる場合にも、圧縮機の容量を可及的に
大きく制御しつ、圧縮比の過大化を防止して、吐出ガス
温度の過上昇を防止することができ、よって保護装置の
作動を招かずに装置の連続運転が可能になると共に、圧
縮機用潤滑油の性能を良好に維持して圧縮機の焼損を防
止でき、信頼性の向上を図ることができる。
(Effects of the Invention) As described above, according to the protection device for a refrigeration system of the present invention, the discharge gas temperature of the compressor is detected, and the discharge gas temperature is the performance of the lubricating oil for the compressor during the control at every predetermined time. The upper limit value of the capacity value of the compressor was regulated and released according to the temperature value taken in a predetermined range near the limit where the heat can be maintained satisfactorily. Therefore, the heat source side heat exchanger and the load side heat exchanger Even if the capacities of the compressor and the compressor are significantly different, the compressor capacity can be controlled as large as possible to prevent the compression ratio from becoming excessive and prevent the discharge gas temperature from rising excessively. It is possible to continuously operate the device without inviting the operation of the protective device, maintain the performance of the lubricating oil for the compressor in good condition, prevent the compressor from burning, and improve the reliability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
ないし第5図は本発明の実施例を示し、第2図はマルチ
型式の空気調和機に適用した冷媒配管系統図、第3図は
第2の圧縮機の具体的な内部構成を示す図、第4図は圧
縮機の容量制御を示すフローチャート図、第5図は吐出
ガス温度の保護制御を示すフローチャート図である。 (1),(2)……第2の圧縮機、(2a)……アンロー
ド機構、(4)……熱源側熱交換器、(10)……負荷側
熱交換器(10)、(5),(11)……膨張機構、(14)
……冷媒配管系統、(15)……インバータ、(50)……
容量可変手段、(TH4)……吐出温度センサ、(52)…
…容量規制手段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 5 show an embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram applied to a multi-type air conditioner, and FIG. 3 is a specific internal configuration of the second compressor. FIG. 4 is a flow chart showing the capacity control of the compressor, and FIG. 5 is a flow chart showing the discharge gas temperature protection control. (1), (2) ... second compressor, (2a) ... unload mechanism, (4) ... heat source side heat exchanger, (10) ... load side heat exchanger (10), ( 5), (11) ... Expansion mechanism, (14)
…… Refrigerant piping system, (15) …… Inverter, (50) ……
Volume changer, (TH4) ... Discharge temperature sensor, (52) ...
… Capacity control means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 修 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (56)参考文献 特開 昭61−217651(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Tanaka 1304 Kanaoka-machi, Sakai City, Osaka Daikin Industry Co., Ltd., Kanaoka Factory, Sakai Manufacturing Co., Ltd. (56) Reference JP-A-61-217651 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】容量の調節自在な圧縮機(1,2)と、熱源
側熱交換器(4)と、膨張機構(5,11)と、負荷側熱交
換器(10)とで冷媒循環系統(14)を構成した冷凍装置
において、 上記冷媒循環系統(14)における負荷側熱交換器(10)
の冷媒圧力相当飽和温度が所定温度になるように上記圧
縮機(1,2)の容量を調節する容量可変手段(50)と、 上記圧縮機(1,2)からの吐出ガス温度を検出する吐出
ガス温度検出手段(TH4)と、 該吐出ガス温度検出手段(TH4)の出力を受け、上記容
量可変手段(50)に対し、吐出ガス温度が圧縮機用潤滑
油の潤滑性能を維持できる限界近傍の所定範囲を越える
ときには上記圧縮機(1,2)の容量の上限値であって容
量可変手段(50)の調節の上限値を低く規制し、上記所
定範囲内にあるときにはその時の容量の上限値を維持
し、所定範囲を下回るときには容量の上限値の規制を解
除することを所定時間毎に繰返す容量規制手段(52)と を備えたことを特徴とする冷凍装置の保護装置。
Claims: 1. Refrigerant circulation by a compressor (1, 2) with adjustable capacity, a heat source side heat exchanger (4), an expansion mechanism (5, 11), and a load side heat exchanger (10). In the refrigeration system constituting the system (14), the load side heat exchanger (10) in the refrigerant circulation system (14)
Of the capacity (50) of the compressor (1, 2) for adjusting the capacity of the compressor (1, 2) so that the saturation temperature corresponding to the refrigerant pressure becomes a predetermined temperature, and the temperature of the gas discharged from the compressor (1, 2) is detected The discharge gas temperature detecting means (TH4) and the output of the discharge gas temperature detecting means (TH4), the discharge gas temperature is limited to the capacity varying means (50) so that the lubricating performance of the lubricating oil for the compressor can be maintained. When the value exceeds the predetermined range in the vicinity, the upper limit value of the capacity of the compressor (1, 2) and the upper limit value of the adjustment of the capacity changing means (50) are restricted to a low value. A refrigerating machine protection device, comprising: a capacity regulating means (52) for maintaining the upper limit value and releasing the regulation of the upper limit value of the capacity when the value falls below a predetermined range.
JP62135564A 1987-05-29 1987-05-29 Refrigerator protection device Expired - Lifetime JPH0814435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135564A JPH0814435B2 (en) 1987-05-29 1987-05-29 Refrigerator protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135564A JPH0814435B2 (en) 1987-05-29 1987-05-29 Refrigerator protection device

Publications (2)

Publication Number Publication Date
JPS63297784A JPS63297784A (en) 1988-12-05
JPH0814435B2 true JPH0814435B2 (en) 1996-02-14

Family

ID=15154760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135564A Expired - Lifetime JPH0814435B2 (en) 1987-05-29 1987-05-29 Refrigerator protection device

Country Status (1)

Country Link
JP (1) JPH0814435B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830620B2 (en) * 1989-09-07 1996-03-27 ダイキン工業株式会社 Operation control device for air conditioner
JP2508867B2 (en) * 1990-01-19 1996-06-19 株式会社富士通ゼネラル Air conditioner control method
JP2508887B2 (en) * 1990-05-18 1996-06-19 株式会社富士通ゼネラル Air conditioner control method
JP3057486B2 (en) * 1997-01-22 2000-06-26 セイコー精機株式会社 Turbo molecular pump
JP3491629B2 (en) * 2001-03-28 2004-01-26 三菱電機株式会社 Piping cleaning device and piping cleaning method
JP4530056B2 (en) * 2008-02-11 2010-08-25 株式会社デンソー Heat pump type heating device
JP2013096602A (en) * 2011-10-28 2013-05-20 Panasonic Corp Refrigeration cycle device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217651A (en) * 1985-03-25 1986-09-27 松下電器産業株式会社 Overheat preventive controller for compressor of air conditioner

Also Published As

Publication number Publication date
JPS63297784A (en) 1988-12-05

Similar Documents

Publication Publication Date Title
JPH0814435B2 (en) Refrigerator protection device
JP3334601B2 (en) Air conditioner with natural circulation
JP2695288B2 (en) Multi-room air conditioner
JP2508043B2 (en) Compressor capacity control device for refrigeration equipment
JPH07243711A (en) Two-stage cooler
JP2002147819A (en) Refrigeration unit
JP2551238B2 (en) Operation control device for air conditioner
JP3356485B2 (en) Multi-room air conditioner
JP3306455B2 (en) Air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
JPH06100395B2 (en) Refrigeration system operation controller
JP3481274B2 (en) Separate type air conditioner
JPH07122521B2 (en) Capacity control device for compressor of refrigeration equipment
JPH0814432B2 (en) Refrigerator overload control device
JPH0814434B2 (en) Compressor capacity control device for refrigeration equipment
JPH06341719A (en) Operation controller for air conditioner
JPH061133B2 (en) Electric expansion valve controller for air conditioner
JP3059886B2 (en) Refrigeration equipment
JPH0733931B2 (en) Electric expansion valve controller for air conditioner
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JPH06100396B2 (en) Refrigerator protection device
JPH0730967B2 (en) Cooling / heating automatic switching device for air conditioner
JPS63180051A (en) Humid operation protective device for air conditioner
JPH06100382B2 (en) Refrigeration equipment
JPS63176968A (en) Low-temperature protective device for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 12