JPS63187070A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS63187070A
JPS63187070A JP62001380A JP138087A JPS63187070A JP S63187070 A JPS63187070 A JP S63187070A JP 62001380 A JP62001380 A JP 62001380A JP 138087 A JP138087 A JP 138087A JP S63187070 A JPS63187070 A JP S63187070A
Authority
JP
Japan
Prior art keywords
compressor
outdoor
heat exchanger
pressure
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62001380A
Other languages
Japanese (ja)
Other versions
JPH0723816B2 (en
Inventor
隆 松崎
幸雄 重永
樋口 晶夫
法文 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPS63187070A publication Critical patent/JPS63187070A/en
Publication of JPH0723816B2 publication Critical patent/JPH0723816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、暖房サイクルと冷房サイクルとを切換可能と
した空気調和装置に係わり、特に冷媒回路中の油を圧縮
機に回収する油回収運転を行うものの改良に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an air conditioner capable of switching between a heating cycle and a cooling cycle, and particularly relates to an oil recovery operation in which oil in a refrigerant circuit is recovered to a compressor. Concerning the improvement of things that do.

(従来の技術) 従来より、容量可変の圧縮機を備えた冷凍装置において
、低容量運転を続けていると冷凍サイクル中の冷媒@知
母が減少して、圧FJ芸からの吐出ガス冷媒と共に吐出
されるi1!l滑油の回収効率が悪くなり、圧tamの
油不足を生じ、油不足の著しい場合には圧縮機の焼損を
招くことがある。
(Prior art) Conventionally, in a refrigeration system equipped with a variable capacity compressor, if low capacity operation continues, the amount of refrigerant in the refrigeration cycle decreases, and together with the discharged gas refrigerant from the pressure FJ, i1 being ejected! The recovery efficiency of lubricating oil deteriorates, resulting in an oil shortage in the pressure tam, and if the oil shortage is significant, the compressor may burn out.

そこで、圧縮機の油不足を防止すべく、例えば、実公昭
57−41416号公報に開示される如く、圧縮機の運
転容量を低能力側と高能力側とに切換える切換スイッチ
を備え、一定時間低能力運転を行ったときには高能力側
に切換えて冷凍サイクル中の冷媒循環量を増大させて、
油の回収を促進しようとするものがある。
Therefore, in order to prevent oil shortage in the compressor, for example, as disclosed in Japanese Utility Model Publication No. 57-41416, a switch is provided to switch the operating capacity of the compressor between a low capacity side and a high capacity side. When operating at low capacity, it switches to high capacity to increase the amount of refrigerant circulating in the refrigeration cycle.
Some attempt to accelerate oil recovery.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは、特に暖房運転時に
凝縮器となる室内熱交換器の能力が小さいとき、油を回
収する目的で暖房サイクルで圧縮派の高容量運転を行う
と、吐出ガス圧力が上昇しすぎて高圧保護スイッチが作
動し、油回収運転が不可能になる場合がある。また、室
内ユニットが並列に接続されたマルチ型空気調和装置の
場合、暖房運転時には能力の小さい室内ユニットの分岐
管では流量が少なく、十分油が回収されない。さらに、
油の循環量を多くしても、油の粘度が高ければ回収効率
の悪い場合が生じるという問題がある。
(Problems to be Solved by the Invention) However, with the above conventional system, especially when the capacity of the indoor heat exchanger that serves as a condenser during heating operation is small, a high capacity compressor is used in the heating cycle for the purpose of recovering oil. During operation, the discharge gas pressure may rise so much that the high pressure protection switch is activated, making oil recovery operation impossible. Furthermore, in the case of a multi-type air conditioner in which indoor units are connected in parallel, the flow rate is small in the branch pipe of the indoor unit with small capacity during heating operation, and oil is not sufficiently recovered. moreover,
Even if the amount of oil circulated is increased, there is a problem in that recovery efficiency may be poor if the viscosity of the oil is high.

(第1の発明の目的) 本出願の第1の発明は、斯かる点に鑑みてなされたもの
であり、その目的は、暖房運転時、圧縮機を所定時間運
転後には、冷房サイクルに切換えるとともに、冷媒の循
環量を多くしかつ冷媒回路中に滞溜する油の粘度を下げ
ることによって、速やかにかつ確実に油の回収を行うこ
とにある。
(Object of the first invention) The first invention of the present application has been made in view of the above, and its object is to switch to the cooling cycle after the compressor has been operated for a predetermined time during heating operation. Another object of the present invention is to quickly and reliably recover oil by increasing the amount of refrigerant circulated and lowering the viscosity of oil accumulated in the refrigerant circuit.

(第2の発明の目的) また、上記冷房サイクルに切換えて油回収運転を行うと
き、室外空気温度が特に低い時には室外熱交換器におけ
る凝縮圧力が充分上昇しないことがあり、このような状
態が生ずると、冷媒の循環量の増大が不十分となって、
十分な油回収を行えない場合がある。
(Second object of the invention) Furthermore, when switching to the cooling cycle and performing oil recovery operation, if the outdoor air temperature is particularly low, the condensing pressure in the outdoor heat exchanger may not rise sufficiently, and such a situation may occur. When this happens, the amount of refrigerant circulation becomes insufficient, and
Sufficient oil recovery may not be possible.

この問題に対し、本出願の第2の発明の目的は、冷房サ
イクルに切換えて油回収運転を行うとき、室外空気温度
の高低に拘らず、凝縮圧力の過上昇による空気調和装置
の運転停止を防止しつつ、室外熱交換器における凝縮圧
力を速やかに上昇せしめて十分な冷媒循環量を確保し、
油回収運転の効率の低下を防止することにある。
To solve this problem, the purpose of the second invention of the present application is to prevent the air conditioner from shutting down due to an excessive rise in condensing pressure, regardless of the outdoor air temperature, when switching to the cooling cycle and performing oil recovery operation. While preventing this, the condensation pressure in the outdoor heat exchanger is quickly raised to ensure sufficient refrigerant circulation.
The objective is to prevent a decline in the efficiency of oil recovery operations.

(問題点を解決するための手段) 上記目的を達成するため、本出願の第1の発明の解決手
段は、第1図に示すように、運転容量を可変に調節され
る圧4!1m(1)、室内熱交換器(12)、減圧R構
(8又は13)および室外熱交換器(6)を順次接続し
てなる冷媒回路を備え、かつ該冷媒回路を冷房サイクル
と暖房サイクルとに切換えるサイクル切換握I#(5)
を備えた空気調和装置を対象とする。そして、このよう
な空気調和装置において、暖房運転時に圧縮1(1)の
運転時間を計測して積鋒する計測手段(31)と、該附
測手段(31)の演鋒値が所定値に達したとき設定時間
の間、上記サイクル切換機構(5)を冷房サイクル側に
切換えるとともに、上記圧縮機(1)の運転容量および
減圧懇構(8又は13)の開度を大きくするよう制御す
る制御手段(51)とを設ける構成として、冷媒回路中
の油を圧11(1)に回収するものである。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the first invention of the present application provides a pressure of 4!1 m( 1), comprising a refrigerant circuit in which an indoor heat exchanger (12), a pressure reducing R structure (8 or 13), and an outdoor heat exchanger (6) are sequentially connected, and the refrigerant circuit is connected to a cooling cycle and a heating cycle. Switching cycle switching grip I# (5)
Targets air conditioners equipped with In such an air conditioner, there is a measuring means (31) that measures the operating time of compression 1 (1) and calculates the load during heating operation, and a measuring means (31) that adjusts the operating value of the attached measuring means (31) to a predetermined value. When reaching the set time, the cycle switching mechanism (5) is switched to the cooling cycle side, and the operating capacity of the compressor (1) and the opening degree of the pressure reduction mechanism (8 or 13) are controlled to be increased. The control means (51) is provided to recover oil in the refrigerant circuit to pressure 11(1).

さらに、本出願の第2の発明の解決手段は、上記構成に
加えて、上記制御手段(51)の額能に対して、上記室
外熱交換器(6)における凝縮圧力が所定値に達するま
では室外ファン(6a)の運転を停止し、凝縮圧力が所
定圧力に達すると上記室外ファン(6a)の運転を行う
よう制御する償能を付加する構成としたものである。
Furthermore, in addition to the above configuration, the solution means of the second invention of the present application provides that the control means (51) has a capacity until the condensation pressure in the outdoor heat exchanger (6) reaches a predetermined value. The configuration is such that a compensating function is added to control the operation of the outdoor fan (6a) to be stopped and the outdoor fan (6a) to be operated when the condensation pressure reaches a predetermined pressure.

(作用) 以上の構成により、本出願の第1の発明では、空気調和
装置の暖房運転中に、計測手段(31)により圧縮機(
1)の運転時間が計測され積算される。そして、その積
算値が所定値に達すると、制御手段(51)によって、
サイクル切換機構(5)が冷房サイクル側に切換えられ
るとともに圧縮機(1)の容量および減圧機構(8又は
13)の開度が大きくなるよう制御されるので、吐出ガ
ス圧力が上昇することなく冷媒の循環量が増大すると共
に、湿り運転となって、冷媒回路中に滞溜する油の粘度
が低下する。したがって、冷媒の循環量の増大と油の粘
度の低下とにより、空気調和装置の冷媒配管、室内熱交
換器(12)および室外熱交換器(6)に湘溜する油が
冷媒流と共に流動しやすくなって、油の回収が速やかに
かつ確実に行われる。
(Function) With the above configuration, in the first invention of the present application, during heating operation of the air conditioner, the measuring means (31)
1) The operating time is measured and integrated. Then, when the integrated value reaches a predetermined value, the control means (51)
The cycle switching mechanism (5) is switched to the cooling cycle side, and the capacity of the compressor (1) and the opening degree of the pressure reducing mechanism (8 or 13) are controlled to be increased, so that the refrigerant is removed without increasing the discharge gas pressure. As the amount of oil circulated increases, wet operation occurs, and the viscosity of the oil accumulated in the refrigerant circuit decreases. Therefore, due to the increase in the amount of refrigerant circulation and the decrease in the viscosity of the oil, the oil that accumulates in the refrigerant piping of the air conditioner, the indoor heat exchanger (12), and the outdoor heat exchanger (6) flows together with the refrigerant flow. This makes it easier to recover oil quickly and reliably.

また、本出願の第2の発明では、上記のように冷房サイ
クルに切換えて油回収運転を行うとき、制御手段(51
”)により、室外熱交換器(6)において、凝縮圧力が
所定値に達するまで室外ファン(6a)が停止されるの
で、室外熱交換器(6)において熱交換が行われず、凝
縮圧力が速やかに上昇して冷媒の循環量が十分確保され
、室外空気温度が低いときにも油回収運転の効率の低下
が有効に防止される。そして、凝縮圧力が所定値に達す
ると、制御手段(51’ )により室外フ7・ン(6a
)の運転が行われて室外熱交換器(6)における必要な
熱交換器が確保され、凝縮圧力の上昇が抑止されるので
、室外空気湿度が高いときにも、吐出ガス圧力の過上昇
により高圧保護スイッチが作動して油回収運転が不可能
になることはない。
Further, in the second invention of the present application, when switching to the cooling cycle and performing the oil recovery operation as described above, the control means (51
”), the outdoor fan (6a) is stopped in the outdoor heat exchanger (6) until the condensation pressure reaches a predetermined value, so no heat exchange is performed in the outdoor heat exchanger (6), and the condensation pressure is quickly reduced. When the condensing pressure reaches a predetermined value, the control means (51 ' ) allows the outdoor fan 7.n (6a
) is operated to secure the necessary heat exchanger capacity in the outdoor heat exchanger (6) and prevent the condensing pressure from increasing, so even when the outdoor air humidity is high, the discharge gas pressure will not increase due to an excessive increase. The high pressure protection switch will not trip and disable the oil recovery operation.

(第1の発明の実施例) 以下、本出願の第1および第2の発明の実施例を第2図
以下の図面に基づき説明する。
(Embodiments of the first invention) Hereinafter, embodiments of the first and second inventions of the present application will be described based on the drawings from FIG. 2 onwards.

第2図は本出願の第1の発明を適用したマルチ型空気調
和装置の冷媒配管系統を示し、(A)は室外ユニット、
(B)〜(F)は該室外ユニット(A)に並列に接続さ
れた室内ユニットである。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner to which the first invention of the present application is applied, and (A) shows an outdoor unit,
(B) to (F) are indoor units connected in parallel to the outdoor unit (A).

上記室外ユニット(A>の内部には、出力周波数を30
〜70Hzの範囲で101−1z毎に可変に切換えられ
るインバータ(2a)により容量が調整される第1圧縮
1iJ<Ia)と、パイロット圧の高低で差動するアン
ローダ(2b)により容量がフルロード(100%)お
よびアンロード<50%)状態の2段階に調整される第
2圧縮顆(1b)とを逆止弁(1e)を介して並列に接
続して構成される圧縮機(1)と、該圧縮l11(1)
から吐出されるガス中の油を分離する油分離器(4)と
、暖房運転時には図中実・線の如く切換ねり冷房運転時
には図中破線の如く切換わるサイクル切換機構としての
四路切換弁(5)と、冷房運転時に凝縮器、暖房運転時
に蒸発器となる室外熱交換器(6)およびそのファン(
6a)と、過冷却コイル(7)と、冷房運転時には冷媒
流量を調節し、暖房運転時には冷媒の絞り作用を行う暖
房用減圧m構としての室外電動膨張弁(8)と、液化し
た冷媒を貯蔵するレシーバ(9)と、アキュムレータ(
10)とが主要機器として内蔵されていて、該各握器(
1)〜(10)は各々冷媒の連絡配管(11)で冷媒の
流通可能に接続されている。また上記室内ユニット(B
)〜(F)は同一構成であり、各々、冷房運転時には蒸
発器、暖房運転時には凝縮器となる室内熱交換器(12
)・・・およびそのファン(12a)・・・を備え、か
つ該室内熱交換器(12)・・・の液冷媒分岐管(11
a)・・・には、暖房運転時に冷媒流量を調節し一冷房
運転時に冷媒の絞り作用を行う冷房用減圧I構としての
室内電動膨張弁(13)・・・がそれぞれ介設され、合
流後手動閉鎖弁(17)を介し連絡配管(11b)によ
って室外ユニット<A)との間を接続されている。
Inside the above outdoor unit (A>), the output frequency is set to 30
The capacity is fully loaded by the first compression 1iJ<Ia) whose capacity is adjusted by the inverter (2a) which is variably switched in increments of 101-1 Hz in the range of ~70Hz, and by the unloader (2b) which operates differentially depending on the high and low pilot pressure. A compressor (1) configured by connecting in parallel a second compression condyle (1b) which is adjusted in two stages (100%) and unloaded <50% states via a check valve (1e). and the compression l11(1)
An oil separator (4) that separates oil from the gas discharged from the gas, and a four-way switching valve as a cycle switching mechanism that switches as shown by the solid line in the figure during heating operation and as the broken line in the figure during cooling operation. (5), an outdoor heat exchanger (6) that functions as a condenser during cooling operation and an evaporator during heating operation, and its fan (
6a), a subcooling coil (7), an outdoor motorized expansion valve (8) as a heating decompression mechanism that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation, and A storage receiver (9) and an accumulator (
10) is built-in as the main equipment, and each grip device (
1) to (10) are connected to each other through a refrigerant communication pipe (11) so that refrigerant can flow therethrough. In addition, the above indoor unit (B
) to (F) have the same configuration, and each has an indoor heat exchanger (12
)... and its fan (12a)..., and includes a liquid refrigerant branch pipe (11) of the indoor heat exchanger (12)...
In a)..., an indoor electric expansion valve (13)... is installed as a cooling pressure reduction I structure that adjusts the refrigerant flow rate during heating operation and throttles the refrigerant during cooling operation, and It is connected to the outdoor unit <A) by a connecting pipe (11b) via a rear manual shutoff valve (17).

また、(THl)・・・は各室内温度を検出する室温サ
ーモスタット、(TH2)・・・および<TH3)・・
・は各々室内熱交換器(12)・・・の液口およびガス
側配管における冷媒の温度を検出する温度センサ、(T
I−14)は圧縮n(1)の吐出管における冷媒の温度
を検出する温度センサ、(TH5)は暖房運転時に室外
熱交換器(6)(蒸発器)における蒸発温度を検出する
温度せンサー、(TH6)は圧縮前(1)に吸入される
吸入ガスの温度を検出する温度センサ、(Pl)は暖房
運転時には吐出ガスの圧力と、冷房運転時には吸入ガス
の圧力を検知する圧力センサである。
In addition, (THl)... is a room temperature thermostat that detects each room temperature, (TH2)... and <TH3)...
・Temperature sensors that detect the temperature of the refrigerant in the liquid inlet and gas side piping of the indoor heat exchanger (12), respectively; (T
I-14) is a temperature sensor that detects the temperature of the refrigerant in the discharge pipe of compression n(1), and (TH5) is a temperature sensor that detects the evaporation temperature in the outdoor heat exchanger (6) (evaporator) during heating operation. , (TH6) is a temperature sensor that detects the temperature of the suction gas taken in before compression (1), and (Pl) is a pressure sensor that detects the pressure of discharge gas during heating operation and the pressure of suction gas during cooling operation. be.

なお、第2図において上記各主要は器以外に補助用の諸
捻器が設けられている。(1f)は第2圧1ii曙(1
b)のバイパス回路(11c)に介設されて、第2圧縮
tl(1b)の停止時およびアンロード状態時に「開」
となり、フルロード状態で「閉」となるアンローダ用電
磁弁、(1g)はキャピラリーチューブ、(1h)およ
び(11)は油分離器(4)から油戻し配管(11u)
を経て第1圧縮n(1a)および第2圧縮芸(1b)に
潤滑油を戻す分岐管(11v)および(11w)に介設
されて返油量をコントロールするキャピラリーチューブ
、(21)は吐出管と吸入管とを接続する均圧ホットガ
スバイパス回路(11d)に介設されて、冷房運転時室
内熱交換器(12)(蒸発器)が低負荷状態のときおよ
びデフロスト時等に開作動するホットガス用電磁弁であ
る。また、(11e)は暖房過負荷制御用バイパス回路
であって、該バイパス回路(lie)には、補助コンデ
ンサ(22)、第1逆止弁(23)、暖房運転時空内熱
交換器<12)(凝縮器)が低負荷時のとき開作動する
高圧制御弁(24)および第2逆止弁(25)が順次直
列に接続されており、その一部には運転停止時に液封を
防止するための液封防止バイパス回路(Ilf)が第3
逆止弁(27)およびキャピラリーデユープ(Cr2)
を介して設けられている。さらに、(11c+)は上記
暖房過負荷バイパス回路(11e)の液冷媒側配管と主
配管の吸入ガス管との間を接続し、冷暖房運転時に吸入
ガスの過熱度を調節するためのリキッドインジェクショ
ンバイパス回路であって、該リキッドインジェクション
バイパス回路(11g)には圧縮層(1)のオン・オフ
と連動して開閉するインジェクション用電磁弁(29)
と、感温筒<TPl)により検出される吸入ガスの過熱
度に応じて開度を調節される自動膨張弁(30)とが介
設されている。
In addition, in FIG. 2, each of the above-mentioned main parts is provided with auxiliary twisters in addition to the vessels. (1f) is the second pressure 1ii dawn (1
b) is provided in the bypass circuit (11c), and is "open" when the second compression tl (1b) is stopped and in the unload state.
Solenoid valve for unloader that closes in full load state, (1g) is capillary tube, (1h) and (11) are oil return piping (11u) from oil separator (4)
Capillary tubes (21) are disposed in branch pipes (11v) and (11w) that return lubricating oil to the first compressor (1a) and second compressor (1b) to control the amount of oil returned. It is installed in the equal pressure hot gas bypass circuit (11d) that connects the pipe and the suction pipe, and opens when the indoor heat exchanger (12) (evaporator) is in a low load state during cooling operation, during defrosting, etc. This is a solenoid valve for hot gas. Further, (11e) is a bypass circuit for heating overload control, and the bypass circuit (lie) includes an auxiliary condenser (22), a first check valve (23), and an intra-space heat exchanger <12 ) A high pressure control valve (24) that opens when the condenser is under low load and a second check valve (25) are connected in series, and some of them are designed to prevent liquid sealing when the operation is stopped. The third liquid seal prevention bypass circuit (Ilf) is
Check valve (27) and capillary dupe (Cr2)
It is provided through. Furthermore, (11c+) is a liquid injection bypass that connects between the liquid refrigerant side pipe of the heating overload bypass circuit (11e) and the suction gas pipe of the main pipe, and is used to adjust the degree of superheating of the suction gas during heating and cooling operation. The liquid injection bypass circuit (11g) includes an injection solenoid valve (29) that opens and closes in conjunction with turning on and off the compressed layer (1).
and an automatic expansion valve (30) whose opening degree is adjusted according to the degree of superheating of the intake gas detected by the temperature sensing tube <TPl).

また、第2図中、(Fl)〜(F6)は冷媒回路あるい
は油戻し管中に介設された液浄化用フィルタ、(HPS
)は圧縮n保護用の高圧圧力開閉器、(SP)はサービ
スポートである。
In Fig. 2, (Fl) to (F6) are liquid purification filters (HPS) installed in the refrigerant circuit or oil return pipe.
) is a high pressure switch for compression n protection, and (SP) is a service port.

そして、上記各電磁弁およびセンサ類は各主要別器と共
に後述の室外制御ユニット(15)に信号線で接続され
、該室外制御ユニット(15)は各室内制御ユニット(
16)・・・に連絡配線によって信号の授受可能に接続
されている。
The above-mentioned solenoid valves and sensors are connected to an outdoor control unit (15), which will be described later, by a signal line along with each main separate device, and the outdoor control unit (15) is connected to each indoor control unit (15), which will be described later.
16) It is connected to . . . by a communication wiring so that signals can be sent and received.

第3図は上記室外ユニット(A)側に配置される室外制
御ユニット(15)の内部および接続される各機器の配
線関係を示す電気回路図である。
FIG. 3 is an electric circuit diagram showing the interior of the outdoor control unit (15) disposed on the outdoor unit (A) side and the wiring relationship of each connected device.

図中、(MCI>はインバータ(2a)の周波数変換回
路(INV)に接続された第1圧縮機(1a)のモータ
、(MC2>は第2圧縮1(lb)のモータ、(MF)
は室外ファン(6a)のモータ、(52F)、<520
+ )および(52C12)は各々ファンモータ(MF
)、周波数変換回路(INV)およびモータ(MCI2
>を作動させる電磁接触器で、上記各I器はヒユーズボ
ックス(FS)、漏電ブレーカ(BRI)を介して三相
交流電源に接続されるとともに、室外制御ユニット(1
5)とは単相交流電源で接続されている。
In the figure, (MCI> is the motor of the first compressor (1a) connected to the frequency conversion circuit (INV) of the inverter (2a), (MC2> is the motor of the second compression 1 (lb), (MF)
is the motor of the outdoor fan (6a), (52F), <520
+ ) and (52C12) are respectively fan motors (MF
), frequency conversion circuit (INV) and motor (MCI2
Each of the above-mentioned I devices is connected to a three-phase AC power source via a fuse box (FS) and a ground leakage breaker (BRI), and is also connected to an outdoor control unit (1
5) is connected with a single-phase AC power supply.

次に、室外制御ユニット(15)の内部にあっては、電
磁リレーの常開接点(RY+ )〜(RY7 )が単相
交流電流に対して並列に接続され、これらは順に、四路
切換弁(5)の電磁リレー(208>、周波数変換回路
(INV)の電磁接触器(52C1)、第2圧縮機(1
b)の電磁接触器(52C2)、室外ファン用電磁接触
器(52F)、アンローダ用電磁弁(1[)の電磁リレ
ー(SVL )、ホットガス用電磁弁(21)の電磁リ
レー(SVp)およびインジェクション用電磁弁(29
)の8mリレー(SVT )のコイルに直列に接続され
、室外制御ユニット(15)に入力される空温サーモス
タット(THl>および温度センサ(TH2)〜(TH
6)の信号に応じて開閉されて、上記各電磁接触器ある
いは電磁リレーの接点を開閉させるものである。また、
端子CNには、案外電動膨張弁(8)の開度を調節する
パルスモータ(EV)のコイルが接続されている。なお
、第3図右側の回路において、(CH+ >、(CH2
)はそれぞれ第1圧縮芸(1a)、第2圧縮門(1C)
のオイルフォーミング防止用ヒータで、それぞれ電磁接
触器(52G+ )、(52C2)と直列に接続され上
記8圧、縮芸(1a)、(1b)が停止時に電流が流れ
るようになされている。さらに、(51G2>はモータ
(MC2)の過電流リレー、(49C+ )、<49C
2)はそれぞれ第1圧縮機(1a)、第2圧縮芸(1b
)の温度上昇保護用スイッチ、(63H+ )、’ <
63H2)はそれぞれ第1圧@墾(Ia)、第2圧縮門
(1b)の圧力上昇保護用スイツチ、(51F>はファ
ンモータ(MF)の過電流リレーであって、これらは直
列に接続されて起動時には電磁リレー(30Fx )を
オン状態にし、故障にはオフ状態にさせる保護回路を構
成している。そして、室外制卸ユニット(15)には破
線で示される室外制御I装置(15a>が内蔵され、該
室外制御装置(15a)は圧縮R(1)の運転時間をg
I算する計測手段としての積算タイマ(31)を碌える
とともに、該室外制御装置<153)によって各室内制
御ユニット(16)・・・あるいは各センサ類から入力
される信号に応じて各機器の動作が制御される。
Next, inside the outdoor control unit (15), the normally open contacts (RY+) to (RY7) of the electromagnetic relay are connected in parallel to the single-phase alternating current, and these are connected in turn to the four-way switching valve. (5) electromagnetic relay (208>, frequency conversion circuit (INV) electromagnetic contactor (52C1), second compressor (1
b) electromagnetic contactor (52C2), outdoor fan electromagnetic contactor (52F), unloader electromagnetic valve (1[) electromagnetic relay (SVL), hot gas electromagnetic valve (21) electromagnetic relay (SVp), and Solenoid valve for injection (29
) is connected in series to the coil of the 8m relay (SVT) and input to the outdoor control unit (15).
6) is opened and closed in response to the signal to open and close the contacts of each of the electromagnetic contactors or electromagnetic relays. Also,
A coil of a pulse motor (EV) that adjusts the opening degree of the unexpected electric expansion valve (8) is connected to the terminal CN. In addition, in the circuit on the right side of Fig. 3, (CH+ >, (CH2
) are the first compression technique (1a) and the second compression gate (1C), respectively.
These oil forming prevention heaters are connected in series with the electromagnetic contactors (52G+) and (52C2), respectively, so that current flows when the above-mentioned 8 pressures (1a) and (1b) are stopped. Furthermore, (51G2> is the motor (MC2) overcurrent relay, (49C+), <49C
2) are the first compressor (1a) and the second compressor (1b), respectively.
) temperature rise protection switch, (63H+),'<
63H2) are pressure rise protection switches for the first compression gate (Ia) and the second compression gate (1b), respectively, and (51F> is the overcurrent relay for the fan motor (MF), which are connected in series. The outdoor control unit (15) has an outdoor control I device (15a> is built-in, and the outdoor control device (15a) controls the operation time of the compression R (1) g.
In addition to improving the integration timer (31) as a measuring means for calculating I, the outdoor control device <153) controls each device according to signals input from each indoor control unit (16)...or each sensor. Movement is controlled.

次に、第4図は学内制御ユニット(16)の内部および
接続される各機器の主な配、腺を示す電気回路図である
。第4図で(MF)は案内ファン(12a)のモータで
、単相交流電源を受けて各リレ一端子(RY+ )〜(
RY3 )によって風量の大きい順に強風と弱風とに切
換え、暖房運転時室温サーモスタット<THl)の信号
による停止時のみ微風にするようになされている。そし
て、室内制御ユニット(15)のプリント基板の端子C
Nには室内雷!!Ill膨張弁(13)の開度を調節す
るパルスモータ(EV)が接続される一方、室温サーモ
スタット(THI)および温度セン勺−(TH2)、(
TH3)の信号が入力されている。
Next, FIG. 4 is an electrical circuit diagram showing the inside of the campus control unit (16) and the main layout of each connected device. In Fig. 4, (MF) is the motor of the guide fan (12a), which receives single-phase AC power and connects each relay terminal (RY+) to (
RY3) is used to switch between strong and weak winds in descending order of air volume, and only when the heating operation is stopped by a signal from the room temperature thermostat (<THl), a light breeze is applied. Then, terminal C of the printed circuit board of the indoor control unit (15)
Indoor lightning for N! ! A pulse motor (EV) that adjusts the opening of the Ill expansion valve (13) is connected, while a room temperature thermostat (THI) and a temperature sensor (TH2), (
TH3) signal is input.

また、各学内制御ユニット(16)は室内制御ユニット
(15)に信号線を介して信号の授受可能に接続される
とともに、リモートコントロールスイッチ(RC8)か
らは入力可能に接続されている。そして、室内制御ユニ
ット(16)には破線で示される案内制御装置<16a
)が内蔵され、該学内制御装置(16a)によって、各
センサ類あるいは室外制御ユニット(15)からの信号
に応じて室内電動膨張弁(13)あるいは室内ファン(
12a)の動作が制御される。
Further, each campus control unit (16) is connected to the indoor control unit (15) via a signal line so that signals can be sent and received, and is also connected to a remote control switch (RC8) so that input can be made. The indoor control unit (16) includes a guidance control device <16a indicated by a broken line.
) is built-in, and the indoor electric expansion valve (13) or the indoor fan (
12a) is controlled.

第2図において、空気調和装置の暖房運転時、冷媒はガ
ス状態で圧縮機(1)により圧縮され、四路切換弁(5
)を経て各室内ユニット(B)〜(F)に分岐して送ら
れる。各室内ユニット<8)〜(F)では、各全内熱交
換器(12)・・・で熱交換を受けて凝縮された後金流
し、室外ユニット<A>で、レシーバ(9)に液貯蔵さ
れ、液状態で室外電動膨張弁(8)によって絞り作用を
受けて室外熱交換器(6)で蒸発し、ガス状態となって
圧縮機(1)に戻る。また、冷房運転時には四路切換弁
(5)は点線のように切換わり、冷媒の流れは暖房運転
時と逆となって、室外熱交換器(6)で凝縮され、室内
電動膨張弁(13)・・・で絞り作用を受けて全内熱交
換器(12)で蒸発した後、ガス状態で圧縮機に戻る。
In Fig. 2, during heating operation of the air conditioner, the refrigerant is compressed in a gas state by the compressor (1), and the four-way switching valve (5)
) and then branched and sent to each indoor unit (B) to (F). In each indoor unit <8) to (F), after undergoing heat exchange and condensation in each internal heat exchanger (12)..., the liquid is transferred to the receiver (9) in the outdoor unit <A>. It is stored in a liquid state, subjected to a throttling action by an outdoor electric expansion valve (8), evaporated in an outdoor heat exchanger (6), and returned to a gas state to the compressor (1). Also, during cooling operation, the four-way switching valve (5) switches as shown by the dotted line, and the flow of refrigerant is reversed to that during heating operation, condensing in the outdoor heat exchanger (6), and refrigerant flowing through the indoor electric expansion valve (13). )... and is evaporated in the total internal heat exchanger (12), then returned to the compressor in a gaseous state.

そして、上記冷暖房運転中には、圧4fa握(1)から
冷媒と共に吐出される潤滑油が配管あるいは熱交換器な
どの管壁に滞溜してくるため、苗鉢制御装置(15a)
によって冷媒回路中の油を回収するための浦回収運転が
行われる。その手順を、第5図のフローチャートに基づ
き説明する。
During the heating and cooling operation, the lubricating oil discharged from the pressure 4fa grip (1) together with the refrigerant accumulates on the pipe walls of the pipes or the heat exchanger, so the seedling pot control device (15a)
A ura recovery operation is performed to recover oil in the refrigerant circuit. The procedure will be explained based on the flowchart of FIG.

第5図のフローチャートにおいて、電源がオンになると
、ステップ$1で設定時間を8時間にセットされた積算
タイマ(31)の積算値を7時間に設定して通常運転を
行い、ステップ$2で圧縮機が運転しているか否かを判
別する。ステップ$2での判定が、圧縮機(1)が停止
中のNOのときには積算タイマ(31)を停止させ、時
間が軽過して圧縮機(1)が運転中であるYESになっ
たときに、積輝タイマ(31)を作動させてステップS
3に進みデフロスト運転を行っているか否かを判別して
、デフロスト運転を行っていないNOのときにはステッ
プS4に移行する。そして、ステップ$4では上記積鋒
タイマ(31)の積算値が8時間に達したか否かを判別
し、Noのとぎには上記ステップ82.83の手順をく
り返し行って積算値が8時間に達すると、判定がYES
となってステップS5に移行する。ステップS5では、
もし暖房中であればサイクル切換9構である四路切換弁
(5)を冷房側に切換えるとともに、圧縮別(1)の容
量を最大(第1圧縮掠(1a)が70Hz、第2圧[1
(1b)がフルロード)にして、室外送風ファン(6a
)を起動、室外型vJ膨張弁(8)の開度を全開、室内
電動膨張弁(13)・・・の開度を開き側に制御する(
なお、インジェクション用電磁弁(29)およびホット
ガス用電磁弁(21)は閉じておく)。次に、ステップ
S6では、ステップS5に進む前が暖房中であったか否
かを判別し、暖房運転中の油回収運転であるYESのと
きにはステップ$7で運転中の室内ファン(12a)を
停止して冷風が室内に吹出されないようにする。また、
冷房運転中のN。
In the flowchart shown in Fig. 5, when the power is turned on, the integrated value of the integrated timer (31), which was set to 8 hours in step $1, is set to 7 hours, and normal operation is performed. Determine whether the compressor is operating. If the determination in step $2 is NO, indicating that the compressor (1) is stopped, the integration timer (31) is stopped, and when the time has passed and the determination is YES, indicating that the compressor (1) is operating. In step S, the Sekki timer (31) is activated.
The process proceeds to step S3, where it is determined whether or not the defrost operation is being performed.If the answer is NO that the defrost operation is not being performed, the process moves to step S4. Then, in step $4, it is determined whether or not the cumulative value of the above-mentioned load timer (31) has reached 8 hours, and if the answer is No, the procedures of steps 82 and 83 are repeated to check if the cumulative value has reached 8 hours. When it reaches , the judgment is YES.
Then, the process moves to step S5. In step S5,
If heating is in progress, switch the four-way switching valve (5), which has nine cycle switches, to the cooling side, and increase the capacity of each compression (1) to the maximum (the first compression drawer (1a) is set to 70Hz, the second pressure [ 1
(1b) is fully loaded), and the outdoor fan (6a) is
), fully open the outdoor vJ expansion valve (8), and control the openings of the indoor electric expansion valves (13) to the open side (
Note that the injection solenoid valve (29) and the hot gas solenoid valve (21) are closed. Next, in step S6, it is determined whether or not heating was in progress before proceeding to step S5, and if YES, indicating oil recovery operation during heating operation, the operating indoor fan (12a) is stopped in step S7. to prevent cold air from blowing into the room. Also,
N during cooling operation.

のときには室内ファン(12a)を運転した状態でステ
ップS8に移行し、ステップ85〜S7の油回収運転を
3分間行ったか否かを判別し、3分間経過してYESに
なれば油回収運転を終了して、通常運転を行いながらス
テップ$2に戻る。なお、ステップ$3での判定がデフ
ロスト運転を行っているYESであればアフロスト運転
によりステップ$5〜S8の油回収運転と同様の油回収
効果があるので、ステップ$9で8!l算タイマ(31
)をリセットして通常運転を行う。
In this case, the process moves to step S8 with the indoor fan (12a) operating, and it is determined whether or not the oil recovery operation in steps 85 to S7 has been performed for 3 minutes.If the answer is YES after 3 minutes, the oil recovery operation is started. When the process is finished, the process returns to step $2 while performing normal operation. Note that if the determination in step $3 is YES that the defrost operation is being performed, the afrost operation has the same oil recovery effect as the oil recovery operation in steps $5 to S8, so step $9 is 8! l calculation timer (31
) and perform normal operation.

以上のフローにおいて、ステップ$5〜S8によって設
定時間の間空気調和装置の油回収運転を行う制御手段(
51)を構成している。
In the above flow, the control means (which performs the oil recovery operation of the air conditioner for the set time in steps $5 to S8)
51).

したがって、本実施例では、空気調和装置起動時には起
動してから1時間後、運転中には8時間毎に油回収運転
が行われる。このとき、暖房運転中であれば四路切換弁
(5)を冷房サイクル側に切換えるので、冷媒の流れは
前記説明した冷房運転時の流れとなる。そして圧縮機(
1)の容量が最大となり全外電fall膨張弁(8)の
開度を全開とげるので冷媒の循環間が増大し油の回収効
率が向上する。さらに、室内型U膨張弁(13)・・・
の開度を強制的に通常運転時の最大開度よりも大きくつ
まり減圧度を小さく制御するので、室内熱交換器(12
)における熱交換量が減少して冷媒回路中の冷媒状態が
湿りとなり、冷媒回路中に滞溜している油の粘性が低下
して、油の流動をスムーズにし油回収を促進する。しか
も、暖房サイクルのままで油回収運転を行うときのよう
に吐出ガス圧力の上昇がなく、油回収運転を確実に行う
°ことができる。したがって、油不足による圧4[(1
)の焼付きを有効に防止することができる。また、冷房
運転中であれば、四路切換弁(5)は切換える必要がな
く、上記と同様に油回収を促進する。
Therefore, in this embodiment, oil recovery operation is performed one hour after the air conditioner is started and every eight hours during operation. At this time, if the heating operation is in progress, the four-way switching valve (5) is switched to the cooling cycle side, so the flow of the refrigerant becomes the flow during the cooling operation described above. and a compressor (
Since the capacity of step 1) is maximized and the full external electric fall expansion valve (8) is fully opened, the refrigerant circulation period is increased and the oil recovery efficiency is improved. Furthermore, indoor type U expansion valve (13)...
Since the opening degree of the indoor heat exchanger (12
) decreases, the refrigerant condition in the refrigerant circuit becomes wet, and the viscosity of the oil accumulated in the refrigerant circuit decreases, smoothing the flow of the oil and promoting oil recovery. Moreover, unlike when oil recovery operation is performed while the heating cycle is maintained, the discharge gas pressure does not increase, and oil recovery operation can be performed reliably. Therefore, the pressure due to oil shortage is 4 [(1
) can effectively prevent burn-in. Further, during cooling operation, there is no need to switch the four-way switching valve (5), and oil recovery is promoted in the same way as described above.

特に、本実施例のように、マルチ型空気調和装置におい
ても、各室内熱交換器(12)・・・の分岐管に滞溜す
る油も回収でき、従来の方法に比べて著効を得る。なお
、暖房運転時にデフロスト運転を行うときには、やはり
冷房サイクルに切換えて、5分間室内型1III膨張弁
(13)・・・の開度を最大にして圧縮1jl(1)の
全容量運転を行う(このとぎ各室外電!lI膨張弁(8
)・・・の開度も全開)′ようになされているので、油
回収運転と同様の効果がある。したがって、デフロスト
運転を行った時には、次の油回収運転は8時間後と設定
されている。以上の油回収運転(あるいはデフロスト運
転)時には強制的に湿り運転とするが、その時間は3分
くデフロスト運転の場合は5分)と短いので、アキュム
レータ(10)によって吸入ガス冷媒中の液冷媒は確実
に除去され、圧fl!!1(1)で液圧縮を生ずる危険
性はない。
In particular, even in a multi-type air conditioner as in this example, oil accumulated in the branch pipes of each indoor heat exchanger (12) can be recovered, which is more effective than conventional methods. . In addition, when performing defrost operation during heating operation, switch to the cooling cycle and perform full capacity operation of compression 1jl (1) by maximizing the opening of the indoor type 1III expansion valve (13) for 5 minutes ( Thistogi each outdoor electric!lI expansion valve (8
)... is also fully opened), so it has the same effect as oil recovery operation. Therefore, when the defrost operation is performed, the next oil recovery operation is set to occur 8 hours later. During the above-mentioned oil recovery operation (or defrost operation), a wet operation is forced, but the time is short, 3 minutes (5 minutes for defrost operation), so the liquid refrigerant in the suction gas refrigerant is is reliably removed and the pressure fl! ! 1(1), there is no risk of liquid compression occurring.

(第2の発明の実施例) 第6図〜第8図は本出願の第2の発明の実施例を示す。(Example of the second invention) 6 to 8 show an embodiment of the second invention of the present application.

なお、空気調和装置の基本的構成は上記第1の発明の実
施例の第2図および第4図と同様であるので、その図示
および説明を省略する。ただし、本実施例において、第
2図中、(TH5)は油回収運転時に室外熱交換器(6
)における冷媒の凝縮圧力に相当する凝縮温度を検出す
るための温度センサである。
The basic configuration of the air conditioner is the same as that shown in FIGS. 2 and 4 of the embodiment of the first invention, so illustration and description thereof will be omitted. However, in this example, (TH5) in FIG. 2 is the outdoor heat exchanger (6) during oil recovery operation.
) is a temperature sensor for detecting the condensation temperature corresponding to the condensation pressure of the refrigerant.

第6図は第2の発明の実施例に係る空気調和装置の室外
ユニット<A)側に配置される室外制御ユニット(15
)の内部および接続される各芸器の配線関係を示す電気
回路図であって、前出の第3図とほぼ共通の構成を有し
ており、共通部分については説明を省略する。本実施例
においては、常開接点(RY2 >、(RY3 )およ
び(RY4 )が、図中右側の保護スイッチ類(51G
+)、(51C2)、(63H+ )、<63H2)等
で構成される保護回路に電磁リレー(30Fx)を介し
て接続されており、空気調和装置の運転中に異常状態が
生じたときには第1圧縮!1(Ia>、第2圧縮n(1
b)、およびファンモータ(MF)が非常停止するよう
にされている。そして、室外制御ユニット(15)には
、前記第1実施例と同様に室内制御装置(15a)が内
蔵され、該室外制御装置(15a>には圧縮d(1)の
運転時間を8inする計測手段としての積算タイマー(
31)が内蔵されている。該室外制御il+装置(15
a)により、各室内制御ユニット(16)・・・または
各センサ類から入力される信号に応じて各濾器の動作が
制御される。
FIG. 6 shows an outdoor control unit (15
) is an electric circuit diagram showing the wiring relationship of the inside of the device and the connected devices, and has almost the same configuration as the above-mentioned FIG. 3, and the explanation of the common parts will be omitted. In this example, the normally open contacts (RY2>, (RY3) and (RY4) are connected to the protection switches (51G) on the right side of the figure.
+), (51C2), (63H+), <63H2), etc., through an electromagnetic relay (30Fx), and when an abnormal condition occurs during operation of the air conditioner, the first compression! 1(Ia>, second compression n(1
b), and the fan motor (MF) are made to come to an emergency stop. The outdoor control unit (15) has an indoor control device (15a) built-in as in the first embodiment, and the outdoor control device (15a) measures the operating time of the compression d(1) to 8 inches. Integration timer as a means (
31) is built-in. The outdoor control il+ device (15
According to a), the operation of each filter is controlled according to signals input from each indoor control unit (16)... or each sensor.

空気調和装置の冷暖房運転時、冷媒の流れは上記第1実
施例と同様であり、説明を省略する。
During the cooling/heating operation of the air conditioner, the flow of the refrigerant is the same as in the first embodiment, and the explanation thereof will be omitted.

冷暖房運転中に、圧11(1)から冷媒とともに吐出さ
れる潤滑油が配管、熱交換器などの管檗に滞留してくる
ので、室外制御装置(15a>により冷媒回路中の油を
回収するための油回収運転が行われる。その手順を、第
7図のフローチャートにもとづき説明するに、前記第1
実施例におけるステップ$1〜S4と同様のフローでス
テップS’ +〜S’4を実行し、空気調和装置の積算
運転時間が8時間に達すると、ステップS’ sに進み
、下記フローにより油回収運転を行う。ステップS′5
では、四路切換弁(5)を冷房側にして、圧縮機(1)
の運転容量は最大(第8図のタイムチャート@参照)、
全外電り膨張弁(8)の開度を全開、室内電動膨張弁(
13)・・・の開度を開ぎ側に制御するとともに、室外
ファン(6a)を停止させておく(第8図のタイムチャ
ート(U)参照)(なお、インジェクション用電磁弁(
29)およびホットガス用電磁弁(21)は閉じておく
)。
During heating and cooling operation, lubricating oil discharged from pressure 11(1) together with refrigerant accumulates in tubes such as pipes and heat exchangers, so the oil in the refrigerant circuit is collected by the outdoor control device (15a). An oil recovery operation is performed for the first oil recovery operation.
Steps S'+ to S'4 are executed in the same flow as steps $1 to S4 in the example, and when the cumulative operating time of the air conditioner reaches 8 hours, the process proceeds to step S's, and the oil is turned off according to the flow below. Carry out recovery operation. Step S'5
Now, set the four-way selector valve (5) to the cooling side and turn on the compressor (1).
The operating capacity of is maximum (see time chart in Figure 8 @),
Fully open the external electric expansion valve (8), and open the indoor electric expansion valve (
13) Control the opening of... to the open side and stop the outdoor fan (6a) (see time chart (U) in Figure 8) (Please note that the injection solenoid valve (
29) and the hot gas solenoid valve (21) are closed).

次に、ステップS’ eでは、本来の運転が暖房運転中
であるか否かを判別し、暖房運転中のYESであるとき
にはステップ3/、で室内ファン(12a)・・・を停
止して冷風の吹出しを防止し、冷房運転中で判別がNo
の時にはそのままで、ステップS’ sに進む。そして
、さらにステップS’ sに進んで、温度センサ(TH
5)で検出される室外熱交換器〈6)における凝縮圧力
に相当する凝縮温度が所定温度T+  (例えば45°
C)(所定圧力に相当する)に達すると(第8図(1)
参照)、ステップS’IOで室外ファン(6a)の運転
を開始して(第8図Of)参照)、一度室外フアン(6
a)を運転すると、その後凝縮温度が上記所定温度T1
以下になっても、室外ファン(6a)の運転を止めない
。なお、ステップS’ sでは冷房運転中か否かも同時
に判別し、冷房運転中の油回収運転時には、凝縮湿度の
高低に拘らずステップS’IOに進んで、室外ファン(
6a)を運転するようになされている。そして、油回収
運転に入ってから設定時間3分経過すると油回収運転を
終了し、ステップS’ 2に戻って通常運転を行う。な
お、ステップS’ 3での判定がデフロスト運転を行っ
ているYESであれば、ステップS’nで積算タイマ(
31)をリセットして通常運転を行う。
Next, in step S'e, it is determined whether or not the original operation is heating operation, and if YES is that heating operation is in progress, the indoor fan (12a) is stopped in step 3/. Prevents cold air from blowing out and allows no discrimination during cooling operation.
When , the process continues as it is and proceeds to step S's. Then, proceeding further to step S's, the temperature sensor (TH
The condensation temperature corresponding to the condensation pressure in the outdoor heat exchanger <6) detected in step 5) is set to a predetermined temperature T+ (for example, 45°
C) (corresponding to the predetermined pressure) (Fig. 8 (1)
), start the operation of the outdoor fan (6a) in step S'IO (see Fig. 8Of)), and then start the outdoor fan (6a) once
When a) is operated, the condensation temperature then reaches the predetermined temperature T1.
The operation of the outdoor fan (6a) will not be stopped even if the following conditions occur. In addition, in step S's, it is also determined whether the cooling operation is in progress, and during oil recovery operation during the cooling operation, the process proceeds to step S'IO regardless of the level of condensed humidity, and the outdoor fan (
6a). Then, when a set time of 3 minutes has elapsed after starting the oil recovery operation, the oil recovery operation is ended, and the process returns to step S'2 to perform normal operation. Note that if the determination in step S'3 is YES that defrost operation is being performed, the integration timer (
31) and perform normal operation.

以上のフローにおいて、ステップS’ s〜S′1oに
よって積算タイマ(31)(]測手段)の演算値が所定
値に達したとき設定時間の間、上記す。
In the above flow, when the calculated value of the integration timer (31) (measuring means) reaches a predetermined value in steps S's to S'1o, the above-mentioned processing is performed for a set time.

イクル切換汎構(5)を冷房サイクル側に切換え、上記
圧縮前(1)の運転容量および減圧は横(8又は13)
の開度を大きくするよう制御するとともに、上記室外熱
交換器(6)にお【プる凝縮圧力が所定圧力に達するま
では室外ファン(6a)の運転を停止し、凝縮温度が所
定値に達すると上記室外ファン(6a)の運転を行うよ
う制御する制御手段(51’ )が構成されている。
The cycle switching mechanism (5) is switched to the cooling cycle side, and the operating capacity and depressurization before compression (1) are set to horizontal (8 or 13).
At the same time, the operation of the outdoor fan (6a) is stopped until the condensation pressure flowing into the outdoor heat exchanger (6) reaches a predetermined pressure, and the condensation temperature reaches a predetermined value. A control means (51') is configured to control the outdoor fan (6a) to operate when the temperature is reached.

したがって、本実施例では、空気調和装置の運転中に、
前記第1の発明の実施例と同様に冷房サイクルに切換え
て油回収運転を行うとき、室外熱交換器(6)における
凝縮温度(凝縮圧力)が所定温度T+  (所定圧力)
に達しない間は、制御手段(51’ >により、室外フ
ァン(6a)が停止されるので、室外熱交換器(6)に
おいて室外空気と冷媒との熱交換が行われなくなり、凝
縮温度(凝縮圧力)が速やかに上昇して(第8図(1)
参照)冷媒の循環量が十分に確保される。よって、冷媒
の循環量の不足により油回収の効率が低下するのを有効
に防止することができる。また、凝f!温度が上昇して
所定温度T1に達すると、室外ファン(6a)の運転が
開始され、室外熱交換器(6)において室外空気と冷媒
との熱交換が行われるので、室外空気温度が高いときに
も凝縮圧力が上昇しすぎて、高圧保護スイッチ(63H
+ )、(6′3H2)が働いて空気調和装置の運転が
不可能になることはない。すなわち、室外空気温度の高
低に拘らず、前記第1の発明の効果を十分に発揮せしめ
るものである。
Therefore, in this embodiment, during operation of the air conditioner,
Similar to the embodiment of the first invention, when switching to the cooling cycle and performing the oil recovery operation, the condensation temperature (condensation pressure) in the outdoor heat exchanger (6) reaches the predetermined temperature T+ (predetermined pressure).
Since the outdoor fan (6a) is stopped by the control means (51') until the temperature reaches pressure) increases rapidly (Fig. 8 (1)
Reference) Sufficient refrigerant circulation is ensured. Therefore, it is possible to effectively prevent the efficiency of oil recovery from decreasing due to insufficient circulating amount of refrigerant. Also, Fukuf! When the temperature rises and reaches a predetermined temperature T1, the outdoor fan (6a) starts operating, and heat exchange between the outdoor air and the refrigerant is performed in the outdoor heat exchanger (6). If the condensing pressure rises too much, the high pressure protection switch (63H)
+), (6'3H2) will not work and make it impossible to operate the air conditioner. That is, the effect of the first invention can be fully exhibited regardless of the outdoor air temperature.

尚、上記実施例においては、温度センサ(TH5)で凝
縮圧力に相当する凝縮温度を検出したが、圧力センサを
配置して、直接凝縮圧力を検出するようにしてもよい事
はいうまでもない。
In the above embodiment, the temperature sensor (TH5) detected the condensation temperature corresponding to the condensation pressure, but it goes without saying that a pressure sensor may be arranged to directly detect the condensation pressure. .

(発明の効果) 以上説明したように、本出願の第1の発明の空気調和装
置によれば、暖房運転中所定の詩間毎に冷房サイクルに
切換えて圧縮前の容量を大きく、かつ減圧門構の開度を
大きくして湿り運転となるように制御覆る油回収運転を
一定時間行うようにしたので、吐出ガス温度の上背を生
じることなく、冷媒循環量が増大しかつ冷媒の粘性が低
下して、冷媒回路中から圧8機への油回収を溝やかにか
つ確実に行うことができ、よって圧FfrRの油不足に
よる焼付き等を有効に防止することができ、信頼性の向
上を得る。
(Effects of the Invention) As explained above, according to the air conditioner of the first invention of the present application, the air conditioner switches to the cooling cycle at predetermined intervals during heating operation, increases the capacity before compression, and By increasing the opening of the system and performing controlled oil recovery operation for a certain period of time to achieve wet operation, the refrigerant circulation amount increases and the viscosity of the refrigerant is reduced without causing a rise in the discharge gas temperature. It is possible to smoothly and reliably recover oil from the refrigerant circuit to the pressure 8 unit, thereby effectively preventing seizures due to lack of oil in the pressure FfrR, and improving reliability. Get an improvement.

さらに、本出願の第2の発明によれば、冷房サイクルで
油回収運転を行うとき、室外熱交換器における凝縮温度
が所定温度よりも低い間室外ファンを停止し、所定温度
に達すると室外ファンの運転を開始するようにしたので
、室外空気温度の高低に拘らず、空気調和装置の非常停
止を生せしめることなく冷媒の循環量を十分確保づるこ
とができ1、油回収の効率の低下を有効に防止すること
ができる。
Furthermore, according to the second invention of the present application, when performing oil recovery operation in the cooling cycle, the outdoor fan is stopped while the condensation temperature in the outdoor heat exchanger is lower than a predetermined temperature, and when the condensation temperature reaches the predetermined temperature, the outdoor fan is stopped. As a result, regardless of the outdoor air temperature, a sufficient amount of refrigerant can be ensured without causing an emergency stop of the air conditioner, and a drop in oil recovery efficiency can be ensured. It can be effectively prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本出願の第1および第2の発明の構成を示す冷
媒系統図である。第2図〜第5図は本出願の第1の発明
の実施例を示し、第2図はその冷媒系統図、第3図は室
外制御ユニットの電気回路図、第4図は室内制御ユニッ
トの電気回路図、第5図は油回収運転の手順を示すフロ
ーヂャート図である。また、第6図〜第8図は本出願の
第2の発明の実施例を示し、第6図は室外Tolr ′
nユニットの電気回路図、第7図は油回収運転の手順を
示すフローチI!−ト図、第8図は油回収運転時の凝縮
温度、室外ファンの運転、圧縮機の運転容ωの変化を示
すタイムチャート図である。 (1)・・・圧縮ぼ、(5)・・・四路切換弁(サイク
ル切換R構)、(6)・・・室外熱交換器、(8)・・
・室外電動膨張弁(減圧様構)、(12)・・・室内熱
交換器、(13)・・・室内電動膨張弁(減圧機構)、
(31)・・・積算タイマ(計測手段)、(51)、(
51’ )・・・制御手段。 第1図 (jパrf@構) 第8図 時間 第7図
FIG. 1 is a refrigerant system diagram showing the configuration of the first and second inventions of the present application. Fig. 2 to Fig. 5 show an embodiment of the first invention of the present application, Fig. 2 is a refrigerant system diagram thereof, Fig. 3 is an electric circuit diagram of an outdoor control unit, and Fig. 4 is an electrical circuit diagram of an indoor control unit. The electrical circuit diagram, FIG. 5, is a flowchart showing the procedure of oil recovery operation. Further, FIGS. 6 to 8 show an embodiment of the second invention of the present application, and FIG. 6 shows an outdoor Tolr'
The electrical circuit diagram of the n unit, Figure 7, is a flowchart showing the oil recovery operation procedure. FIG. 8 is a time chart showing changes in the condensing temperature, the operation of the outdoor fan, and the operating capacity ω of the compressor during the oil recovery operation. (1)...Compression valve, (5)...Four-way switching valve (cycle switching R structure), (6)...Outdoor heat exchanger, (8)...
・Outdoor electric expansion valve (pressure reduction mechanism), (12)...indoor heat exchanger, (13)...indoor electric expansion valve (pressure reduction mechanism),
(31)...Integration timer (measurement means), (51), (
51')...control means. Figure 1 (jparf@structure) Figure 8 Time Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)運転容量を可変に調節される圧縮機(1)、室内
熱交換器(12)、減圧機構(8又は13)並びに室外
熱交換器(6)を順次接続してなる冷媒回路を備え、か
つ該冷媒回路を冷房サイクルと暖房サイクルとに切換え
るサイクル切換機構(5)を備えた空気調和装置におい
て、暖房運転時に圧縮機(1)の運転時間を計測して積
算する計測手段(31)と、該計測手段(31)の演算
値が所定値に達したとき設定時間の間、上記サイクル切
換機構(5)を冷房サイクル側に切換えるとともに、上
記圧縮機(1)の運転容量および減圧機構(8又は13
)の開度を大きくするよう制御する制御手段(51)と
を備え、冷媒回路中の油を圧縮機(1)に回収するよう
にしたことを特徴とする空気調和装置。
(1) Equipped with a refrigerant circuit in which a compressor (1) whose operating capacity can be variably adjusted, an indoor heat exchanger (12), a pressure reduction mechanism (8 or 13), and an outdoor heat exchanger (6) are connected in sequence. and a cycle switching mechanism (5) for switching the refrigerant circuit between a cooling cycle and a heating cycle, a measuring means (31) for measuring and integrating the operating time of the compressor (1) during heating operation. When the calculated value of the measuring means (31) reaches a predetermined value, the cycle switching mechanism (5) is switched to the cooling cycle side for a set time, and the operating capacity of the compressor (1) and the pressure reducing mechanism are changed. (8 or 13
) control means (51) for controlling the opening degree of the refrigerant circuit to be increased, and oil in the refrigerant circuit is recovered to the compressor (1).
(2)運転容量を可変に調節される圧縮機(1)、室内
熱交換器(12)、減圧機構(8又は13)並びに室外
熱交換器(6)を順次接続してなる冷媒回路を備え、か
つ該冷媒回路を冷房サイクルと暖房サイクルとに切換え
るサイクル切換機構(5)を備えた空気調和装置におい
て、暖房運転時に圧縮機(1)の運転時間を計測して積
算する計測手段(31)と、該計測手段(31)の演算
値が所定値に達したとき設定時間の間、上記サイクル切
換機構(5)を冷房サイクル側に切換え、上記圧縮機(
1)の運転容量および減圧機構(8又は13)の開度を
大きくするよう制御するとともに、上記室外熱交換器(
6)における凝縮圧力が所定値に達するまでは室外フア
ン(6a)の運転を停止し、凝縮圧力が所定値に達する
と上記室外フアン(6a)の運転を行うよう制御する制
御手段(51′)とを備え、冷媒回路中の油を圧縮機(
1)に回収するようにしたことを特徴とする空気調和装
置。
(2) Equipped with a refrigerant circuit in which a compressor (1) whose operating capacity can be variably adjusted, an indoor heat exchanger (12), a pressure reduction mechanism (8 or 13), and an outdoor heat exchanger (6) are connected in sequence. and a cycle switching mechanism (5) for switching the refrigerant circuit between a cooling cycle and a heating cycle, a measuring means (31) for measuring and integrating the operating time of the compressor (1) during heating operation. When the calculated value of the measuring means (31) reaches a predetermined value, the cycle switching mechanism (5) is switched to the cooling cycle side for a set time, and the compressor (
The operating capacity of 1) and the opening degree of the pressure reducing mechanism (8 or 13) are controlled to be large, and the outdoor heat exchanger (
Control means (51') for controlling the operation of the outdoor fan (6a) to be stopped until the condensing pressure in step 6) reaches a predetermined value, and to start operating the outdoor fan (6a) when the condensing pressure reaches the predetermined value. The oil in the refrigerant circuit is equipped with a compressor (
1) An air conditioner characterized in that the air conditioner is collected in the following manner.
JP138087A 1986-09-13 1987-01-07 Air conditioner Expired - Lifetime JPH0723816B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21623586 1986-09-13
JP61-216235 1986-09-13

Publications (2)

Publication Number Publication Date
JPS63187070A true JPS63187070A (en) 1988-08-02
JPH0723816B2 JPH0723816B2 (en) 1995-03-15

Family

ID=16685392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP138087A Expired - Lifetime JPH0723816B2 (en) 1986-09-13 1987-01-07 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0723816B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225955A (en) * 1989-02-28 1990-09-07 Matsushita Refrig Co Ltd Mutli-chamber type air conditioner
JPH0363468A (en) * 1989-07-31 1991-03-19 Daikin Ind Ltd Operation controller for air conditioner
JPH04340044A (en) * 1991-03-12 1992-11-26 Daikin Ind Ltd Operation control device of air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225955A (en) * 1989-02-28 1990-09-07 Matsushita Refrig Co Ltd Mutli-chamber type air conditioner
JPH0363468A (en) * 1989-07-31 1991-03-19 Daikin Ind Ltd Operation controller for air conditioner
JPH04340044A (en) * 1991-03-12 1992-11-26 Daikin Ind Ltd Operation control device of air conditioner

Also Published As

Publication number Publication date
JPH0723816B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
JPH07117327B2 (en) Air conditioner
JPH02230045A (en) Air conditioning device
JPS6373052A (en) Oil recovery operation controller for refrigerator
JPS63187070A (en) Air conditioner
JP3161389B2 (en) Air conditioner
JPH0370943A (en) Operation controller for air conditioner
JPH0217358A (en) Degree of overheat control device for freezing device
JPH02230056A (en) Operation control device for freezer
JPH052902B2 (en)
JPH02195145A (en) Device for controlling oil-recovery operation in air-conditioning apparatus
JPH02272260A (en) Operation-controlling device in air-conditioning apparatus
JPH0221165A (en) Operation controller for air conditioner
JPH0448418Y2 (en)
JPH0828982A (en) Air conditioner
JPH0381061B2 (en)
JPH02208452A (en) Pressure equalizing control device for refrigerator
JPS63180050A (en) Electric expansion valve controller for air conditioner
JPH0650197B2 (en) Refrigerator control device
JPH052901B2 (en)
JPS63176949A (en) Air conditioner
JPH07117328B2 (en) Operation control device for air conditioner
JPH01155147A (en) Controller for refrigerator
JPH02230063A (en) Capacity control device for air conditioner
JPH0252956A (en) Refrigerating apparatus
JPH07122520B2 (en) Air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term