JPH02230063A - Capacity control device for air conditioner - Google Patents

Capacity control device for air conditioner

Info

Publication number
JPH02230063A
JPH02230063A JP1048275A JP4827589A JPH02230063A JP H02230063 A JPH02230063 A JP H02230063A JP 1048275 A JP1048275 A JP 1048275A JP 4827589 A JP4827589 A JP 4827589A JP H02230063 A JPH02230063 A JP H02230063A
Authority
JP
Japan
Prior art keywords
capacity
compressor
heat exchanger
refrigerant
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1048275A
Other languages
Japanese (ja)
Inventor
Masaki Yamamoto
山本 政樹
Shinichi Nakaishi
中石 伸一
Takashi Matsuzaki
隆 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1048275A priority Critical patent/JPH02230063A/en
Publication of JPH02230063A publication Critical patent/JPH02230063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To improve a cooling capability and a control responding characteristic by a method wherein in case of performing a cooling operation and controlling a capacity of a compressor so as to cause a saturation temperature corresponding to an evaporation pressure to be converged to a control target value, the control target value is varied to be lowered when a requested capability of an indoor unit is more than a predetermined value. CONSTITUTION:In case of performing a cooling operation, an output from an evaporating temperature sensing means P1 for use in sensing a saturation temperature corresponding to an evaporation pressure of refrigerant is received, and an operating amount of a compressor 1 is controlled by a capacity control means 51 in such a way as a saturation temperature corresponding to an evaporation pressure of the refrigerant is converged into a predetermined target value. When an output of a request capability sensing means TH1 for sensing a request capability in respect to a utilization side heat exchanger 12 is received and the request capability is larger than the predetermined value, the control target value is lowered by the varying means 52. With this arrangement, even in case of having a certain limitation in the operating capacity of the compressor 1, a lowered pressure causes a cooling capability of the utilization side heat exchanger 12 to be increased. As this operation continues, the operating capacity of the compressor 1 is controlled by the capacity control means 51 to its higher volume side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷媒の物理状態量が制御目標値に収束するよ
う制御する空気調和装置の容量制御装置に係り、特に、
空調能力の向上対策に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a capacity control device for an air conditioner that controls the physical state quantity of a refrigerant to converge to a control target value, and in particular,
Regarding measures to improve air conditioning capacity.

(従来の技術) 従来より、例えば実開昭58−69764号公報に開示
される如く、冷媒回路を備えた空気調和装置において、
室内熱交換器と四路切換弁との間で、例えば冷房運転時
、低圧つまり蒸発圧力相当飽和温度が所定の制御目標値
に収束するように、圧縮機の運転容量を制御することに
より、冷媒回路内の冷媒循環量を適切な値に確保しよう
とするものは知られている。
(Prior Art) Conventionally, in an air conditioner equipped with a refrigerant circuit, as disclosed in, for example, Japanese Utility Model Application Publication No. 58-69764,
Between the indoor heat exchanger and the four-way switching valve, for example, during cooling operation, the operating capacity of the compressor is controlled so that the low pressure, that is, the saturation temperature equivalent to the evaporation pressure, converges to a predetermined control target value. It is known that attempts are made to ensure the amount of refrigerant circulated within the circuit at an appropriate value.

(発明が解決しようとする課題) ところで、上記のような低圧一定制御における制御につ
いてみると、例えば冷房運転時、室内熱交換器の負荷が
増大するにつれて、低圧が上昇し、その上昇した低圧を
低下させるべく圧縮機の運転容量が高容量に制御され、
所定の冷媒循環量を確保することにより、空調能力を増
大するよう制御される。
(Problem to be Solved by the Invention) By the way, looking at the constant low pressure control described above, for example, during cooling operation, as the load on the indoor heat exchanger increases, the low pressure increases, and the increased low pressure is The operating capacity of the compressor is controlled to a high capacity to reduce
By ensuring a predetermined amount of refrigerant circulation, the air conditioning capacity is controlled to increase.

しかしながら、低圧を常に一定にするよう制御すると、
特に圧縮機の運転容量に限界がある場合等、要求能力を
満足するのに十分な熱交換能力を確保できない場合があ
りうる。
However, if the low pressure is controlled to be constant,
In particular, when there is a limit to the operating capacity of the compressor, there may be cases where sufficient heat exchange capacity cannot be secured to satisfy the required capacity.

また、制御目標値への収束性の点からも不十分な場合が
ある。例えば、第7図に示すように、当初は速やかに制
御目標値に達しようとするが、制御目標値に近付くにつ
れて収束速度を遅めつつ近付くこととなって、$リ御目
標値に一致するまでには、どうしてもかなりの長い時間
を要することになる。
Furthermore, there may be cases where the convergence to the control target value is insufficient. For example, as shown in Figure 7, initially the control target value is attempted to be reached quickly, but as it approaches the control target value, the convergence speed slows down and approaches the control target value. It will inevitably take quite a long time.

本発明は斯かる諸点に鑑みてなされたものであり、その
目的は、特に、要求能力が増大した場合、その変化に応
じた制御目標値に変更することにより、能力および制御
の応答性の向上を図ることにある。
The present invention has been made in view of the above points, and its purpose is to improve the capacity and control responsiveness by changing the control target value in accordance with the change, especially when the required capacity increases. The aim is to achieve this goal.

(課題を解決するための手段) 上記目的を達成するため第1の解決手段は、冷房運転時
、蒸発圧力相当飽和温度を一定とする圧縮機の容量制御
を行いながら、要求能力が大きいときにはその制御目標
値を低く変更することにある。
(Means for solving the problem) In order to achieve the above object, the first solution is to control the capacity of the compressor to keep the evaporation pressure equivalent saturation temperature constant during cooling operation, and when the required capacity is large, the The goal is to change the control target value to a lower value.

具体的には、第1図に示すように、運転容量の可変な圧
縮機(1)、熱源側熱交換器(6)および利用側熱交換
器(12)を備えた冷媒回路(14)を有する空気調和
装置を前提とする。
Specifically, as shown in Fig. 1, a refrigerant circuit (14) equipped with a variable operating capacity compressor (1), a heat source side heat exchanger (6), and a user side heat exchanger (12) is constructed. This assumes an air conditioner with

そして、空気調和装置の運転制御装置として、冷房運転
時、冷媒の蒸発圧力相当飽和温度を検出する蒸発温度検
出手段(P1)と、該蒸発温度検出手段(P1)の出力
を受け、冷媒の蒸発圧力相当飽和温度が所定の制御目標
値に収束するように圧縮機(1)の運転容量を制御する
容量制御手段(51)と、上記利用側熱交換器(12)
に対する要求能力を検出する要求能力検出手段(TH1
)と、該要求能力検出手段(TR1)の出力を受け、要
求能力が所定値よりも大きいときには上記制御目標値を
低くするよう変更する変更手段(52)とを設ける構成
としたものである。
The operation control device of the air conditioner includes an evaporation temperature detection means (P1) that detects the saturation temperature corresponding to the evaporation pressure of the refrigerant during cooling operation, and an evaporation temperature detection means (P1) that receives the output of the evaporation temperature detection means (P1) and detects the evaporation of the refrigerant. Capacity control means (51) for controlling the operating capacity of the compressor (1) so that the pressure equivalent saturation temperature converges to a predetermined control target value, and the user-side heat exchanger (12).
Required capability detection means (TH1) that detects the required capability for
), and a changing means (52) which receives the output of the required capacity detecting means (TR1) and changes the control target value to a lower value when the required capacity is greater than a predetermined value.

第2の解決手段は、暖房運転時、凝縮圧力相当飽和温度
を一定とする圧縮機の容ffi $!I gaを行いな
がら、要求能力が大きいときにはその制御目標値を高《
変更することにある。
The second solution is to keep the condensing pressure equivalent saturation temperature constant during heating operation. While performing Iga, if the required capacity is large, the control target value is increased.
It's about changing.

具体的には、第2図に示すように、第1の解決手段と同
様の空気調和装置を前提とし、空気調和装置の運転制御
装置として、暖房運転時、冷媒の凝縮圧力相当飽和温度
を検出する凝縮温度検出手段(P1)と、該凝縮温度検
出手段(P1)の出力を受け、冷媒の凝縮圧力相当始和
温度が所定の制御目標値に収束するように圧縮機(1)
の運転容量を制御する容量制御手段(51)と、上記利
用側熱交換器(12)に対する要求能力を検出する要求
能力検出手段(TH1)と、該要求能力検出手段(TH
1)の出力を受け、要求能力が所定値よりも大きいとき
には上記制御目標値を低くするよう変更する変更手段(
52)とを設ける構成としたものである。
Specifically, as shown in Fig. 2, assuming an air conditioner similar to the first solution, the operation control device of the air conditioner detects the saturation temperature corresponding to the condensation pressure of the refrigerant during heating operation. and a compressor (1) that receives the output of the condensing temperature detecting means (P1) so that the initial temperature corresponding to the condensing pressure of the refrigerant converges to a predetermined control target value.
capacity control means (51) for controlling the operating capacity of the heat exchanger (12); required capacity detection means (TH1) for detecting the required capacity for the utilization side heat exchanger (12);
Changing means (1) that receives the output of step 1) and changes the control target value to a lower value when the required capacity is larger than a predetermined value.
52).

第3の解決手段は、上記第1又は第2の解決手段におい
て、利用側熱交換器(12)を複数個設け、各々圧縮機
(1)および熱源側熱交換器(6)に対して並列に接続
するとともに、要求能力検出手段(TH1)を各利用側
熱交換器(12).・・・に対応して複数個設けたもの
である。
A third solution is to provide a plurality of user-side heat exchangers (12) in parallel with the compressor (1) and the heat source-side heat exchanger (6) in the first or second solution. At the same time, the required capacity detection means (TH1) is connected to each user-side heat exchanger (12). A plurality of them are provided in response to...

(作用) 以上の構成により、請求項(1)の発明では、冷房運転
時、要求能力が増大して所定値よりも大きくなると、そ
れに加えて変更手段(52)により低圧の制御目標値が
低くなるよう変更され、圧縮機(1)の運転容量に限界
がある場合にも、低圧が低下することで利用側熱交換器
(12)の冷却能力が増大することになる。
(Function) With the above configuration, in the invention of claim (1), when the required capacity increases and becomes larger than a predetermined value during cooling operation, the changing means (52) lowers the low pressure control target value. Even if there is a limit to the operating capacity of the compressor (1), the cooling capacity of the utilization side heat exchanger (12) will increase as the low pressure decreases.

また、それに伴ない、容量制御手段(51)により圧縮
機(1)の運転容量がさらに高容量側に制御されるので
、通常の低圧一定制御におけるよりも冷媒循環量の増大
が顕著となり、利用側熱交換器(12)の能力が可及的
に向上することになる。
In addition, since the operating capacity of the compressor (1) is controlled to a higher capacity side by the capacity control means (51), the refrigerant circulation amount increases more markedly than in normal low-pressure constant control. The capacity of the side heat exchanger (12) will be improved as much as possible.

さらに、そのことにより、低圧が速やかに低下して、要
求能力の増大から制御が定常状態に収束するまでに要す
る時間が低減され、制御目標値Tesへの収束性が向上
する。
Furthermore, as a result, the low pressure is quickly reduced, and the time required for control to converge to a steady state from an increase in required capacity is reduced, and convergence to the control target value Tes is improved.

請求項(′2Jの発明では、暖房運転時、高圧をパラメ
ータとして、上記請求項(1)の発明と同様の作用が行
われ、速やかに利用側熱交換器(12)の能力が向上す
ることになる。
In the invention of claim ('2J), during heating operation, the same effect as in the invention of claim (1) is performed using high pressure as a parameter, and the capacity of the user-side heat exchanger (12) is immediately improved. become.

請求項(3)の発明では、複数の利用側熱交換器(12
).・・・について、上記請求項{1}又は(2)の発
明の作用が行われ、要求能力の低い利用側熱交換器(1
2)の余剰能力が高能力要求側にまわされ、能力が著し
く向上することになる。
In the invention of claim (3), a plurality of user-side heat exchangers (12
). Regarding ..., the effect of the invention of the above claim {1} or (2) is performed, and the user side heat exchanger (1
The surplus capacity in 2) will be transferred to the side requiring high capacity, resulting in a significant improvement in capacity.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明の実施例に係るマルチ型空気i,7和装
置の冷媒配管系統を示し、(A)は室外ユニット、(B
)〜(F)は該室外ユニット(A)に並列に接続された
室内ユニットである。上記室外ユニット(A)の内部に
は、出力周波数を30〜70Hzの範囲で10Hz毎に
可変に切換えられるインバータ(2a)により容量が:
A整される第1圧縮機(1a)と、パイロット圧の高低
で差動するアンローダ(2b)により容量がフルロード
(100%)およびアンロード(50%)状態の2段階
に調整される第2圧縮機(1b)とを逆止弁(1e)を
介して並列に接続して構成される容量可変な圧縮機(1
)と、該圧縮機(1)から吐出されるガス中の浦を分離
する油分離器(4)と、冷房運転時には図中実線の如く
切換わり暖房運転時には図中破線の如く切換わる四路切
換弁(5)と、冷房運転時に凝縮器、暖房運転時に蒸発
器となる熱源側熱交換器としての室外熱交換器(6)お
よび該室外熱交換器(6)に付設された室外ファン(6
a)と、過冷却コイル(7)と、冷房運転時には冷媒流
量を調節し、暖房運転時には冷媒の絞り作用を行う暖房
用減圧機構としての室外電動膨張弁(8)と、液化した
冷媒を貯蔵するレシ一バ(9)と、アキュムレータ(1
0)とが主要機器として内蔵されていて、該各機器(1
)〜(10)は各々冷媒の連絡配管(11)で冷媒の流
通可能に接続されている。また上記室内ユニット(B)
〜(F)は同一構成であり、各々、冷房運転時には蒸発
器、暖房運転時には凝縮器となる利用側熱交換器として
の室内熱交換器(12)・・・およびそのファン(12
a)・・・を備え、かつ該室内熱交換器(12)・・・
の液冷媒分岐管(1 1a )・・・には、暖房運転時
に冷媒流量を調節し、冷房運転時に冷媒の絞り作用を行
う冷房用減圧機構としての室内電動膨張弁(13)・・
・がそれぞれ介設され、合流後手動閉鎖弁(17)を介
し連絡配管(1 lb )によって室外ユニット(A)
との間を接続されている。すなわち、以上の各機器は冷
媒配管(l1)により、冷媒の流通可能に接続されてい
て、室外空気との熱交換により得た熱を室内空気に放出
するようにした主冷媒回路(14)が構成されている。
FIG. 2 shows the refrigerant piping system of the multi-type air i, 7-sum device according to the embodiment of the present invention, (A) is the outdoor unit, (B
) to (F) are indoor units connected in parallel to the outdoor unit (A). Inside the outdoor unit (A), the capacity is set to:
The first compressor (1a) is adjusted by A, and the unloader (2b) is differentially controlled depending on the pilot pressure. A variable capacity compressor (1) is configured by connecting two compressors (1b) in parallel via a check valve (1e).
), an oil separator (4) that separates the gas in the gas discharged from the compressor (1), and a four-way separator (4) that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation. A switching valve (5), an outdoor heat exchanger (6) as a heat source side heat exchanger that serves as a condenser during cooling operation and an evaporator during heating operation, and an outdoor fan attached to the outdoor heat exchanger (6). 6
a), a subcooling coil (7), an outdoor electric expansion valve (8) as a heating pressure reducing mechanism that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, and stores liquefied refrigerant. receiver (9) and accumulator (1
0) is built in as the main device, and each device (1
) to (10) are connected to each other through refrigerant communication piping (11) so that refrigerant can flow therethrough. Also, the above indoor unit (B)
~(F) have the same configuration, and each includes an indoor heat exchanger (12) as a user-side heat exchanger that functions as an evaporator during cooling operation and a condenser during heating operation, and its fan (12).
a)..., and the indoor heat exchanger (12)...
The liquid refrigerant branch pipe (1 1a)... is equipped with an indoor electric expansion valve (13) as a cooling pressure reducing mechanism that adjusts the refrigerant flow rate during heating operation and throttles the refrigerant during cooling operation.
・ are installed respectively, and after merging, the outdoor unit (A) is
is connected between. That is, the above-mentioned devices are connected by refrigerant piping (l1) so that refrigerant can flow, and a main refrigerant circuit (14) is configured to release heat obtained through heat exchange with outdoor air to indoor air. It is configured.

また、装置には多くのセンサ類が配置されている。(T
H1)・・・は各室内温度Taを検出する室温サーモス
タットであって、該室温サーモスタット(TH1)は、
室温Taとその設定温度Tsとの差温で表わされる室内
熱交換器(12)・・・の要求能力(Ta−Ts)(暖
房運転時にはTs −Ta)を検出する要求能力検出手
段としての機能を有するものである。
In addition, many sensors are arranged in the device. (T
H1)... is a room temperature thermostat that detects each room temperature Ta, and the room temperature thermostat (TH1) is
Function as a required capacity detection means for detecting the required capacity (Ta - Ts) of the indoor heat exchanger (12) (Ts - Ta during heating operation) expressed by the temperature difference between the room temperature Ta and its set temperature Ts. It has the following.

また、(TH2)・・・および(TH3)・・・は各々
室内熱交換器(12)・・・の液側およびガス側配管に
おける冷媒の温度を険出する室内液温センサ及び室内ガ
ス温センサ、(TH4)は圧縮機(1)の吐出管温度を
検出する吐出管センサ、(TH5)は暖房運転時に室外
熱交換器(6)の出口温度から着霜状態を検出するデフ
ロストセンサ、(TH6)は液管(11)との熱交換を
行った後の吸入管(11)に配置され、吸入ガスの温度
を検出する吸入管センサ、(TH7)は室外熱交換器(
6)の空気吸込口に配置され、吸込空気温度を検出する
ための外気温センサ、(P1)は冷房運転時には低圧つ
まり蒸発圧力相当飽和温度Teを検RJし、暖房運転時
には高圧つまり凝縮圧カネ目当飽和温度Tcを検出する
物理状態量検出手段としての圧力センナである。
In addition, (TH2)... and (TH3)... are an indoor liquid temperature sensor and an indoor gas temperature sensor that detect the temperature of the refrigerant in the liquid side and gas side pipes of the indoor heat exchanger (12)..., respectively. Sensor (TH4) is a discharge pipe sensor that detects the discharge pipe temperature of the compressor (1), (TH5) is a defrost sensor that detects the frosting state from the outlet temperature of the outdoor heat exchanger (6) during heating operation, ( TH6) is placed in the suction pipe (11) after heat exchange with the liquid pipe (11) and detects the temperature of the suction gas, and (TH7) is the outdoor heat exchanger (
The outside temperature sensor (P1) is placed at the air intake port of 6) and detects the intake air temperature. During cooling operation, the outside temperature sensor (P1) detects low pressure, that is, the saturation temperature Te equivalent to evaporation pressure, and during heating operation, it detects high pressure, that is, condensing pressure. This is a pressure sensor as a physical state quantity detection means for detecting the target saturation temperature Tc.

なお、上記各主要機器以外に補助用の諸機器が設けられ
ている。(1r)は第2圧縮機(1b)のバイパス路(
1 1c )に介設されて、第2圧縮機(1b)の停止
時およびアンロード状態時に「開」となり、フルロード
状態で「閉」となるアンローダ用電磁弁、(21)は吐
出管と吸入管とを接続する均圧ホットガスバイパス路(
1 1d )に介設されて、サーモオフ状態等による圧
縮機(1)の停止時、再起動前に一定時間Dn作動する
均圧用電磁弁である。また、(1 1e )は暖房過負
荷制御用バイパス路であって、該バイパス路(1 1e
 )には、室外熱交換器(6)と共通の空気通路に設置
された補助熱交換器(22)、逆止弁(23)、冷媒の
高圧時に開作動する電磁開閉弁(24)及びキャビラリ
(28)が順次直列に接続されており、暖房過負荷時に
吐出ガスが室外熱交換器(6)をバイパスして流れるよ
うになされている。さらに、(1 1g )は上記暖房
過負荷バイパス路(1 1e )の液冷媒側配管と主冷
媒回路(14)の吸入ラインとの間を接続し、冷暖房運
転時に吸入ガスの過熱度を調節するためのリキッドイン
ジェクションバイパス路であって、該バイパス路(1 
1g )には圧縮機(1)のオン・オフと連動して開閉
するインジエクション用電磁弁(29)と、感温筒(T
P1)により検出される吸入ガスの過熱度に応じて開度
を調節される自動膨張弁(30)とが介設されている。
In addition to the above-mentioned main devices, various auxiliary devices are provided. (1r) is the bypass path (
1 1c) is interposed in the unloader solenoid valve that opens when the second compressor (1b) is stopped and unloaded, and closes when fully loaded; (21) is the discharge pipe; Equal pressure hot gas bypass line connecting to the suction pipe (
1 1d ) is a pressure equalizing electromagnetic valve that operates Dn for a certain period of time before restarting when the compressor (1) is stopped due to a thermo-off state or the like. In addition, (1 1e ) is a bypass path for heating overload control, and the bypass path (1 1e ) is a heating overload control bypass path.
) includes an auxiliary heat exchanger (22) installed in the air passage common to the outdoor heat exchanger (6), a check valve (23), an electromagnetic on-off valve (24) that opens when the refrigerant pressure is high, and a cabilage. (28) are connected in series one after another, so that the discharged gas flows bypassing the outdoor heat exchanger (6) during heating overload. Furthermore, (1 1g) connects between the liquid refrigerant side pipe of the heating overload bypass path (1 1e) and the suction line of the main refrigerant circuit (14), and adjusts the degree of superheating of the suction gas during heating and cooling operation. A liquid injection bypass path for
1g) is equipped with an injection solenoid valve (29) that opens and closes in conjunction with the on/off of the compressor (1), and a temperature-sensitive tube (T
An automatic expansion valve (30) whose opening degree is adjusted according to the degree of superheating of the intake gas detected by P1) is provided.

また、図中、(HPS)は圧縮機保護用の高圧圧力開閉
器、(S P)はサービスポートである。
In the figure, (HPS) is a high-pressure switch for protecting the compressor, and (SP) is a service port.

そして、上記各電磁弁およびセンサ類は各主要機器と共
に後述の室外制御ユニット(15)に信号線で接続され
、該室外制御ユニット(15)は各室内制御ユニット(
16)・・・に連絡配線によって信号の授受可能に接続
されている。
The above-mentioned solenoid valves and sensors are connected to an outdoor control unit (15), which will be described later, through signal lines along with each main equipment, and the outdoor control unit (15) is connected to each indoor control unit (15), which will be described later.
16) It is connected to . . . by a communication wiring so that signals can be sent and received.

第3図は上記室外ユニット(A)側に配置される室外制
御ユニット(15)の内部および接続される各機器の配
線関係を示す電気回路図である。
FIG. 3 is an electric circuit diagram showing the interior of the outdoor control unit (15) disposed on the outdoor unit (A) side and the wiring relationship of each connected device.

図中、(MC1)はインバータ(2a)の周波数変換回
路(INV)に接続された第1圧縮機(1a)のモータ
、(MC2)は第2圧縮機(1b)のモータ、(52C
+ )および(52C2)は各々周波数変換回路(IN
V)およびモータ(MC2)を作動させる電磁接触器で
、上記各機器はヒューズボックス(FS)、漏電プレー
力(BR1)を介して三相交流電源に接続されるととも
に、室外制御ユニット(15)とは単相交流電源で接続
されている。また、(MF)は室外ファン(6a)のフ
ァンモー夕、(52FH)及び(52FL)は該ファン
モータ(MF)を作動させる電磁接触器であって、それ
ぞれ三和交流電源のうちの単相成分に対して並列に接続
され、電磁接触器(52FH)が接続状態になったとき
には室外ファン(6a)が強風(標準風f1)に、電磁
接触器(52Fし)が接続状態になったときには室外フ
ァン(6a)が弱風になるよう択一切換え可能になされ
ている。
In the figure, (MC1) is the motor of the first compressor (1a) connected to the frequency conversion circuit (INV) of the inverter (2a), (MC2) is the motor of the second compressor (1b), (52C
+ ) and (52C2) are frequency conversion circuits (IN
V) and a magnetic contactor that operates the motor (MC2), each of the above devices is connected to a three-phase AC power source via a fuse box (FS) and a leakage play force (BR1), and an outdoor control unit (15). is connected with a single-phase AC power supply. In addition, (MF) is a fan motor of the outdoor fan (6a), and (52FH) and (52FL) are electromagnetic contactors that operate the fan motor (MF), each of which is a single-phase component of the Sanwa AC power supply. When the magnetic contactor (52FH) is connected, the outdoor fan (6a) generates strong wind (standard wind f1), and when the magnetic contactor (52F) is connected, the outdoor fan (6a) generates strong wind (standard wind f1). The fan (6a) can be selectively changed to produce a weak wind.

次に、室外制御ユニット(15)の内部にあっては、電
磁リレーの常間接点(RY+ )〜(RY8)が単相交
流電流に対して並列に接続され、これらは順に、四路切
換弁(5)の電磁リレー(20S)、周波数変換回路(
INV)の電磁接触器(52C,) 、第2圧縮機(1
b)の電磁接触器(52C2 ) 、室外ファン用電磁
接触器(52FH).(52FL) 、ホットガス用電
磁弁(21)の電磁リレー(SVp)、インジエクショ
ン用電磁弁(2つ)の電磁リレー(SVT)及びアンロ
ーダ用電磁弁(1r)の電磁リレー(SVL)のコイル
に直列に接続され、室外制御ユニット(15)に直接又
は室内制御ユニット(16),・・・を介して入力され
る各センサ(TH1)〜(TH7)の信号に応じて開閉
されて、上記各電磁接触器あるいは電磁リレーの接点を
開閉させるものである。
Next, inside the outdoor control unit (15), the regular contacts (RY+) to (RY8) of the electromagnetic relay are connected in parallel to the single-phase AC current, and these are connected in turn to the four-way switching valve. (5) Electromagnetic relay (20S), frequency conversion circuit (
INV) magnetic contactor (52C,), second compressor (1
b) Electromagnetic contactor (52C2), outdoor fan electromagnetic contactor (52FH). (52FL), the solenoid relay (SVp) of the hot gas solenoid valve (21), the solenoid relay (SVT) of the injection solenoid valve (2), and the solenoid relay (SVL) of the unloader solenoid valve (1r). Connected in series to the coil, the sensors (TH1) to (TH7) are opened and closed in response to signals from the sensors (TH1) to (TH7) that are input directly to the outdoor control unit (15) or via the indoor control unit (16), . It opens and closes the contacts of each of the above electromagnetic contactors or electromagnetic relays.

また、端子CNには、室外電動膨張弁(8)の開度を調
節するバルスモータ(E V)のコイルが接続されてい
る。なお、図中右側の回路において、(CH+ ). 
 (CH2 )はそれぞれ第1圧縮機(1a)、第2圧
縮機(1c)のオイルフォーミング防止用ヒータで、そ
れぞれ電磁接触器(52C1),  (52C,2 )
と直列に接続され上記各圧縮機(la ) ,  (l
b )が停止時に電流が流れるようになされている。さ
らに、(51C+)はモータ(MC+ )の過電流リレ
ー (49C+),(49C2)はそれぞれ第1圧縮機
(la)、第2圧縮機(1b)の温度上昇保護用スイッ
チ、(63H+ ).(63H2 )はそれぞれ第1圧
縮機(la)、第2圧縮機(1b)の圧力上昇保護用ス
イッチ、(5 1 F)はファンモータ( M F )
の過電流リレーであって、これらは直列に接続されて起
動時には電磁リレー(30Fx)をオン状態にし、故障
にはオフ状態にさせる保護回路を構成している。そして
、室外制御ユニット(15)には破線で示される室外制
御装置(15a)が内蔵され、該室外制御装置(15a
)によって各室内制御ユニット(16)・・・あるいは
各センサ類から入力される信号に応じて各機器の動作が
制御される。
Further, a coil of a valve motor (EV) that adjusts the opening degree of the outdoor electric expansion valve (8) is connected to the terminal CN. Note that in the circuit on the right side of the figure, (CH+).
(CH2) are heaters for preventing oil forming of the first compressor (1a) and second compressor (1c), respectively, and electromagnetic contactors (52C1) and (52C, 2), respectively.
The above compressors (la), (l
(b) is designed to allow current to flow when it is stopped. Furthermore, (51C+) is an overcurrent relay for the motor (MC+) (49C+), (49C2) is a temperature rise protection switch for the first compressor (la) and second compressor (1b), respectively, and (63H+). (63H2) are pressure rise protection switches for the first compressor (la) and second compressor (1b), respectively, and (51F) is the fan motor (MF).
These overcurrent relays are connected in series to form a protection circuit that turns on the electromagnetic relay (30Fx) at startup and turns it off in case of failure. The outdoor control unit (15) has a built-in outdoor control device (15a) indicated by a broken line.
) controls the operation of each device according to signals input from each indoor control unit (16)... or each sensor.

第3図において、空気調和装置の冷房運転時、四路切換
弁(2)が図中実線側に切換わり、圧縮機(1)で圧縮
された冷媒が室外熱交換器(6)で凝縮され、連絡配管
(1 lb )を経て各室内ユニット(B)〜(F)に
分岐して送られる。各室内ユニット(B)〜(F)では
、各室内電動膨張弁(13)・・・で減圧され、各室内
熱交換器(12)・・・で蒸発した後合流して、室外ユ
ニット(A)にガス状態で戻り、圧縮機(1)に吸入さ
れるように循環する(図中実線矢印参照)。
In Figure 3, during cooling operation of the air conditioner, the four-way switching valve (2) switches to the solid line side in the figure, and the refrigerant compressed by the compressor (1) is condensed in the outdoor heat exchanger (6). , and is branched and sent to each indoor unit (B) to (F) via a connecting pipe (1 lb). In each indoor unit (B) to (F), the pressure is reduced by each indoor electric expansion valve (13)..., evaporated in each indoor heat exchanger (12)... and then combined, and the outdoor unit (A ), and circulates so that it is sucked into the compressor (1) (see the solid line arrow in the figure).

また、暖房運転時には、四路切換弁(5)が図中破線側
に切換わり、冷媒の流れは上記冷房運転時と逆となって
、圧縮機(1)で圧縮された冷媒が各室内熱交換器(1
2)で凝縮され、合流して液状対室外ユニット(A)に
流れ、室外電動膨張弁(8)により減圧され、室外熱交
換器(6)で蒸発した圧縮機(1)に戻るように循環す
る(図中破線矢印参照)。
In addition, during heating operation, the four-way switching valve (5) switches to the dashed line side in the figure, and the flow of refrigerant is reversed to that during cooling operation, and the refrigerant compressed by the compressor (1) is used to heat each room. Exchanger (1
2), merges, flows to the liquid outdoor unit (A), is depressurized by the outdoor electric expansion valve (8), and is circulated back to the compressor (1) where it is evaporated in the outdoor heat exchanger (6). (See the dashed arrow in the figure).

次に、上記装置の冷房運転時を例にとって、その制御内
容を第5図に基づき説明するに、ステップS1でサーモ
オフ状態か否かを判別し、サーモオフ状態であればステ
ップS2で圧縮機(1)を停止し、サーモオフ状態でな
ければステップs3に進んでさらにデフロスト条件又は
油回収条件が成立したか否かを判別して、デフロスト条
件又は浦回収条件が成立している場合には、ステップS
4でデフロスト運転又は浦回収運転を行う。
Next, taking the cooling operation of the above device as an example, the control contents will be explained based on FIG. 5. In step S1, it is determined whether or not the thermostat is off. ), and if the thermostat is not off, the process proceeds to step s3, where it is further determined whether the defrost condition or the oil recovery condition is satisfied, and if the defrost condition or the oil recovery condition is satisfied, the process proceeds to step s3.
4. Perform defrost operation or ura recovery operation.

次に、上記ステップS3の判別で、デフロスト条件又は
油回収条件のいずれも成立していない場合には、ステッ
プS5で、室内熱交換器(12)・・・の能力UP要求
がなされているか否かを判別して、能力UP要求がなさ
れていない場合には、ステップS6で、圧縮機(1)の
容量の通常制御を行うべく、低圧Teの制御目標値Te
sをrNJとする一方、上記ステップS5の判別で能力
UP要求がなされている場合には、ステップS7で低圧
Teの制御目標値TesをrN−aJと変更する。
Next, in step S3, if neither the defrost condition nor the oil recovery condition is satisfied, step S5 determines whether a request to increase the capacity of the indoor heat exchanger (12)... has been made. If it is determined that the capacity UP request has not been made, in step S6, the control target value Te of the low pressure Te is increased in order to perform normal control of the capacity of the compressor (1).
While setting s to rNJ, if a request for capacity up is made in the determination in step S5, the control target value Tes of the low pressure Te is changed to rN-aJ in step S7.

すなわち、第6図の状態遷移図に示すように、要求能力
(Ta −Ts )がそれほど大きくないときには低圧
Teの制御目標値TesをNとする通常制御■を行う一
方、要求能力(Ta  Ts)が所定値A (Aは例え
ば5℃程度の値)よりも大きいときには、低圧Teの制
御目標値TesをrN−aJに変更する能力UP制御■
を行う。なお、能力UP制御■を行っているうちに、室
温Taが低下してきて要求能力(?a −Ts )が減
少した場合、”ra −Ts <A−c (cは例えば
1℃程度のディファレンシャル)になったときに、通常
制御■に戻るようになされている。
That is, as shown in the state transition diagram of FIG. 6, when the required capacity (Ta - Ts) is not so large, normal control (2) in which the control target value Tes of low pressure Te is set to N is performed, while the required capacity (Ta Ts) is larger than a predetermined value A (A is a value of, for example, about 5°C), capacity UP control to change the control target value Tes of low pressure Te to rN-aJ ■
I do. In addition, if the room temperature Ta decreases and the required capacity (?a - Ts) decreases while performing the capacity UP control (■), then "ra - Ts < A - c (c is a differential of about 1°C, for example)" When this happens, the system returns to normal control (■).

以上の制御のフローにおいて、請求項(1)の発明では
、ステップS6により、圧カセンサ(低圧検出手段)の
出力を受け、低圧Teが所定の制御目標値Teaに収束
するように圧縮機(1)の運転容量を制御する容量制御
手段(51)が構成され、ステップS7により、室温サ
ーモスタット(要求能力検出手段)(TH1)の出力を
受け、要求能力(Ta −Ts )が所定値Aよりも大
きいときに制御目標値Tesを変更する変更手段(52
)が構成されている。
In the above control flow, in the invention of claim (1), in step S6, the output of the pressure sensor (low pressure detection means) is received, and the compressor (1) ), the capacity control means (51) is configured to control the operating capacity of Changing means (52) for changing the control target value Tes when the control target value Tes is large.
) is configured.

さらに、実施例は省略するが、請求項{2の発明では、
上記ステップS6においてTcs−Mとし、ステップS
7においてTcs−M+bと置き換えたステップにより
、上記と同様に容量制御手段(51)と変更手段(52
)とが構成されている。ただし、その場合、要求能力は
(Ts −Ta )で表わされる。
Furthermore, although examples are omitted, in the invention of claim {2,
In the above step S6, Tcs-M is set, and in step S
By replacing Tcs-M+b in step 7, the capacity control means (51) and the changing means (52
) are configured. However, in that case, the required capability is expressed as (Ts - Ta).

したがって、請求項(1)の発明では、室内側の要求能
力(Ta −Ts )が増大して所定1iaAよりも大
きくなると、低圧Teの上昇に伴ない圧縮機(1)の運
転容量が増大するように制御されるが、本発明では、そ
れに加えて変更手段(52)により低圧Teの制御目標
値Tesが低くなるよう変更され、圧縮機(1)の運転
容量に限界がある場合にも、低圧Teつまり蒸発圧力相
当飽和温度がか低下することで室内熱交換器(l2)の
冷房能力が増大する。
Therefore, in the invention of claim (1), when the required indoor capacity (Ta - Ts) increases and becomes larger than the predetermined 1iaA, the operating capacity of the compressor (1) increases as the low pressure Te increases. However, in the present invention, in addition to this, the control target value Tes of the low pressure Te is changed to be lower by the changing means (52), and even when there is a limit to the operating capacity of the compressor (1), The cooling capacity of the indoor heat exchanger (l2) is increased by lowering the low pressure Te, that is, the saturation temperature equivalent to the evaporation pressure.

また、それに伴ない、容量制御手段(51)により圧縮
機(1)の運転容量がさらに高容量側に制御されるので
、冷媒循環量の増大が顕著となり、室内側の能力が可及
的に向上する。
Additionally, since the operating capacity of the compressor (1) is further controlled to a higher capacity side by the capacity control means (51), the amount of refrigerant circulation increases significantly, and the indoor capacity is maximized. improves.

加えて、以上のような冷房能力の向上により、低圧Te
が速やかに低下して、要求能力の増大から制御が定常状
態に収束するまでに要する時間が低減され、制御目標値
Tesへの収束性が向上するのである。
In addition, due to the improvement in cooling capacity as described above, low-pressure Te
is quickly reduced, the time required for control to converge to a steady state from an increase in required capacity is reduced, and convergence to the control target value Tes is improved.

請求項(2)の発明では、暖房運転について、高圧TO
を制御パラメータとして、上記請求項(1)の発明と同
様の制御が行われ、暖房能力とn;+J御目標値への収
束性の向上とが実現される。
In the invention of claim (2), for heating operation, high pressure TO
The same control as in the invention of claim (1) above is performed using the control parameter n;

請求項(3)の発明では、複数の室内熱交換25(利用
側熱交換器)(12)・・・を備えた場合にも、上記請
求項(1)又は(′2Jの発明と同様の作用が得られ、
特に、運転していない利用側熱交換器(12)がある場
合等、全体として余裕がある場合には、他の余剰能力の
分を要求能力の高い側に回すことになり、能力の向上効
果が大きい。
In the invention of claim (3), even when a plurality of indoor heat exchangers 25 (user-side heat exchangers) (12)... are provided, the same as the invention of claim (1) or ('2J) The effect is obtained,
In particular, if there is sufficient capacity as a whole, such as when there is a heat exchanger (12) on the user side that is not in operation, other surplus capacity will be transferred to the side with higher required capacity, resulting in a capacity improvement effect. is large.

なお、その場合、一部の室内熱交換器(12)・・・で
要求能力が上昇する一方、他の室内熱交換器(12)で
要求能力が低下した場合でも、過熱度を一定とする室内
電動膨張弁(13)・・・の開度制御等により、その室
内熱交換器(12)だけ能力が減少するので、能力の制
御機能が損われる虞れはない。
In that case, even if the required capacity of some indoor heat exchangers (12) increases while the required capacity of other indoor heat exchangers (12) decreases, the degree of superheating is kept constant. Since the capacity of the indoor heat exchanger (12) is reduced by controlling the opening of the indoor electric expansion valve (13), etc., there is no risk that the capacity control function will be impaired.

なお、本発明は、上記実施例のような空気調和装置だけ
ではな《、コンテナ冷凍機等の冷凍装置にもそのまま適
用できることはいうまでもない。
It goes without saying that the present invention can be applied not only to air conditioning apparatuses such as those in the above embodiments, but also to refrigeration apparatuses such as container refrigerators.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、空
気調和装置の冷房運転時、蒸発圧力相当飽和温度が制御
目標値に収束するよう圧縮機の容二制御を行う際、室内
側の要求能力が所定値以上になったときには、制御目標
値を低く変更するようにしたので、冷房能力と制御応答
性の向上を図ることができる。
(Effects of the Invention) As explained above, according to the invention of claim (1), during the cooling operation of the air conditioner, the compressor is controlled so that the evaporation pressure equivalent saturation temperature converges to the control target value. When performing this, the control target value is changed to a lower value when the required capacity on the indoor side exceeds a predetermined value, so that it is possible to improve the cooling capacity and control responsiveness.

請求項(2)の発明によれば、空気調和装置の暖房運転
時、凝縮圧力相当飽和温度が制御目標値に収束するよう
圧縮機の容量制御を行う際、要求能力が所定値よりも高
くなったときには、制御目標値を高く変更するようにし
たので、暖房運転においても、上記請求項(1)の発明
と同様の効果を得ることができる。
According to the invention of claim (2), when the capacity of the compressor is controlled so that the condensing pressure equivalent saturation temperature converges to the control target value during heating operation of the air conditioner, the required capacity is higher than a predetermined value. Since the control target value is changed to a high value when the heating operation occurs, the same effect as the invention of claim (1) above can be obtained also in heating operation.

請求項(3)の発明によれば、複数の利用側熱交換器を
配置した空気調和装置において、上記請求項(1)又は
(2)の発明を適用したので、他の利用側熱交換器の余
剰能力を要求能力の高い利用側熱交換器側にまわすこと
ができ、より顕著な能力向上効果を得ることができる。
According to the invention of claim (3), since the invention of claim (1) or (2) is applied to an air conditioner in which a plurality of user-side heat exchangers are arranged, other user-side heat exchangers The surplus capacity of the heat exchanger can be diverted to the heat exchanger on the utilization side, which has a higher required capacity, and a more significant capacity improvement effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の構成を示すブロック図であ
る。第3図以下は本発明の実施例を示し、第3図は空気
調和装置の冷媒配管系統図、第4図は室外制御ユニット
の構成を示す電気回路図、第5図は制御内容を示すフロ
ーチャート図、第6図は制御状態の変化を示す状態遷移
図である。第7図は従来の装置による低圧一定制御の収
束状態を示す特性図である。 1   圧縮機 6   室外熱交換器 (熱源側熱交換器) 12  室内熱交換器 (利用側熱交換器) 容量制御手段 変更手段 圧カセンサ (蒸発温度検出手段) (凝縮温度検出手段) THI  室温サーモスタット (室温検出手段) P1
FIGS. 1 and 2 are block diagrams showing the configuration of the present invention. Figure 3 and subsequent figures show embodiments of the present invention, Figure 3 is a refrigerant piping system diagram of an air conditioner, Figure 4 is an electric circuit diagram showing the configuration of the outdoor control unit, and Figure 5 is a flow chart showing control details. 6 are state transition diagrams showing changes in control states. FIG. 7 is a characteristic diagram showing a convergence state of constant low pressure control by a conventional device. 1 Compressor 6 Outdoor heat exchanger (heat source side heat exchanger) 12 Indoor heat exchanger (user side heat exchanger) Capacity control means change means Pressure sensor (evaporation temperature detection means) (Condensation temperature detection means) THI Room temperature thermostat ( room temperature detection means) P1

Claims (3)

【特許請求の範囲】[Claims] (1)運転容量の可変な圧縮機(1)、熱源側熱交換器
(6)および利用側熱交換器(12)を備えた冷媒回路
(14)を有する空気調和装置において、 冷房運転時、冷媒の蒸発圧力相当飽和温度を検出する蒸
発温度検出手段(P1)と、該蒸発温度検出手段(P1
)の出力を受け、冷媒の蒸発圧力相当飽和温度が所定の
制御目標値に収束するように圧縮機(1)の運転容量を
制御する容量制御手段(51)と、上記利用側熱交換器
(12)に対する要求能力を検出する要求能力検出手段
(TH1)と、該要求能力検出手段(TH1)の出力を
受け、要求能力が所定値よりも大きいときには上記制御
目標値を低くするよう変更する変更手段(52)とを備
えたことを特徴とする空気調和装置の容量制御装置。
(1) In an air conditioner having a refrigerant circuit (14) equipped with a variable operating capacity compressor (1), a heat source side heat exchanger (6), and a user side heat exchanger (12), during cooling operation, evaporation temperature detection means (P1) for detecting the saturation temperature corresponding to the evaporation pressure of the refrigerant;
), the capacity control means (51) receives the output of the refrigerant and controls the operating capacity of the compressor (1) so that the saturation temperature equivalent to the evaporation pressure of the refrigerant converges to a predetermined control target value; 12) A required capability detection means (TH1) for detecting the required capability for 12), and a modification that receives the output of the required capability detection means (TH1) and changes the control target value to be lower when the required capability is larger than a predetermined value. A capacity control device for an air conditioner, comprising means (52).
(2)運転容量の可変な圧縮機(1)、熱源側熱交換器
(6)および利用側熱交換器(12)を備えた冷媒回路
(14)を有する空気調和装置において、 暖房運転時、冷媒の凝縮圧力相当飽和温度を検出する凝
縮温度検出手段(P1)と、該凝縮温度検出手段(P1
)の出力を受け、冷媒の凝縮圧力相当飽和温度が所定の
制御目標値に収束するように圧縮機(1)の運転容量を
制御する容量制御手段(51)と、上記利用側熱交換器
(12)に対する要求能力を検出する要求能力検出手段
(TH1)と、該要求能力検出手段(TH1)の出力を
受け、要求能力が所定値よりも大きいときには上記制御
目標値を低くするよう変更する変更手段(52)とを備
えたことを特徴とする空気調和装置の容量制御装置。
(2) In an air conditioner having a refrigerant circuit (14) equipped with a variable operating capacity compressor (1), a heat source side heat exchanger (6), and a user side heat exchanger (12), during heating operation, a condensing temperature detecting means (P1) for detecting the saturation temperature corresponding to the condensing pressure of the refrigerant;
), the capacity control means (51) receives the output of the refrigerant and controls the operating capacity of the compressor (1) so that the saturation temperature equivalent to the condensation pressure of the refrigerant converges to a predetermined control target value; 12) A required capability detection means (TH1) for detecting the required capability for 12), and a modification that receives the output of the required capability detection means (TH1) and changes the control target value to be lower when the required capability is larger than a predetermined value. A capacity control device for an air conditioner, comprising means (52).
(3)利用側熱交換器(12)は複数個配置され、各々
圧縮機(1)および熱源側熱交換器(6)に対して並列
に接続されているとともに、要求能力検出手段(TH1
)は、各利用側熱交換器(12)、・・・に対応して複
数個配置されていることを特徴とする請求項(1)又は
(2)記載の空気調和装置の容量制御装置。
(3) A plurality of user-side heat exchangers (12) are arranged, each of which is connected in parallel to the compressor (1) and the heat source-side heat exchanger (6), and the required capacity detection means (TH1
2. The capacity control device for an air conditioner according to claim 1, wherein a plurality of heat exchangers (12) are arranged corresponding to each user-side heat exchanger (12), .
JP1048275A 1989-02-28 1989-02-28 Capacity control device for air conditioner Pending JPH02230063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1048275A JPH02230063A (en) 1989-02-28 1989-02-28 Capacity control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1048275A JPH02230063A (en) 1989-02-28 1989-02-28 Capacity control device for air conditioner

Publications (1)

Publication Number Publication Date
JPH02230063A true JPH02230063A (en) 1990-09-12

Family

ID=12798888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1048275A Pending JPH02230063A (en) 1989-02-28 1989-02-28 Capacity control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH02230063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812950A (en) * 2019-02-22 2019-05-28 广东欧科空调制冷有限公司 A kind of air conditioner evaporating temperature control method, device and air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463774A (en) * 1987-09-04 1989-03-09 Hitachi Ltd Method of controlling refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463774A (en) * 1987-09-04 1989-03-09 Hitachi Ltd Method of controlling refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812950A (en) * 2019-02-22 2019-05-28 广东欧科空调制冷有限公司 A kind of air conditioner evaporating temperature control method, device and air conditioner

Similar Documents

Publication Publication Date Title
JPH02126044A (en) Operation control device for air conditioning device
JPH02208469A (en) Air conditioner
JPH02230056A (en) Operation control device for freezer
JPS6373052A (en) Oil recovery operation controller for refrigerator
JPH052902B2 (en)
JPH0217358A (en) Degree of overheat control device for freezing device
JPH0221165A (en) Operation controller for air conditioner
JPH0784956B2 (en) Operation control device for air conditioner
JPH02230063A (en) Capacity control device for air conditioner
JPH0772654B2 (en) Operation control device for air conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JP2598513B2 (en) Operation control device for air conditioner
JPH07101130B2 (en) Operation control device for air conditioner
JPH02230055A (en) Operation control device for air conditioner
JPH02272249A (en) Operation control device for air conditioner
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JPH04222354A (en) Operation controller for refrigerating equipment
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPS63161342A (en) Electrical expansion valve control device for air conditioner
JPH02254260A (en) Operation control device for air conditioning device
JPH02272262A (en) Refrigerating apparatus
JPS63180050A (en) Electric expansion valve controller for air conditioner
JPS6373054A (en) Refrigerator
JPH04222351A (en) Operation controller for air conditioner
JPH07117328B2 (en) Operation control device for air conditioner