JPH052902B2 - - Google Patents

Info

Publication number
JPH052902B2
JPH052902B2 JP61216232A JP21623286A JPH052902B2 JP H052902 B2 JPH052902 B2 JP H052902B2 JP 61216232 A JP61216232 A JP 61216232A JP 21623286 A JP21623286 A JP 21623286A JP H052902 B2 JPH052902 B2 JP H052902B2
Authority
JP
Japan
Prior art keywords
compressor
opening degree
refrigerant
expansion valve
electric expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61216232A
Other languages
Japanese (ja)
Other versions
JPS6373059A (en
Inventor
Takashi Matsuzaki
Norifumi Maruyama
Akio Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61216232A priority Critical patent/JPS6373059A/en
Publication of JPS6373059A publication Critical patent/JPS6373059A/en
Publication of JPH052902B2 publication Critical patent/JPH052902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、運転容量を可変にする圧縮機を備え
た冷凍装置において、冷媒循環量に応じて電動膨
張弁の開度を制御するものに関する。 (従来の技術) 容量可変の圧縮機を備えた冷凍装置において、
従来より圧縮機の容量に応じて冷媒の減圧機構で
ある電動膨張弁の開度を大小制御するものが知ら
れている。 例えば、特開昭58−205057号公報に開示される
ごとく、運転周波数により圧縮機の容量を可変に
駆動するインバータを備え、室内負荷に応じてイ
ンバータの出力周波数を制御し、同時に該インバ
ータの出力周波数に応じて電動膨張弁の開度を固
定値に設定して、制御の応答性を高めるようにし
たものがある。 一方、例えば特開昭56−105272号公報に開示さ
れる如く、冷媒の凝縮圧力と蒸発能力との圧力差
に応じて減圧機構の減圧度を可変に調節する手段
を設けることにより、負荷の変動の大きい場合で
も適正な過冷却度を保持しようとするものは公知
の技術である。 (発明が解決しようとする問題点) しかしながら、上記前者の公報のものでは、電
動膨張弁の開度が単に圧縮機の容量に応じた固定
値に制御されるため、冷媒の状態の変化、例えば
蒸発温度や凝縮温度の変化に即応できず、冷媒の
過熱運転あるいは湿り運転となる状態が生じ、電
動膨張弁を常に適切な開度に制御できないという
問題がある。 一方、上記後者の公報のものでは、凝縮圧力と
蒸発圧力との差圧に応じて減圧度を変化させるた
め、圧縮機の容量が固定される装置では所定の効
果を得られるものの、圧縮機の容量が変化すると
所定の効果を得られない虞れが生じる。すなわ
ち、同じ圧力差でも圧縮機の容量が異なると冷媒
の循環量が変わつてくるからである。 本発明は斯かる点に鑑みてなされたものであ
り、その目的は、圧縮機の容量変化に対して、蒸
発温度と凝縮温度とをパラメータとする異なる適
正開度計算式に基づいて電動膨張弁の開度を制御
することにより、過熱運転あるいは湿り運転を防
止することにある。 (問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段
は、第1図に示すように、容量可変の圧縮機1、
凝縮器12、冷媒の減圧作用を行う電動膨張弁
8、および蒸発器6を順次接続した冷凍サイクル
を備えた冷凍装置を対象とする。そして、上記蒸
発器6における冷媒の蒸発温度を検出する蒸発温
度検出手段TH5と、上記凝縮器12における冷
媒の凝縮温度を検出する凝縮温度検出手段P1と
を設ける。さらに、上記圧縮機1の容量毎に、冷
媒の蒸発温度および凝縮温度をパラメータとし
て、容量で定まる冷媒循環量に適合するよう設定
された電動膨張弁8の適正開度計算式を記憶する
記憶手段50と、上記蒸発温度検出手段TH5お
よび凝縮温度検出手段P1の信号を受け、これら
の信号と圧縮機1の運転容量とに基づいて上記記
憶手段50の適正開度計算式により電動膨張弁8
の適正開度を演算する演算手段51と、該演算手
段51の信号を受け、電動膨張弁8の開度を上記
適正開度になるように制御する制御手段52とを
設ける構成としたものである。 (作用) 以上の構成により、本発明では、予め圧縮機1
の運転容量毎に、冷媒の蒸発温度および凝縮温度
とをパラメータとして、電動膨張弁8の適正開度
を計算する適正開度計算式が記憶手段50に記憶
されている。そして、冷凍装置の運転中に各凝縮
器12,…における冷凍負荷の変動等により圧縮
機1の運転容量が変化した時、変化後の運転容量
と、蒸発温度検出手段TH5により検出される蒸
発温度と、凝縮温度検出手段P1により検出され
る凝縮温度とに関する信号を受け、演算手段51
により上記記憶手段50の適正開度計算式に基づ
いて電動膨張弁8の適正開度が演算され、その演
算結果に応じて、制御手段52により電動膨張弁
8の開度が上記適正開度に制御される。 すなわち、冷凍負荷の変動に応じて圧縮機1の
容量が変化すると、冷媒循環量が変わるため、凝
縮温度及び蒸発温度が同じでも適正な過熱度を与
える電動膨張弁8の開度も変化することになる
が、本発明では、電動膨張弁8の開度が圧縮機1
の容量に応じて変化する冷媒循環量に適合した適
正開度にオープンループ制御されるので、ハンチ
ングを生じることなく安定な制御で過熱度が適正
範囲に保持され、過熱運転及び湿り運転が防止さ
れることになる。 (実施例) 以下、本発明の実施例を第2図以下の図面に基
づき説明する。 第2図は本発明を適用したマルチ型空気調和装
置の冷媒配管系統を示し、Aは室外ユニツト、B
〜Fが該室外ユニツトAに並列に接続された室内
ユニツトである。上記室外ユニツトAの内部に
は、出力周波数を30〜70Hzの範囲で10Hz毎に可変
に切換えられるインバータ2aにより容量が調整
される第1圧縮機1aと、パイロツト圧の高低で
差動するアンローダ2bにより容量がフルロード
(100%)およびアンロード(50%)状態の2段階
に調整される第2圧縮機1bとを逆止弁1eを介
して並列に接続して構成される圧縮機1と、該圧
縮機1から吐出されるガス中の油を分離する油分
離器4と、暖房運転時には図中実線の如く切換わ
り冷房運転時には図中破線の如く切換わる四路切
換弁5と、冷房運転時に凝縮器、暖房運転時に蒸
発器となる室外熱交換器6およびそのフアン6a
と、過冷却コイル7と、冷房運転時には冷媒流量
を調節し、暖房運転時には冷媒の絞り作用を行う
室外電動膨張弁8と、液化した冷媒を貯蔵するレ
シーバ9と、アキユムレータ10とが主要機器と
して内蔵されていて、該各機器1〜10は各々冷
媒の連絡配管11で冷媒の流通可能に接続されて
いる。また上記室内ユニツトB〜Fは同一構成で
あり、各々、冷房運転時には蒸発器、暖房運転時
には凝縮器となる室内熱交換器12…およびその
フアン12a…を備え、かつ該室内熱交換器12
…の液冷媒分岐管11a…には、暖房運転時に冷
媒流量を調節し、冷房運転時に冷媒の絞り作用を
行う室内電動膨張弁13…がそれぞれ介設されて
いて、該各室内ユニツトB〜Fは、各冷媒分岐管
11a…を手動閉鎖弁17を介設した連絡配管1
1bで並列に接続せしめて、室外ユニツトAに冷
媒循環可能に接続されている。また、TH1…は
各室内温度を検出する室温サーモスタツト、TH
2…およびTH3…は各々室内熱交換器12…の
液側およびガス側配管における冷媒の温度を検出
する温度センサ、TH4は圧縮機1の吐出管にお
ける冷媒の温度を検出する温度センサ、TH5は
暖房運転時に室外熱交換器6(蒸発器)における
蒸発温度を検出する蒸発温度検出手段としての温
度センサ、TH6は圧縮機1に吸入される吸入ガ
スの温度を検出する蒸発温度検出手段としての温
度センサ、P1は冷媒の凝縮温度を検出するため
に暖房運転時に吐出ガスの圧力を検知する凝縮温
度検出手段としての圧力センサである。 なお、第2図において上記各主要機器以外に補
助用の諸機器が設けられている。1fは第2圧縮
機1bのバイパス回路11cに介設されて、第2
圧縮機1bの停止時およびアンロード状態時に
「開」となり、フルロード状態で「閉」となるア
ンローダ用電磁弁、1gはキヤピラリーチユー
ブ、1hおよび1iは油分離器4から油戻し配管
11uを経て第1圧縮機1aおよび第2圧縮機1
bに潤滑油を戻す分岐管11vおよび11wに介
設されて返油量をコントロールするキヤピラリー
チユーブ、21は吐出管と吸入管とを接続する均
圧ホツトガスバイパス回路11dに介設されて、
冷房運転時室内熱交換器12(蒸発器)が低負荷
状態のときおよびデフロスト時等に開作動するホ
ツトガス用電磁弁である。また、11eは暖房過
負荷制御用バイパス回路であつて、該バイパス回
路11eには、補助コンデンサ22、第1逆止弁
23、暖房運転時室内熱交換器12(凝縮器)が
低負荷時のとき開作動する高圧制御弁24および
第2逆止弁25が順次直列に接続されており、そ
の一部には運転停止時に液封を防止するための液
封防止バイパス回路11fが第3逆止弁27およ
びキヤピラリーチユーブCP3を介して設けられ
ている。さらに、11gは上記暖房過負荷バイパ
ス回路11eの液冷媒側配管と主配管の吸入ガス
管との間を接続し、冷暖房運転時に吸入ガスの過
熱度を調節するためのリキツドインジエクシヨン
バイパス回路であつて、該リキツドインジエクシ
ヨンバイパス回路11gには圧縮機1のオン・オ
フと連動して開閉するインジエクシヨン用電磁弁
29と、感温筒TP1により検出される吸入ガス
の過熱度に応じて開度を調節される自動膨張弁3
0とが介設されている。 また、第2図中、F1〜F6は冷媒回路あるい
は油戻し管中に介設された液浄化用フイルタ、
HPSは圧縮機保護用の高圧圧力開閉器、SPはサ
ービスポートである。 そして、上記各電磁弁およびセンサ類は各主要
機器と共に後述の室外制御ユニツト15に信号線
で接続され、該室外制御ユニツト15は各室内制
御ユニツト16…に連絡配線によつて信号の授受
可能に接続されている。 第3図は上記室外ユニツトA側に配置される室
外制御ユニツト15の内部および接続される各機
器の配線関係を示す電気回路図である。図中、
MC1はインバータ2aの周波数変換回路INVに
接続された第1圧縮機1aのモータ、MC2は第
2圧縮機1bのモータ、MFは室外フアン6aの
モータ、52F,52C1および52C2は各々
フアンモータMF、周波数変換回路INVおよびモ
ータMC2を作動させる電磁接触器で、上記各機
器はヒユーズボツクスFS、漏電ブレーカBR1を
介して三相交流電源に接続されるとともに、室外
制御ユニツト15とは単相交流電源で接続されて
いる。次に、室外制御ユニツト15の内部にあつ
ては、電磁リレーの常開接点RY1〜RY7が単
相交流電流に対して並列に接続され、これらは順
に、四路切換弁5の電磁リレー20S、周波数変
換回路INVの電磁接触器52C1、第2圧縮機
1bの電磁接触器52C2、室外フアン用電磁接
触器52F、アンローダ用電磁弁1fの電磁リレ
ーSVL、ホツトガス用電磁弁21の電磁リレー
SVPおよびインジエクシヨン用電磁弁29の電
磁リレーSVTのコイルに直列に接続され、室外
制御ユニツト15に入力される室温サーモスタツ
トTH1および温度センサTH2〜TH6の信号
に応じて開閉されて、上記各電磁接触器あるいは
電磁リレーの接点を開閉させるものである。ま
た、端子CNには、室外電動膨張弁8の開度を調
節するパルスモータEVのコイルが接続されてい
る。なお、第3図右側の回路において、CH1,
CH2はそれぞれ第1圧縮機1a、第2圧縮機1
cのオイルフオーミング防止用ヒータで、それぞ
れ電磁接触器52C1,52C2と直列に接続さ
れ上記各圧縮機1a,1bが停止時に電流が流れ
るようになされている。さらに、51C2はモー
タMC2の過電流リレー、49C1,49C2は
それぞれ第1圧縮機1a、第2圧縮機1bの温度
上昇保護用スイツチ、63H1,63H2はそれ
ぞれ第1圧縮機1a、第2圧縮機1bの圧力上昇
保護用スイツチ、51FはフアンモータMFの過
電流リレーであつて、これらは直列に接続されて
起動時には電磁リレー30Fxをオン状態にし、
故障にはオフ状態にさせる保護回路を構成してい
る。そして、室外制御ユニツト15には破線で示
される室外制御装置15aが内蔵され、該室外制
御装置15aによつて各室内制御ユニツト16…
あるいは各センサ類から入力される信号に応じて
各機器の動作が制御される。 次に、第4図は室内制御ユニツト16の内部お
よび接続される各機器の主な配線を示す電気回路
図である。第4図で、MFは室内フアン12aの
モータで、単相交流電源を受けて各リレー端子
RY1〜RY3によつて風量を強風と弱風とに切
換え、暖房運転時室温サーモスタツトTH1の信
号による停止時のみ微風にするようになされてい
る。そして、室内制御ユニツト15のプリント基
板の端子CNには室内電動膨張弁13の開度を調
節するパルスモータEVが接続される一方、室温
サーモスタツトTH1および温度センサーTH2,
TH3の信号が入力されている。また、各室内制
御ユニツト16は室外制御ユニツト15に信号線
を介して信号の授受可能に接続されるとともに、
リモートコントロールスイツチRCSからは入力
可能に接続されている。そして、室内制御ユニツ
ト16には破線で示される室内制御装置16aが
内蔵され、該室内制御装置16aによつて、各セ
ンサ類あるいは室外制御ユニツト15からの信号
に応じて室内電動膨張弁13あるいは室内フアン
12aの動作が制御される。 第2図において、空気調和装置の暖房運転時、
冷媒はガス状態で圧縮機1により圧縮され、四路
切換弁5を経て各室内ユニツトB〜Fに分岐して
送られる。各室内ユニツトB〜Fでは、各室内熱
交換器12…で熱交換を受けて凝縮された後合流
し、室外ユニツトAで、レシーバ9に液貯蔵さ
れ、液状態で室外電動膨張弁8によつて絞り作用
を受けて室外熱交換器6で蒸発し、ガス状態とな
つて圧縮機1に戻る。 以上の冷媒の流れの暖房運転時において、室内
ユニツトB〜Fではその室内の空調負荷に応じて
調整される各室内電動膨張弁13…開度が制御さ
れ、全体の冷媒流量の各室内ユニツトB〜Fへの
分配流量が下記手順により決定される。 第5図は、室温サーモスタツトTH1の設定値
(Ts)と吸込空気温度(Ta)との偏差(Ta−
Ta)と室内電動膨張弁13の目標開度ARとの関
係を示すグラフであつて、ここに(Amax)は最
大開度、(Amin)は閉じる場合の最小制御開度、
Aoは全閉を示す。したがつて、偏差値(Ts−
Ta)が増大すると目標開度もリニアに増大する
ようになされている。 そして、室内制御ユニツト16は室温サーモス
タツトTH1の信号を受けて、所定のサンプリン
グ時間ごとに目標開度ARを演算して現在の開度
Aと比較し、室内電動膨張弁13の開度をAR<
Aのときには所定パルスずつ閉じ、AR>Aのと
きには所定パルスずつ開く開度変更信号を出力す
る。このように、室内電動膨張弁16の開度Aが
変更されて各開度に応じて冷媒流量が分配され
る。 次に、室外ユニツトAでは、各室内熱交換器1
2…(凝縮器)における冷媒の凝縮温度の平均値
Tcを一定に保持するために圧縮機1の容量制御
が行われる。 尚、凝縮温度Tcの制御目標値Tcsが室外制御
ユニツト15内部のスイツチにより、H,M,L
(H:Tcs=48℃、M:Tcs=46℃,L:Tcs=44
℃)の3通りに切換可能にしている。 まず、圧力センサP1により凝縮温度の平均値
Tcが検知されると、制御目標値Tcsとの差に応
じて下式により圧縮機1の運転周波数(容量)の
変更量ΔFkを求める。 ΔFk=Kc[{e(t)−e(t−Δt)} +(Δt/2Ti){e(t) +e(t−Δt)}] …(1) ここで、Kcはゲイン、e(t)は時刻tにおけ
る実側凝縮温度Tcと制御目標値tcsとの偏差値す
なわち、Te(t)−Tcs(t)、e(t−Δt)は同様
にサンプリング開始前の偏差値、Δtはサンプリ
ング時間、Tiは積分時間である。 そして、以上のように算出されたΔFkの値と
変更前の運転周波数Fkとの和に応じて、例えば
10Hzきざみで圧縮機1の運転容量が変更される。 ここで、第2圧縮機1bの運転容量は、フルロ
ード時で60Hz、アンロード時で30Hzとなるので、
第1圧縮機1aのインバータ2aの10Hzきざみの
容量変化と組み合わせることにより、合計0〜
130Hzの範囲で10Hzきざみに調節され得るもので
ある。 以上の手順により圧縮機1の運転周波数(容
量)が定められると、その運転容量に応じて室外
制御ユニツト15aにより室外電動膨張弁8の開
度制御が行われる。以下にその手順を説明する。 第6図は、室外制御ユニツト15に内蔵される
室外制御装置15aの信号伝達経路図である。第
6図において、40は室外制御ユニツト15の第
1圧縮機1a、及び第2圧縮機1bの運転容量を
検出するサンプリング回路、41および42はそ
れぞれ、第1圧縮機1aおよび第2圧縮機1cの
容量に応じた室外電動膨張弁の開度を演算する後
述の開度計算式を予め記憶する第1記憶回路およ
び第2記憶回路、43および44はそれぞれ該第
1記憶回路41および第2記憶回路42の記憶内
容に基づき、蒸発温度Teおよび凝縮温度Tcの値
に応じて室外電動膨張弁8の開度を演算する第1
演算回路および第2演算回路、45は該第1演算
回路43および第2演算回路44の演算結果を加
算する加算回路、46は上記加算回路45の信号
と室外電動膨張弁8のパルスモータEVの回転位
置から得られる現在の開度とを比較して、新開度
に変更するための信号を出力する比較回路、47
は該比較回路46の信号に応じてパルス信号を発
生するパルス発生回路である。 次に、第6図における信号の伝達経路を説明す
るにあたつて、上記第1記憶回路41、第2記憶
回路42に予め設定される室外電動膨張弁15の
開度計算式を決定する手順を説明する。 第7図は、インバータ1bの出力周波数に応じ
た第1圧縮機1aの運転容量、アンローダのフル
ロード、およびアンロード状態に応じた第2圧縮
機1bの運転容量に対して第7図温度センサTH
5により検出される冷媒の蒸発温度に対する圧縮
機1の容量一定時の流量特性の例を示すような蒸
発温度Teの上昇に対し冷媒循環量が増大する特
性曲線が圧力センサP1により検出される凝縮温
度Tcをパラメータとして求められる。一方、冷
媒流量と電動膨張弁の開度の間には、一般に電動
膨張弁の一定の差圧に対して第8図に示すように
開度の増大に対し冷媒流量がほぼリニアに増大す
る関係がある。したがつて、上記の関係より、第
1圧縮機1a、および第2圧縮機1bの各運転容
量に応じて、室外電動膨張弁8の開度Aが蒸発温
度Te、凝縮温度Tcの計算式として求められる。
例えば、 A=K1・Te・Tc+K2・Te+K3・ Tc+K4 …(2) と近似して、第7図および第8図の関係より数
値計算すれば、各定数K1〜K4が求められる。そ
の値の例を下記第1表に示す。
(Industrial Application Field) The present invention relates to a refrigeration system equipped with a compressor whose operating capacity is variable, in which the opening degree of an electric expansion valve is controlled according to the amount of refrigerant circulation. (Prior art) In a refrigeration system equipped with a variable capacity compressor,
2. Description of the Related Art Conventionally, it has been known to control the opening degree of an electric expansion valve, which is a refrigerant pressure reduction mechanism, in accordance with the capacity of a compressor. For example, as disclosed in Japanese Unexamined Patent Publication No. 58-205057, an inverter is provided that variably drives the capacity of a compressor depending on the operating frequency, and the output frequency of the inverter is controlled according to the indoor load, and at the same time the output of the inverter is There is one in which the opening degree of the electric expansion valve is set to a fixed value depending on the frequency to improve control responsiveness. On the other hand, as disclosed in JP-A-56-105272, for example, by providing means for variably adjusting the degree of pressure reduction of the pressure reduction mechanism according to the pressure difference between the condensation pressure and the evaporation capacity of the refrigerant, it is possible to It is a known technique to maintain an appropriate degree of supercooling even when the temperature is large. (Problem to be Solved by the Invention) However, in the former publication, the opening degree of the electric expansion valve is simply controlled to a fixed value according to the capacity of the compressor, so changes in the state of the refrigerant, e.g. There is a problem in that the refrigerant cannot immediately respond to changes in the evaporation temperature or condensation temperature, resulting in overheating or wet operation of the refrigerant, and the electric expansion valve cannot always be controlled to an appropriate opening degree. On the other hand, in the latter publication, the degree of pressure reduction is changed according to the differential pressure between the condensing pressure and the evaporation pressure, so although a certain effect can be obtained in a device where the capacity of the compressor is fixed, If the capacitance changes, there is a risk that the desired effect may not be obtained. That is, even if the pressure difference is the same, if the capacity of the compressor differs, the amount of refrigerant circulated will change. The present invention has been made in view of the above, and its purpose is to provide an electric expansion valve based on different appropriate opening calculation formulas using evaporation temperature and condensation temperature as parameters in response to changes in compressor capacity. The purpose is to prevent overheating or wet operation by controlling the opening degree of the valve. (Means for solving the problem) In order to achieve the above object, the solving means of the present invention includes a variable capacity compressor 1, as shown in FIG.
The object is a refrigeration system equipped with a refrigeration cycle in which a condenser 12, an electric expansion valve 8 that reduces the pressure of refrigerant, and an evaporator 6 are sequentially connected. An evaporation temperature detection means TH5 for detecting the evaporation temperature of the refrigerant in the evaporator 6 and a condensation temperature detection means P1 for detecting the condensation temperature of the refrigerant in the condenser 12 are provided. Further, storage means stores, for each capacity of the compressor 1, a formula for calculating the appropriate opening of the electric expansion valve 8, which is set to match the refrigerant circulation amount determined by the capacity, using the evaporation temperature and condensation temperature of the refrigerant as parameters. 50, the evaporating temperature detecting means TH5 and the condensing temperature detecting means P1, and based on these signals and the operating capacity of the compressor 1, the electric expansion valve 8 is determined by the appropriate opening calculation formula of the storing means 50.
A calculation means 51 for calculating the appropriate opening degree of the electric expansion valve 8, and a control means 52 for receiving the signal from the calculation means 51 and controlling the opening degree of the electric expansion valve 8 to the above-mentioned appropriate opening degree. be. (Function) With the above configuration, in the present invention, the compressor 1
An appropriate opening degree calculation formula for calculating the appropriate opening degree of the electric expansion valve 8 is stored in the storage means 50 for each operating capacity of the refrigerant, using the evaporation temperature and condensation temperature of the refrigerant as parameters. When the operating capacity of the compressor 1 changes due to changes in the refrigeration load in each condenser 12, etc. during operation of the refrigeration system, the operating capacity after the change and the evaporation temperature detected by the evaporation temperature detection means TH5 are determined. and the condensation temperature detected by the condensation temperature detection means P1, the calculation means 51
The appropriate opening degree of the electric expansion valve 8 is calculated based on the appropriate opening degree calculation formula in the storage means 50, and according to the calculation result, the opening degree of the electric expansion valve 8 is adjusted to the above-mentioned appropriate opening degree by the control means 52. controlled. In other words, when the capacity of the compressor 1 changes in response to fluctuations in the refrigeration load, the amount of refrigerant circulation changes, so even if the condensing temperature and evaporation temperature are the same, the opening degree of the electric expansion valve 8 that provides the appropriate degree of superheating also changes. However, in the present invention, the opening degree of the electric expansion valve 8 is the same as that of the compressor 1.
Open-loop control is performed to the appropriate opening degree that matches the refrigerant circulation amount, which changes depending on the capacity of the refrigerant, so the degree of superheating is maintained within the appropriate range with stable control without causing hunting, and overheating and wet operation are prevented. That will happen. (Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards. Figure 2 shows the refrigerant piping system of a multi-type air conditioner to which the present invention is applied, where A is the outdoor unit and B is the outdoor unit.
-F are indoor units connected in parallel to the outdoor unit A. Inside the outdoor unit A, there is a first compressor 1a whose capacity is adjusted by an inverter 2a whose output frequency is variably switched in 10Hz increments in the range of 30 to 70Hz, and an unloader 2b which operates differentially depending on the pilot pressure. The compressor 1 is configured by connecting in parallel via a check valve 1e a second compressor 1b whose capacity is adjusted in two stages: full load (100%) and unload (50%). , an oil separator 4 that separates oil from the gas discharged from the compressor 1; a four-way switching valve 5 that switches as shown by the solid line in the figure during heating operation and as shown by the broken line in the figure during cooling operation; The outdoor heat exchanger 6 and its fan 6a serve as a condenser during operation and an evaporator during heating operation.
The main equipment includes a subcooling coil 7, an outdoor electric expansion valve 8 that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, a receiver 9 that stores liquefied refrigerant, and an accumulator 10. Each of the devices 1 to 10 is connected through a refrigerant communication pipe 11 so that refrigerant can flow therein. In addition, the indoor units B to F have the same configuration, and are each equipped with an indoor heat exchanger 12 that serves as an evaporator during cooling operation and a condenser during heating operation, and its fans 12a...
The liquid refrigerant branch pipes 11a of... are respectively provided with indoor electric expansion valves 13 that adjust the refrigerant flow rate during heating operation and perform a throttling action on the refrigerant during cooling operation, and each of the indoor units B to F , each refrigerant branch pipe 11a... is connected to a connecting pipe 1 with a manual shutoff valve 17 interposed therebetween.
They are connected in parallel at 1b and connected to the outdoor unit A so that refrigerant can circulate there. In addition, TH1... is a room temperature thermostat that detects each room temperature, TH
2... and TH3... are temperature sensors that detect the temperature of the refrigerant in the liquid side and gas side piping of the indoor heat exchanger 12... respectively, TH4 is a temperature sensor that detects the temperature of the refrigerant in the discharge pipe of the compressor 1, and TH5 is a temperature sensor that detects the temperature of the refrigerant in the discharge pipe of the compressor 1. A temperature sensor serves as an evaporation temperature detection means to detect the evaporation temperature in the outdoor heat exchanger 6 (evaporator) during heating operation, and TH6 serves as an evaporation temperature detection means to detect the temperature of the suction gas taken into the compressor 1. A sensor P1 is a pressure sensor serving as a condensing temperature detecting means that detects the pressure of discharged gas during heating operation in order to detect the condensing temperature of the refrigerant. In addition, in FIG. 2, various auxiliary devices are provided in addition to the above-mentioned main devices. 1f is interposed in the bypass circuit 11c of the second compressor 1b, and the second
An unloader solenoid valve that opens when the compressor 1b is stopped and unloaded and closes when fully loaded; 1g is a capillary reach tube; 1h and 1i are oil return pipes 11u from the oil separator 4; The first compressor 1a and the second compressor 1
A capillary reach tube 21 is installed in the branch pipes 11v and 11w that return lubricating oil to control the amount of oil returned;
This is a hot gas electromagnetic valve that opens when the indoor heat exchanger 12 (evaporator) is in a low load state during cooling operation and during defrosting. Further, 11e is a heating overload control bypass circuit, and the bypass circuit 11e includes an auxiliary condenser 22, a first check valve 23, and an indoor heat exchanger 12 (condenser) during heating operation when the load is low. A high-pressure control valve 24 and a second check valve 25, which open when the operation is stopped, are connected in series, and part of them includes a liquid seal prevention bypass circuit 11f for preventing liquid seal when the operation is stopped. It is provided via a valve 27 and a capillary reach tube CP3. Furthermore, 11g is a liquid injector bypass circuit that connects between the liquid refrigerant side pipe of the heating overload bypass circuit 11e and the suction gas pipe of the main pipe, and adjusts the degree of superheat of the suction gas during heating and cooling operation. The liquid injection bypass circuit 11g includes an injection extraction solenoid valve 29 that opens and closes in conjunction with the on/off of the compressor 1, and a solenoid valve 29 that opens and closes in conjunction with the on/off of the compressor 1, and a solenoid valve 29 that responds to the degree of superheat of the intake gas detected by the temperature sensing tube TP1. Automatic expansion valve 3 whose opening degree is adjusted by
0 is interposed. In addition, in FIG. 2, F1 to F6 are liquid purification filters installed in the refrigerant circuit or oil return pipe,
HPS is a high pressure switch for compressor protection, and SP is a service port. The above-mentioned solenoid valves and sensors are connected to an outdoor control unit 15, which will be described later, by signal lines along with each main equipment, and the outdoor control unit 15 can send and receive signals to each indoor control unit 16 through connection wiring. It is connected. FIG. 3 is an electric circuit diagram showing the interior of the outdoor control unit 15 disposed on the outdoor unit A side and the wiring relationship of each connected device. In the diagram,
MC1 is the motor of the first compressor 1a connected to the frequency conversion circuit INV of the inverter 2a, MC2 is the motor of the second compressor 1b, MF is the motor of the outdoor fan 6a, 52F, 52C1 and 52C2 are each fan motor MF, This is an electromagnetic contactor that operates the frequency conversion circuit INV and motor MC2, and each of the above devices is connected to a three-phase AC power source via a fuse box FS and an earth leakage breaker BR1, and is connected to the outdoor control unit 15 by a single-phase AC power source. It is connected. Next, inside the outdoor control unit 15, the normally open contacts RY1 to RY7 of the electromagnetic relays are connected in parallel to the single-phase alternating current, and these are sequentially connected to the electromagnetic relay 20S of the four-way switching valve 5, Electromagnetic contactor 52C1 of frequency conversion circuit INV, electromagnetic contactor 52C2 of second compressor 1b, electromagnetic contactor 52F for outdoor fan, electromagnetic relay SVL of electromagnetic valve 1f for unloader, electromagnetic relay of electromagnetic valve 21 for hot gas.
The electromagnetic contacts mentioned above are connected in series to the coil of the electromagnetic relay SVT of the SVP and injection solenoid valve 29, and are opened and closed in response to signals from the room temperature thermostat TH1 and temperature sensors TH2 to TH6 input to the outdoor control unit 15. It opens and closes the contacts of a device or an electromagnetic relay. Further, a coil of a pulse motor EV that adjusts the opening degree of the outdoor electric expansion valve 8 is connected to the terminal CN. In addition, in the circuit on the right side of Figure 3, CH1,
CH2 is the first compressor 1a and the second compressor 1, respectively.
The oil forming prevention heater c is connected in series with the electromagnetic contactors 52C1 and 52C2, respectively, so that current flows when the compressors 1a and 1b are stopped. Furthermore, 51C2 is an overcurrent relay for motor MC2, 49C1 and 49C2 are temperature rise protection switches for first compressor 1a and second compressor 1b, respectively, and 63H1 and 63H2 are for first compressor 1a and second compressor 1b, respectively. The pressure rise protection switch 51F is the overcurrent relay for the fan motor MF, and these are connected in series and turn on the electromagnetic relay 30Fx at startup.
It has a protection circuit that turns it off in the event of a failure. The outdoor control unit 15 includes an outdoor control device 15a shown by a broken line, and the outdoor control device 15a controls each indoor control unit 16...
Alternatively, the operation of each device is controlled according to signals input from each sensor. Next, FIG. 4 is an electrical circuit diagram showing the interior of the indoor control unit 16 and the main wiring of each connected device. In Fig. 4, MF is the motor of the indoor fan 12a, which receives single-phase AC power and connects to each relay terminal.
The air volume is switched between strong and weak winds using RY1 to RY3, and the light breeze is set only when the heating operation is stopped by a signal from the room temperature thermostat TH1. A pulse motor EV for adjusting the opening degree of the indoor electric expansion valve 13 is connected to the terminal CN of the printed circuit board of the indoor control unit 15, while a room temperature thermostat TH1, a temperature sensor TH2,
TH3 signal is input. Further, each indoor control unit 16 is connected to the outdoor control unit 15 via a signal line so that signals can be sent and received.
It is connected for input from the remote control switch RCS. The indoor control unit 16 has a built-in indoor control device 16a shown by a broken line, and the indoor electric expansion valve 13 or the indoor The operation of the fan 12a is controlled. In Figure 2, during heating operation of the air conditioner,
The refrigerant is compressed in a gas state by a compressor 1, and is branched and sent to each of the indoor units B to F via a four-way switching valve 5. In each of the indoor units B to F, the water undergoes heat exchange in each of the indoor heat exchangers 12 and is condensed, and then merges. In the outdoor unit A, the liquid is stored in the receiver 9, and in a liquid state is passed through the outdoor motorized expansion valve 8. It is then evaporated in the outdoor heat exchanger 6 under the throttling action and returned to the compressor 1 in a gas state. During the heating operation of the above refrigerant flow, the opening degree of each indoor electric expansion valve 13 is controlled according to the indoor air conditioning load in indoor units B to F, and the opening degree of each indoor electric expansion valve 13 is controlled depending on the overall refrigerant flow rate. The distribution flow rate to ~F is determined by the following procedure. Figure 5 shows the deviation (Ta-
This is a graph showing the relationship between Ta) and the target opening AR of the indoor electric expansion valve 13, where (Amax) is the maximum opening, (Amin) is the minimum control opening when closing,
Ao indicates fully closed. Therefore, the deviation value (Ts−
As Ta) increases, the target opening degree also increases linearly. Then, the indoor control unit 16 receives the signal from the room temperature thermostat TH1, calculates the target opening degree AR at every predetermined sampling time, compares it with the current opening degree A, and adjusts the opening degree of the indoor electric expansion valve 13 to AR. <
When AR>A, an opening degree change signal is output which closes the opening by a predetermined pulse and opens by a predetermined pulse when AR>A. In this way, the opening degree A of the indoor electric expansion valve 16 is changed, and the refrigerant flow rate is distributed according to each opening degree. Next, in outdoor unit A, each indoor heat exchanger 1
2. Average value of refrigerant condensation temperature in (condenser)
Capacity control of the compressor 1 is performed to keep Tc constant. The control target value Tcs of the condensing temperature Tc is set to H, M, L by a switch inside the outdoor control unit 15.
(H: Tcs=48℃, M: Tcs=46℃, L: Tcs=44
It can be switched in three ways (°C). First, the average value of the condensing temperature is determined by pressure sensor P1.
When Tc is detected, the amount of change ΔFk in the operating frequency (capacity) of the compressor 1 is determined by the following formula according to the difference from the control target value Tcs. ΔFk=Kc [{e(t)−e(t−Δt)} +(Δt/2Ti){e(t) +e(t−Δt)}] …(1) Here, Kc is the gain, e(t ) is the deviation value between the actual condensing temperature Tc and the control target value tcs at time t, that is, Te (t) - Tcs (t), e (t - Δt) is the deviation value before the start of sampling, and Δt is the sampling Time, Ti is the integration time. Then, depending on the sum of the value of ΔFk calculated as above and the operating frequency Fk before change, for example,
The operating capacity of compressor 1 is changed in 10Hz steps. Here, the operating capacity of the second compressor 1b is 60Hz when fully loaded and 30Hz when unloaded, so
By combining the capacity change in 10Hz steps of the inverter 2a of the first compressor 1a, the total
It can be adjusted in 10Hz increments within a range of 130Hz. When the operating frequency (capacity) of the compressor 1 is determined by the above procedure, the opening degree of the outdoor electric expansion valve 8 is controlled by the outdoor control unit 15a according to the operating capacity. The procedure will be explained below. FIG. 6 is a signal transmission path diagram of the outdoor control device 15a built in the outdoor control unit 15. In FIG. 6, 40 is a sampling circuit for detecting the operating capacities of the first compressor 1a and the second compressor 1b of the outdoor control unit 15, and 41 and 42 are the first compressor 1a and the second compressor 1c, respectively. A first memory circuit and a second memory circuit 43 and 44, which store in advance an opening degree calculation formula described below for calculating the opening degree of the outdoor electric expansion valve according to the capacity of the outdoor electric expansion valve, are the first memory circuit 41 and the second memory circuit, respectively. A first circuit that calculates the opening degree of the outdoor electric expansion valve 8 according to the values of the evaporation temperature Te and the condensation temperature Tc based on the memory contents of the circuit 42.
An arithmetic circuit and a second arithmetic circuit, 45 an adder circuit that adds the arithmetic results of the first arithmetic circuit 43 and the second arithmetic circuit 44, and 46 a signal of the adder circuit 45 and the pulse motor EV of the outdoor electric expansion valve 8; a comparison circuit that compares the current opening degree obtained from the rotational position and outputs a signal for changing to a new opening degree; 47;
is a pulse generation circuit that generates a pulse signal in response to the signal from the comparison circuit 46. Next, in explaining the signal transmission path in FIG. 6, the procedure for determining the opening degree calculation formula of the outdoor electric expansion valve 15, which is preset in the first storage circuit 41 and the second storage circuit 42, will be explained. Explain. FIG. 7 shows the temperature sensor in FIG. T.H.
A characteristic curve in which the amount of refrigerant circulation increases with respect to an increase in the evaporation temperature Te, which is an example of the flow rate characteristic when the capacity of the compressor 1 is constant with respect to the evaporation temperature of the refrigerant detected by the pressure sensor P1, is detected by the pressure sensor P1. It is determined using temperature Tc as a parameter. On the other hand, there is generally a relationship between the refrigerant flow rate and the opening degree of the electric expansion valve, as shown in Figure 8 for a certain differential pressure of the electric expansion valve, the refrigerant flow rate increases almost linearly as the opening degree increases. There is. Therefore, from the above relationship, the opening degree A of the outdoor electric expansion valve 8 can be calculated as the evaporation temperature Te and condensation temperature Tc according to the operating capacities of the first compressor 1a and the second compressor 1b. Desired.
For example, by approximating A=K1・Te・Tc+K2・Te+K3・Tc+K4 (2) and performing numerical calculations from the relationships shown in FIGS. 7 and 8, each of the constants K1 to K4 can be obtained. Examples of the values are shown in Table 1 below.

【表】【table】

【表】 上記第1表において、左端の番号は圧縮機の区
別を示し、「1」第1圧縮機1a,「2」は第2圧
縮機1cである。 第1圧縮機1aおよび第2圧縮機1bの各運転
容量に対応して上記第1表の定数を用いた開度計
算式が、第6図の第1記憶回路41および第2記
憶回路42に予め記憶されている。 そして、第6図において、第1記憶回路41、
第2記憶回路42に設定された開度計算式に基づ
き第1演算回路43、第2演算回路44によつて
蒸発温度Te、凝縮温度Tcの値に応じて、第1圧
縮機1a、第2圧縮機1bの容量に対する室外電
動膨張弁8の開度A1,A2がそれぞれ演算され
る。例えば、第1圧縮機1bの運転容量が60Hz、
第2圧縮機1bの運転容量がフルロードのとき、 A1=−0.346・Te・Tc+24.6・ Te−7.08・Te+540 A2=−0.329・Te・Tc+23.0・ Te−6.63・Tc+504 で表される開度計算式に基づき演算が行われ
る。 次に、加算回路45により上記演算結果が加算
され、合計の開度A(=A1+A2)が算出された
後、比較回路46により現在の開度と比較され
る。そして、現在の開度との偏差分だけ増分する
ための信号が出力されて、パルス発生回路47に
よりパルス信号として出力され、パルスモータ
EVのステツプ数が変更されて室外電動膨張弁8
の開度が制御される。 上記第1記憶回路41および第2記憶回路42
により、圧縮機の運転容量毎に、蒸発温度Te、
凝縮温度Tcをパラメータとして、冷媒の循環量
に適合するよう設定された室外電動膨張弁15の
適正開度計算式(上記(2)式)予め記憶する記憶手
段50が構成され、第1演算回路43、第2演算
回路44、加算回路45および比較回路46によ
り、上記記憶手段50の記憶内容に基づき適正開
度を演算する演算手段51が構成されている。ま
た、パルス発生回路47およびパルスモータEV
により、上記演算手段51の演算結果に基づいて
室外電動膨張弁8の開度を適正開度になるように
制御する制御手段52が構成されている。 上記構成により、例えば室内ユニツトB〜Fが
配置されている室内の負荷が増すと第5図に示す
ように室内電動膨張弁13の開度が増大して平均
凝縮温度Tcが下降し、その変化に応じてTcを一
定に保持するように圧縮機1の運転容量が増大す
る。そして、増大した圧縮機1の運転容量、蒸発
温度および凝縮温度によつて定まる冷媒の循環量
に応じて室外電動膨張弁8の開度が修正される。
このように室内負荷変化後の制御状態において
Tcを一定に保持すべく圧縮機1の容量を変化さ
せる一方、そのときの圧縮機1の容量により定ま
る冷媒の流量に適合するよう室外電動膨張弁8の
開度が制御されるので、多数の室内熱交換器12
…を配置したマルチ型空気調和装置のように広範
な範囲で冷凍負荷が変化し、それに応じて圧縮機
1の容量が変化する場合にも、室外熱交換器6に
おける冷媒の比体積が適正範囲に保持されて過熱
度がほぼ適正範囲に保持されるのである。室内負
荷が減少する場合にも同様にして過熱度がほぼ適
正範囲に保持される。 以上の制御では空調負荷の変化に応じて、系が
変化するべき正常な制御状態を予測して圧縮機1
の容量に対する室外電動膨張弁8の開度を制御す
るので、きわめて速く応答するものであり、単に
過熱度を検知して例えばPID制御等により電動膨
張弁の開度をフイードバツク制御するときに生ず
るような制御遅れによるハンチングは生じない。
また、上記開度の変更により蒸発温度Teあるい
は凝縮温度Tcが変化したときにもすぐに開度を
補正して過熱度を適正範囲に保持するので、圧縮
機1の運転容量に対し室外電動膨張弁8の開度を
固定する方法に比べ、過熱運転あるいは湿り運転
に入るのが有効に防止されている。また制御の構
成も比較的簡素である。 以上、本発明をマルチ型空気調和装置に適用し
た例について説明したが、本発明はかかる実施例
に限定されるものではなく、例えば一台の室内ユ
ニツトのみを備えたいわゆるセパレート型空気調
和装置や給湯装置等についても適用しうるもので
ある。 (発明の効果) 以上説明したように、本発明によれば、容量可
変の圧縮機、凝縮器、電動膨張弁及び蒸発器を順
次接続した冷凍サイクルを備えた冷凍装置におい
て、圧縮機の容量毎に冷媒の凝縮温度及び蒸発温
度をパラメータとして圧縮機の容量から定まる圧
縮機の冷媒流量に適合するように設定された電動
膨張弁の適正開度計算式を予め記憶しておき、そ
の適正開度計算式に基づいて電動膨張弁の開度を
制御するようにしたので、広範な冷凍負荷の変動
に対してもハンチングのない安定な制御で過熱運
転および湿り運転を有効に防止することができ
る。また、制御のための構成も比較適簡素に済
む。
[Table] In Table 1 above, the numbers on the left end indicate the different compressors, and "1" is the first compressor 1a, and "2" is the second compressor 1c. Opening calculation formulas using the constants in Table 1 above are stored in the first storage circuit 41 and the second storage circuit 42 in FIG. It is stored in advance. In FIG. 6, the first memory circuit 41,
Based on the opening degree calculation formula set in the second storage circuit 42, the first arithmetic circuit 43 and the second arithmetic circuit 44 determine whether the first compressor 1a or the second compressor Opening degrees A1 and A2 of the outdoor electric expansion valve 8 with respect to the capacity of the compressor 1b are respectively calculated. For example, if the operating capacity of the first compressor 1b is 60Hz,
When the operating capacity of the second compressor 1b is at full load, it is expressed as A1=-0.346・Te・Tc+24.6・Te−7.08・Te+540 A2=−0.329・Te・Tc+23.0・Te−6.63・Tc+504 Calculations are performed based on the opening calculation formula. Next, the addition circuit 45 adds the above calculation results to calculate the total opening degree A (=A1+A2), which is then compared with the current opening degree by the comparison circuit 46. Then, a signal for incrementing by the deviation from the current opening degree is output, and the pulse generation circuit 47 outputs it as a pulse signal, and the pulse motor
The number of EV steps has been changed and outdoor electric expansion valve 8
The opening degree is controlled. The first memory circuit 41 and the second memory circuit 42
For each operating capacity of the compressor, the evaporation temperature Te,
A storage means 50 is configured to store in advance an appropriate opening degree calculation formula (formula (2) above) for the outdoor electric expansion valve 15 set to match the circulating amount of refrigerant using the condensing temperature Tc as a parameter, and the first calculation circuit 43, the second arithmetic circuit 44, the addition circuit 45, and the comparison circuit 46 constitute a calculation means 51 that calculates the appropriate opening degree based on the contents stored in the storage means 50. In addition, the pulse generation circuit 47 and the pulse motor EV
Thus, a control means 52 is configured which controls the opening degree of the outdoor electric expansion valve 8 to a proper opening degree based on the calculation result of the calculation means 51. With the above configuration, for example, when the load in the room where indoor units B to F are arranged increases, the opening degree of the indoor electric expansion valve 13 increases and the average condensing temperature Tc decreases, as shown in FIG. Accordingly, the operating capacity of the compressor 1 increases so as to keep Tc constant. Then, the opening degree of the outdoor electric expansion valve 8 is corrected in accordance with the refrigerant circulation amount determined by the increased operating capacity of the compressor 1, evaporation temperature, and condensation temperature.
In this way, in the control state after changing the indoor load,
While the capacity of the compressor 1 is changed to keep Tc constant, the opening degree of the outdoor electric expansion valve 8 is controlled to match the flow rate of refrigerant determined by the capacity of the compressor 1 at that time. Indoor heat exchanger 12
Even when the refrigerating load changes over a wide range and the capacity of the compressor 1 changes accordingly, as in a multi-type air conditioner equipped with..., the specific volume of the refrigerant in the outdoor heat exchanger 6 is within the appropriate range. The degree of superheat is maintained within an approximately appropriate range. Even when the indoor load decreases, the degree of superheat is maintained within an approximately appropriate range in the same manner. The above control predicts the normal control state in which the system should change in response to changes in the air conditioning load, and
Since it controls the opening degree of the outdoor electric expansion valve 8 with respect to the capacity of No hunting occurs due to control delay.
In addition, even when the evaporation temperature Te or condensation temperature Tc changes due to the above-mentioned change in the opening degree, the opening degree is immediately corrected to maintain the degree of superheat within the appropriate range. Compared to the method of fixing the opening degree of the valve 8, overheating or wet operation is effectively prevented. Furthermore, the control configuration is relatively simple. Although an example in which the present invention is applied to a multi-type air conditioner has been described above, the present invention is not limited to such an embodiment. It can also be applied to water heaters, etc. (Effects of the Invention) As explained above, according to the present invention, in a refrigeration system equipped with a refrigeration cycle in which a variable capacity compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected, each capacity of the compressor is A formula for calculating the appropriate opening of the electric expansion valve, which is set to match the refrigerant flow rate of the compressor determined from the capacity of the compressor using the refrigerant condensation temperature and evaporation temperature as parameters, is stored in advance, and the appropriate opening is calculated. Since the opening degree of the electric expansion valve is controlled based on a calculation formula, overheating operation and wet operation can be effectively prevented with stable control without hunting even over a wide range of refrigeration load fluctuations. Furthermore, the configuration for control is relatively simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す冷媒系統図であ
る。第2図〜第8図は本発明の実施例を示し、第
2図はその冷媒系統図、第3図は室外制御ユニツ
トの電気回路図、第4図は室内制御ユニツトの電
気回路図、第5図は室温サーモスタツトの設定値
と吸込空気温度との偏差(Ts−Ta)と室内電動
膨張弁13の開度との関係を示すグラフ、第6図
は室外制御装置の内部構成を示す信号伝達回路
図、第7図は蒸発温度Teと冷媒流量との関係を
示す圧縮機の特性線図、第8図は室外電動膨張弁
の開度と冷媒流量との関係を示す特性線図であ
る。 1……圧縮機、6……室外熱交換器(蒸発器)、
8……室外電動膨張弁、12……室内熱交換器
(凝縮器)、50……記憶手段、51……演算手
段、52……制御手段、TH5……温度センサ
(蒸発温度検出手段)、P1……圧力センサ(凝縮
温度検出手段)。
FIG. 1 is a refrigerant system diagram showing the configuration of the present invention. 2 to 8 show embodiments of the present invention, FIG. 2 is a refrigerant system diagram, FIG. 3 is an electric circuit diagram of the outdoor control unit, FIG. 4 is an electric circuit diagram of the indoor control unit, and FIG. Figure 5 is a graph showing the relationship between the deviation (Ts - Ta) between the set value of the room temperature thermostat and the intake air temperature and the opening degree of the indoor electric expansion valve 13, and Figure 6 is a graph showing the internal configuration of the outdoor control device. The transmission circuit diagram, Fig. 7 is a characteristic line diagram of the compressor showing the relationship between the evaporation temperature Te and the refrigerant flow rate, and Fig. 8 is a characteristic line diagram showing the relationship between the opening degree of the outdoor electric expansion valve and the refrigerant flow rate. . 1...Compressor, 6...Outdoor heat exchanger (evaporator),
8...Outdoor electric expansion valve, 12...Indoor heat exchanger (condenser), 50...Storage means, 51...Calculation means, 52...Control means, TH5...Temperature sensor (evaporation temperature detection means), P1...Pressure sensor (condensing temperature detection means).

Claims (1)

【特許請求の範囲】[Claims] 1 容量可変の圧縮機1、凝縮器12、冷媒の減
圧作用を行う電動膨張弁8、および蒸発器6を順
次接続した冷凍サイクルを備えた冷凍装置におい
て、上記蒸発器6における冷媒の蒸発温度を検出
する蒸発温度検出手段TH5と、上記凝縮器12
における冷媒の凝縮温度を検出する凝縮温度検出
手段P1とを備えるとともに、圧縮機1の容量毎
に、冷媒の蒸発温度および凝縮温度をパラメータ
として、容量で定まる冷媒循環量に適合するよう
設定された電動膨張弁8の適正開度計算式を記憶
する記憶手段50と、上記蒸発温度検出手段TH
5および凝縮温度検出手段P1の信号を受け、こ
れらの信号と圧縮機1の運転容量とに基づいて上
記記憶手段50の適正開度計算式により電動膨張
弁8の適正開度を演算する演算手段51と、該演
算手段51の信号を受け、電動膨張弁8の開度を
上記適正開度になるように制御する制御手段52
とを備えたことを特徴とする冷凍装置。
1. In a refrigeration system equipped with a refrigeration cycle in which a variable capacity compressor 1, a condenser 12, an electric expansion valve 8 for reducing the pressure of refrigerant, and an evaporator 6 are sequentially connected, the evaporation temperature of the refrigerant in the evaporator 6 is determined. evaporation temperature detection means TH5 to detect and the condenser 12
and a condensation temperature detection means P1 for detecting the condensation temperature of the refrigerant in the compressor 1, and the evaporation temperature and condensation temperature of the refrigerant are set as parameters for each capacity of the compressor 1 to match the refrigerant circulation amount determined by the capacity. a storage means 50 for storing an appropriate opening degree calculation formula for the electric expansion valve 8; and the evaporation temperature detection means TH.
5 and the condensing temperature detection means P1, and calculates the appropriate opening degree of the electric expansion valve 8 based on the appropriate opening degree calculation formula of the storage means 50 based on these signals and the operating capacity of the compressor 1. 51, and a control means 52 which receives the signal from the calculation means 51 and controls the opening degree of the electric expansion valve 8 to the above-mentioned appropriate opening degree.
A refrigeration device characterized by comprising:
JP61216232A 1986-09-13 1986-09-13 Refrigerator Granted JPS6373059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61216232A JPS6373059A (en) 1986-09-13 1986-09-13 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61216232A JPS6373059A (en) 1986-09-13 1986-09-13 Refrigerator

Publications (2)

Publication Number Publication Date
JPS6373059A JPS6373059A (en) 1988-04-02
JPH052902B2 true JPH052902B2 (en) 1993-01-13

Family

ID=16685346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61216232A Granted JPS6373059A (en) 1986-09-13 1986-09-13 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6373059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135842A1 (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Refrigeration apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648275Y2 (en) * 1988-06-13 1994-12-12 三菱重工業株式会社 heat pump
JPH0814438B2 (en) * 1988-09-09 1996-02-14 三菱電機株式会社 Multi-room air conditioner
JP2921254B2 (en) * 1992-03-24 1999-07-19 ダイキン工業株式会社 Refrigeration equipment
JP3335037B2 (en) * 1995-04-17 2002-10-15 サンデン株式会社 Vehicle air conditioner
FR2862573B1 (en) * 2003-11-25 2006-01-13 Valeo Climatisation AIR CONDITIONING INSTALLATION OF VEHICLE
JP5165391B2 (en) * 2008-01-07 2013-03-21 ホシザキ電機株式会社 Cooling storage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105272A (en) * 1980-01-25 1981-08-21 Nippon Denso Co Refrigerator
JPS56122860A (en) * 1980-03-04 1981-09-26 Asahi Chem Ind Co Ltd Flame-retardant polyamide film
JPS5714156A (en) * 1980-06-27 1982-01-25 Matsushita Electric Ind Co Ltd Airconditioning equipment
JPS594867A (en) * 1982-06-30 1984-01-11 株式会社日立製作所 Controller for flow rate of refrigerant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105272A (en) * 1980-01-25 1981-08-21 Nippon Denso Co Refrigerator
JPS56122860A (en) * 1980-03-04 1981-09-26 Asahi Chem Ind Co Ltd Flame-retardant polyamide film
JPS5714156A (en) * 1980-06-27 1982-01-25 Matsushita Electric Ind Co Ltd Airconditioning equipment
JPS594867A (en) * 1982-06-30 1984-01-11 株式会社日立製作所 Controller for flow rate of refrigerant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016135842A1 (en) * 2015-02-24 2016-09-01 三菱電機株式会社 Refrigeration apparatus
JPWO2016135842A1 (en) * 2015-02-24 2017-09-07 三菱電機株式会社 Refrigeration equipment

Also Published As

Publication number Publication date
JPS6373059A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
JPH02126044A (en) Operation control device for air conditioning device
JPH052902B2 (en)
JPH02208469A (en) Air conditioner
JPS6373052A (en) Oil recovery operation controller for refrigerator
JPH0217358A (en) Degree of overheat control device for freezing device
JP2508347B2 (en) Heat pump system
JPH0784956B2 (en) Operation control device for air conditioner
JPH0221165A (en) Operation controller for air conditioner
JPH052901B2 (en)
JPH0650197B2 (en) Refrigerator control device
JPH02230055A (en) Operation control device for air conditioner
JPH01155147A (en) Controller for refrigerator
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JPS63161342A (en) Electrical expansion valve control device for air conditioner
JPH0550665B2 (en)
JPH02230063A (en) Capacity control device for air conditioner
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPS63180050A (en) Electric expansion valve controller for air conditioner
JPH0381061B2 (en)
JPS63187070A (en) Air conditioner
JPH02272259A (en) Device for preventing heat shock for air conditioner
JPH02272249A (en) Operation control device for air conditioner
JPS63176949A (en) Air conditioner
JPH0252956A (en) Refrigerating apparatus
JPH01147259A (en) Compressor capacity controller for refrigerator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term