JPS63141912A - Cosmetic - Google Patents

Cosmetic

Info

Publication number
JPS63141912A
JPS63141912A JP28777786A JP28777786A JPS63141912A JP S63141912 A JPS63141912 A JP S63141912A JP 28777786 A JP28777786 A JP 28777786A JP 28777786 A JP28777786 A JP 28777786A JP S63141912 A JPS63141912 A JP S63141912A
Authority
JP
Japan
Prior art keywords
titanium oxide
titanium
fine particles
cosmetic
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28777786A
Other languages
Japanese (ja)
Inventor
Toshiyuki Taku
田久 敏行
Fukashi Sakamoto
坂本 不可止
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP28777786A priority Critical patent/JPS63141912A/en
Publication of JPS63141912A publication Critical patent/JPS63141912A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm

Abstract

PURPOSE:To obtain a cosmetic having excellent dispersibility and storage stability of particles in production, excellent transparency to visible light and shielding effect to ultraviolet ray and good usability, by compounding crystalline spherical fine particles of titanium oxide to a cosmetic. CONSTITUTION:The objective cosmetic contains 0.01-50wt.% (preferably 0.01-20wt.%) crystalline spherical titanium oxide having an average particle diameter of 0.005-0.03mum. The cosmetic has excellent usability such as spreadability, adhesion to the skin, springy feeling, etc., and is free from bluish color by the use of fine titanium oxide particle having high transparency to visible light. The above fine particle of titanium oxide can be produced e.g. by thermally decomposing or hydrolyzing a titanium compound easily vaporiza ble with heat (e.g. titanium tetraisopoxide) and reacting at 400-500 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化粧料に関し、詳しくは実質的に結晶性かつ実
質的に球状の酸化チタン微粒子を化粧料基材に配合する
ことにより、製造時の粒子の分散性、貯蔵安定性が良好
で、可視光透過性および紫外線遮蔽効果が優れており、
使用性の良好な化粧料に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to cosmetics, and more specifically, by blending substantially crystalline and substantially spherical titanium oxide fine particles into a cosmetic base material, The particles have good dispersibility and storage stability, and have excellent visible light transmittance and ultraviolet shielding effect.
This invention relates to cosmetics with good usability.

[従来の技術および発明が解決しようとする問題点] 酸化チタンは人体に対する毒性が少なく、しかも隠蔽力
が強いために化粧料に広く用いられている。酸化チタン
は通常特定の粒子径をもたず、付着力が強いために塊状
の粒子であり、アナターゼ型およびルチル型のいずれも
可視光線をほとんど吸収しないので白色である。屈折率
はアナターゼ型2.52.ルチル型2.72といずれも
白色の粉末中級も高い、また一般顔料用酸化チタンの粒
径は0.2〜0.4鉢層であり、これらが酸化チタンの
最も可視光線の散乱効果の大きい粒径であるとされてい
る。このように酸化チタンは顔料として化耕料に特に好
んで配合されている。さらに粒径が0.1 u、ra以
下の微粒子になると紫外線を散乱させる効果が大きくな
るため化粧料に広く用いられている。
[Prior Art and Problems to be Solved by the Invention] Titanium oxide is widely used in cosmetics because it has little toxicity to the human body and has strong hiding power. Titanium oxide usually does not have a specific particle size and is a lumpy particle due to its strong adhesive force, and both anatase type and rutile type are white because they hardly absorb visible light. The refractive index is anatase type 2.52. The rutile type is 2.72 and both white powder intermediate grades are also high, and the particle size of titanium oxide for general pigments is 0.2 to 0.4 pot layer, and these are titanium oxide that has the largest visible light scattering effect. It is said to be the particle size. As described above, titanium oxide is particularly preferably blended as a pigment in agrochemicals. Furthermore, fine particles with a particle size of 0.1 u, ra or less have a greater effect of scattering ultraviolet rays, and are therefore widely used in cosmetics.

例えば特公昭47−42502号公報には粒径30〜4
0nmの酸化チタンを配合した日焼は止め化粧料が開示
されている。また、特開昭58−49307号公報では
粒径lO〜40nsの表面処理酸化チタンを配合した化
粧料が提案されている。さらに特開昭58−62108
号公報では酸化チタンの粒径が紫外線の遮蔽効果に影響
することが指摘されており、乎均粒子径lO〜30nm
の疎水化された微粒子状耐化チタンを配合した化粧料は
、皮膚に紅斑を惹起する290〜320nmの紫外線を
反射散乱し皮膚を紫外線から守るのに有効であるとして
いる。
For example, in Japanese Patent Publication No. 47-42502, particle size 30-4
A sunscreen cosmetic containing 0 nm titanium oxide has been disclosed. Furthermore, Japanese Patent Application Laid-Open No. 58-49307 proposes a cosmetic containing surface-treated titanium oxide having a particle size of 10 to 40 ns. Furthermore, JP-A-58-62108
In the publication, it is pointed out that the particle size of titanium oxide affects the ultraviolet shielding effect, and the average particle size is lO ~ 30 nm.
Cosmetics containing hydrophobized particulate hardened titanium are said to be effective in protecting the skin from ultraviolet rays by reflecting and scattering ultraviolet rays of 290 to 320 nm that cause erythema on the skin.

しかし、上記した化粧料等に用いられた酸化チタンは形
状がサイコロ状、直方体状9M片状。
However, the titanium oxide used in the above-mentioned cosmetics and the like has a dice-like shape, a rectangular parallelepiped-like 9M piece.

針状をなすものであるため、化粧料製造時の分散性や保
存中の安定性などが充分でなく、しかも伸び、つき、自
然な仕上りなどの使用性に劣るという欠点があった。ま
た、紫外線を充分に遮蔽するために酸化チタンの配合量
を増やす必要があり。
Because they are needle-shaped, they have the drawbacks of insufficient dispersibility during cosmetic production and stability during storage, and poor usability such as spreadability, stickiness, and natural finish. Additionally, it is necessary to increase the amount of titanium oxide in order to sufficiently block UV rays.

この場合従来の酸化チタンを配合した化粧料は可視光線
の透過性が充分でないため微粒子相互の干渉作用により
皮膚に塗布した際に青白さが目立ち、好ましくないとい
う問題点があった。
In this case, conventional cosmetics containing titanium oxide do not have sufficient visible light transmittance, so when applied to the skin, the interference between the fine particles makes the skin look pale, which is not desirable.

そこで、本発明者らは従来の酸化チタンを配合した化粧
料の諸問題を解決すべく鋭意研究を重ねた結果、実質的
に結晶性かつ実質的に球状の酸化チタン微粒子を配合し
た化粧料が、該微粒子の化粧料基材への分散性や保存中
の安定性が良好で、皮膚へ塗布したときに青白みが少な
く、透明感を与え、しかも紫外線の遮蔽効果のすぐれて
いることを見出し、この知見に基いて本発明を完成する
に至った。
Therefore, the present inventors have conducted intensive research to solve various problems of conventional cosmetics containing titanium oxide, and as a result, a cosmetic containing substantially crystalline and substantially spherical titanium oxide fine particles has been developed. discovered that the fine particles have good dispersibility in cosmetic base materials and stability during storage, have little paleness when applied to the skin, give a transparent appearance, and have excellent ultraviolet shielding effects. Based on this knowledge, the present invention was completed.

[問題点を解決するための手段] すなわち未発明は、実質的に結晶性かつ実質的に球状の
酸化チタン微粒子を0.01〜50重量%配合してなる
化粧ネ4である。
[Means for Solving the Problems] That is, what has not yet been invented is a makeup paste 4 which contains 0.01 to 50% by weight of substantially crystalline and substantially spherical titanium oxide fine particles.

本発明に使用する酸化チタンは、実T的に結晶性でしか
も実質的に球状をなす微粒子状のものである。ここで実
質的に結晶性でとは、通常ルチル型またはアナターゼ型
のものであることを意味するが、これら両者の混合形態
であってもよい、また実質的に球状とは粒子の最小径が
最大径の80%以上のもので、好ましくは粒子の最小径
が最大径の90%以上の、表面がなめらかなものを相称
する。さらにこの実質的に結晶性かつ実質的に球状の酸
化チタン微粒子の平均粒子径は0.005〜0.03μ
鳳(5〜30n鵬)、粒子径分布は0.001〜0.0
5鉢層(1〜50■)であり、比表面積は30〜100
 m2/g (BET法)と非常に大きい。コノヨラな
酸化チタン微粒子の1例につき、第1図にX線回折パタ
ーンを、第2図に電子顕微鏡写真を示す。
The titanium oxide used in the present invention is actually crystalline and in the form of fine particles that are substantially spherical. Here, "substantially crystalline" usually means that it is of rutile type or anatase type, but it may also be a mixture of these two forms, and "substantially spherical" means that the minimum diameter of the particles is Particles with a smooth surface having a diameter of 80% or more of the maximum diameter, preferably a minimum diameter of 90% or more of the maximum diameter are commonly referred to as particles. Furthermore, the average particle diameter of the substantially crystalline and substantially spherical titanium oxide fine particles is 0.005 to 0.03μ.
Peng (5-30n Peng), particle size distribution is 0.001-0.0
There are 5 pot layers (1 to 50 cm), and the specific surface area is 30 to 100.
m2/g (BET method), which is extremely large. FIG. 1 shows an X-ray diffraction pattern and FIG. 2 shows an electron micrograph of an example of fine titanium oxide particles.

このような酸化チタン微粒子は種々の方法で製造するこ
とができ、例えば気化したチタン化合物を熱分解または
加水分解し、必要に応じて焼成することにより得ること
ができる。
Such titanium oxide fine particles can be produced by various methods, for example, by thermally decomposing or hydrolyzing a vaporized titanium compound and, if necessary, calcining the titanium compound.

アナターゼ型の球状酸化チタン微粒子を製造する具体的
な方法としては、例えば第3図に示されているような反
応装置を用い、以下の如くして製造することができる。
As a specific method for producing anatase type spherical titanium oxide fine particles, for example, using a reaction apparatus as shown in FIG. 3, they can be produced as follows.

先ず、原料としてはチタンアルコキサイドやハロゲン化
チタンなど、加熱することにより容易に気化するチタン
化合物を用いる。チタンアルコキサイドとして具体的に
は例えばチタンテトラメトキサイド2チタンテトラエト
キサイド、チタンテトライソプロポキサイド、チタンテ
トラブトキサイド、ジェトキシチタンオキサイドなどを
挙げることができる。またハロゲン化チタンとして具体
的には四塩化チタン、四臭化チタンなどのテトラハロゲ
ン化チタンが挙げられる。さらにトリハロゲン化モノア
ルコキシチタン、モノハロゲン化トリアルコキシチタン
、ジハロゲン化ジアルコキシチタンなどの揮発性を有す
るチタン化合物を用いることもできる。これらチタン化
合物は単独で用いてもよく、あるいは2種類以上を組合
せて用いてもよい、これらの中でもチタンテトラメトキ
サイド、チタンテトラエトキサイド、チタンテトライン
プロポキサイドなどが好ましく、特にチタンテトライソ
ホキサイドが好ましい。
First, a titanium compound that is easily vaporized by heating, such as titanium alkoxide or titanium halide, is used as a raw material. Specific examples of the titanium alkoxide include titanium tetramethoxide, di-titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, and jetoxytitanium oxide. Specific examples of titanium halides include titanium tetrahalides such as titanium tetrachloride and titanium tetrabromide. Further, volatile titanium compounds such as trihalogenated monoalkoxytitanium, monohalogenated trialkoxytitanium, and dihalogenated dialkoxytitanium can also be used. These titanium compounds may be used alone or in combination of two or more. Among these, titanium tetramethoxide, titanium tetraethoxide, titanium tetraline propoxide, etc. are preferred, and titanium tetrasophoxide is particularly preferred. Sides are preferred.

ン化合物は加熱された後ノズルから噴出させるか、また
はグラスウール4など、表面積の大きな充填物上で気化
させる。気化せしめられたチタン化合物は適宜他の気体
で希釈してもよい、この気体は気化せしめられたチタン
化合物を反応器に送り込むためのキャリアーガスとして
の役割を果たすものである。この気体としては窒素、ア
ルゴン、ヘリウム等の不活性ガスや空気などを用いるこ
とができる。
The compound is heated and then ejected through a nozzle or vaporized over a large surface area packing such as glass wool 4. The vaporized titanium compound may be optionally diluted with another gas, which serves as a carrier gas for feeding the vaporized titanium compound into the reactor. As this gas, an inert gas such as nitrogen, argon, or helium, or air can be used.

次いで、気化せしめられたチタン化合物を反応器5に送
り込む0反応器5は円筒または角筒などの筒状容器であ
り、内部または外部から加熱される6反応器5としては
直径りと塔の高さHの比がD:H=1:1〜100の範
囲のものが用いられ、その上部または下部より、上記の
気化せしめられたチタン化合物を反応器5内に送り込む
、また、必要に応じて加水分解用の水蒸気を同時に送り
込む、なお、反応器5中での滞留時間は適宜決定すれば
よいが、好ましくは0.1〜10sec、とする、また
流速は1〜50cIl/sec、が好ましい、さらに原
料濃度は2 X ll15moj)/i’〜2 X 1
0−’5oji’/j!が好ましく、特に4 X 10
−5moj!/ji! 〜12X 1O−5soil/
i’が好ましい、また反応温度は380〜800℃、好
ましくは400〜500℃である。なお、図中符号6は
ヒーター、7は冷却管である。
Next, the vaporized titanium compound is sent to the reactor 5. The reactor 5 is a cylindrical container such as a cylinder or a rectangular tube, and the reactor 5 is heated from the inside or outside. A reactor with a ratio of D:H in the range of 1:1 to 100 is used, and the vaporized titanium compound is fed into the reactor 5 from the upper or lower part of the reactor. Water vapor for hydrolysis is simultaneously sent in. The residence time in the reactor 5 may be determined as appropriate, but it is preferably 0.1 to 10 seconds, and the flow rate is preferably 1 to 50 cIl/sec. Furthermore, the raw material concentration is 2 X ll15moj)/i' ~ 2 X 1
0-'5oji'/j! is preferable, especially 4×10
-5moj! /ji! ~12X 1O-5soil/
i' is preferred, and the reaction temperature is 380-800°C, preferably 400-500°C. In addition, the code|symbol 6 in the figure is a heater, and 7 is a cooling pipe.

次いで、このようにして生成した酸化チタン微粒子はそ
のままフィルターで回収してもよいが、できるだけ早く
冷却すれば粒子同志が凝集することなく微粒子状のもの
が得られる。生成した酸化チタンの分離はメンブランフ
ィルタ−9濾紙などのフィルターで濾過してフィルター
表面上に捕集する。この際捕集器内部に冷却部分を設は
熱泳動により収集してもよい。
Next, the titanium oxide fine particles thus generated may be collected as they are with a filter, but if they are cooled as quickly as possible, fine particles can be obtained without agglomeration of the particles. The generated titanium oxide is separated by filtration using a filter such as membrane filter 9 filter paper and collected on the surface of the filter. At this time, a cooling section may be provided inside the collector to collect the material by thermophoresis.

このようにして粒子径5〜50nmの実質的に結晶性か
つ実質的に球状の酸化チタン微粒子を回収することがで
きる0回収した酸化チタン微粒子は目的等を考慮して適
宜公知の技術で疎水化、親油化等の表面処理を行なうこ
とができる。
In this way, substantially crystalline and substantially spherical titanium oxide fine particles with a particle size of 5 to 50 nm can be recovered. The recovered titanium oxide fine particles are hydrophobized using known techniques as appropriate in consideration of the purpose etc. , surface treatment such as lipophilization can be performed.

このような実質的に結晶性かつ実質的に球状の酸化チタ
ン微粒子を乳液、クリーム等の化粧料基材に0.01〜
50重凝%、好ましくは0.01〜20重量%の割合で
配合して化粧料とする。この酸化チタン微粒子の配合割
合が0.011℃%以下ではその添加効果が十分でなく
、また、50重量%を超えると化粧料基材油に対する分
散性が低下するので、いずれも好ましくない。
Such substantially crystalline and substantially spherical titanium oxide fine particles are added to cosmetic base materials such as emulsions and creams at a concentration of 0.01 to 100%.
It is blended in a proportion of 50% by weight, preferably 0.01 to 20% by weight to prepare a cosmetic. If the proportion of the titanium oxide fine particles is less than 0.011° C.%, the effect of the addition will not be sufficient, and if it exceeds 50% by weight, the dispersibility in cosmetic base oil will decrease, which is not preferable.

[実施例] 次に実施例により本発明をさらに詳細に説明するが、本
発明の範囲を超えない限り、これに限定されるものでは
ない。
[Examples] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto unless it exceeds the scope of the present invention.

製造例1 (アナターゼ型球状酸化チタン微粒子の製造)第3図に
示す装置を用いてアナターゼ型球状酸化チタン微粒子の
製造を行なった。すなわち原料としてのチタンテトライ
ソプロポキサイドを0.05cc/win、の割合でケ
ミカルポンプ2により230℃に加熱した気化器3に送
り込んだ、この気化器は内径7mm、長さioamで、
内部にグラスウール4を充填したものを用いた。同時に
気化せしめられたチタンテトライソプロポキサイドを送
るためにキャリアーガスとしてヘリウムをチタンテトラ
イソプロポキサイドの濃度が8 X 1(15mof’
#となるような割合で送り込んだ0次いで、この混合ガ
スを500℃に加熱した反応器5に送り込んだ。
Production Example 1 (Production of anatase type spherical titanium oxide fine particles) Anatase type spherical titanium oxide fine particles were manufactured using the apparatus shown in FIG. That is, titanium tetraisopropoxide as a raw material was fed at a rate of 0.05 cc/win into a vaporizer 3 heated to 230° C. by a chemical pump 2. This vaporizer had an inner diameter of 7 mm and a length of ioam.
The inside was filled with glass wool 4. At the same time, in order to transport the vaporized titanium tetraisopropoxide, helium was used as a carrier gas so that the concentration of titanium tetraisopropoxide was 8
Then, this mixed gas was fed into a reactor 5 heated to 500°C.

反応器5は内径26■、長さ100 mmのものを用い
た。さらに反応器5にはキャリアーガスとしてヘリウム
を送り込み、また反応を促進するために水蒸気を送り込
んだ、全体としてのキャリアーガスの流量は]000m
ρ/win、で滞留時間は約1秒とした。さらに反応器
出口は冷却ガスによりクエンチングし、生成粒子の合体
、凝集を防いだ。生成した粒子はX線回折測定の結果、
アナターゼ型球状酸化チタン微粒子であった。第4図に
このもののX線回折パターン(Cu−に、線使用)を、
第5図に電子顕微鏡写真を示す、また、このものは5〜
30nmの粒子径分布を有し、その数乎均粒子径は20
nmであった。
The reactor 5 used had an inner diameter of 26 mm and a length of 100 mm. Furthermore, helium was fed into the reactor 5 as a carrier gas, and water vapor was fed into the reactor 5 to promote the reaction.The overall flow rate of the carrier gas was ]000 m
ρ/win, and the residence time was about 1 second. Furthermore, the outlet of the reactor was quenched with cooling gas to prevent coalescence and aggregation of the produced particles. As a result of X-ray diffraction measurement, the generated particles were
They were anatase-type spherical titanium oxide fine particles. Figure 4 shows the X-ray diffraction pattern of this material (Cu- line used).
Figure 5 shows an electron micrograph.
It has a particle size distribution of 30 nm, and its average particle size is 20 nm.
It was nm.

製造例2 (アナターゼ型球状酸化チタン微粒子の製造)反応は製
造例1と同じ装置で行なった。原料のチタンテトライソ
プロポキサイドを0.05cc/sin。
Production Example 2 (Production of Anatase Type Spherical Titanium Oxide Fine Particles) The reaction was carried out using the same apparatus as Production Example 1. The raw material titanium tetraisopropoxide is 0.05cc/sin.

の割合でケミカルポンプ2により230℃に加熱した気
化器3に送り込んだ、同時に気化したチタンテトライソ
プロポキサイドを送るためにキャリアーガスとしてヘリ
ウムを原料のチタンテトライソプロポキサイドの濃度が
1.4 X 10=mail/j)となるような割合で
送り込んだ0次いで、この混合ガスを450℃に加熱し
た反応器5に送り込んだ。さらに反応器5にはキャリア
ーガスとしてヘリウムを送り込み、また反応を促進する
ために水蒸気を送り込んだ、全体としてのキャリアーガ
スの流量は2000mj)/win、で滞留時間は約1
.5秒とした。この場合にも製造例1と同様にして反応
後は冷却した。生成した粒子はx&la回折測定の結果
、アナターゼ型球状酸化チタン微粒子であった。このも
のは20〜30nmの粒子径分布を有し、その数平均粒
子径は25nmであった拳 製造例3 (ルチル型球状酸化チタン微粒子の製造)反応は製造例
1と同じ装置で行なった。原料のチタンテトラノルマル
ブトキサイドを0.05cc/rain、の割合でケミ
カルポンプ2により280℃に加熱した気化器3に送り
込んだ、同時に気化したチタンテトラノルマルブトキサ
イドを送るためにキャリアーガスとして乾燥空気をチタ
ンテトラノルマルブトキサイドの濃度が8 X 10−
51101!/Rとなるような割合で送り込んだ0次い
で、この混合ガスを350°Cにftn熱した反応器5
に送り込んだ。
The concentration of titanium tetraisopropoxide used as a raw material was 1.4 10=mail/j) Next, this mixed gas was fed into the reactor 5 heated to 450°C. Further, helium was fed into the reactor 5 as a carrier gas, and water vapor was fed into the reactor 5 to promote the reaction.The overall flow rate of the carrier gas was 2000 mj)/win, and the residence time was about 1.
.. It was set to 5 seconds. In this case as well, the mixture was cooled after the reaction in the same manner as in Production Example 1. As a result of x&la diffraction measurement, the generated particles were found to be anatase type spherical titanium oxide fine particles. This product had a particle size distribution of 20 to 30 nm, and its number average particle size was 25 nm. Fist Production Example 3 (Production of Rutile-type Spherical Titanium Oxide Fine Particles) The reaction was carried out in the same apparatus as Production Example 1. Titanium tetra-normal butoxide as a raw material was fed into a vaporizer 3 heated to 280°C by a chemical pump 2 at a rate of 0.05 cc/rain, and at the same time a carrier gas was used to feed the vaporized titanium tetra-normal butoxide. The concentration of titanium tetranormal butoxide is 8 x 10-
51101! Then, this mixed gas was heated to 350°C in reactor 5.
I sent it to.

さらに反応器5にはキャリアーガスとして空気を送り込
んだ、全体としてのキャリアーガスの流量は100・O
mj)/win、で滞留時間は約3秒とした。得られた
生成物はx&a回折の結果、アモルファスであった。こ
の生成物を空気中にて850℃で2時間焼成した。焼成
後の生成物はX線回折測定の結果、ルチル型球状酸化チ
タン微粒子であった。第6図にこのもののX線回折パタ
ーン(CI−にヶ線使用)を、第7図に電子顕微鏡写真
を示す、また、このものは10〜4On嘗の粒子径分布
を有し、その数平均粒子径は30nmであった。
Furthermore, air was fed into the reactor 5 as a carrier gas, and the overall flow rate of the carrier gas was 100 O.
mj)/win, and the residence time was about 3 seconds. The obtained product was amorphous as a result of x&a diffraction. This product was calcined in air at 850°C for 2 hours. As a result of X-ray diffraction measurement, the product after firing was found to be rutile-type spherical titanium oxide fine particles. Figure 6 shows the X-ray diffraction pattern (CI- is used), and Figure 7 shows the electron micrograph. The particle size was 30 nm.

製造例4 (ルチル型球状酸化チタン微粒子の製造)反応は製造例
1と同じ装置で行なった。原料のチタンテトラノルマル
ブトキサイドを0.05cc/win、の割合でケミカ
ルポンプ2により280℃に加熱した気化器3に送り込
んだ、同時に気化したチタンテトラノルマルブトキサイ
ドを送るためにキャリアーガスとして乾燥空気をチタン
テトラノルマルブトキサイドの濃度が2 X 10−’
moj?/j’となるような割合で送り込んだ0次いで
、この混合ガスを370°Cに加熱した反応器5に送り
込んだ。
Production Example 4 (Production of rutile-type spherical titanium oxide fine particles) The reaction was carried out using the same apparatus as Production Example 1. Titanium tetra-normal butoxide as a raw material was fed into a vaporizer 3 heated to 280°C by a chemical pump 2 at a rate of 0.05 cc/win, and at the same time as a carrier gas to send the vaporized titanium tetra-normal butoxide. The concentration of titanium tetranormal butoxide is 2 x 10-'.
moj? Then, this mixed gas was fed into the reactor 5 heated to 370°C.

さらに反応器5にはキャリアーガスとして空気を送り込
んだ、全体としてのキャリアーガスの流量は500+a
β/lll1r+、で滞留時間は約6秒とした。得られ
た生成物はX線回折の結果、アモルファスであった。こ
の生成物を空気中にて昇温速度10℃/■in。
Furthermore, air was fed into the reactor 5 as a carrier gas, and the overall flow rate of the carrier gas was 500+a.
β/llll1r+, and the residence time was about 6 seconds. The obtained product was amorphous as a result of X-ray diffraction. This product was heated in air at a heating rate of 10°C/inch.

で900℃まで昇温した後、電気炉から取り出した。焼
成後の生成物はX線回折測定の結果、ルチル型球状酸化
チタン微粒子であった。このものは30〜50nmの粒
子径分布を有し、その数平均粒子径は40nmであった
9 実施例1〜4および比較例1 酸化チタンとして、前記製造例1〜4で得られた結晶性
球状耐化チタン微粒子(実施例1〜4)または***デグ
ッサ社製の結晶性で、かつその形態が主としてサイコロ
状の酸化チタン微粒子(アナターゼ・ルチル型の混合物
9粒子径分布15〜50nm 、数平均粒子径30nm
 、商品名P−25)  (比較例1)を用いて、下記
の処方によりファンデーションクリームを調製した。
After raising the temperature to 900°C, it was taken out from the electric furnace. As a result of X-ray diffraction measurement, the product after firing was found to be rutile-type spherical titanium oxide fine particles. This material had a particle size distribution of 30 to 50 nm, and the number average particle size was 40 nm.9 Examples 1 to 4 and Comparative Example 1 The crystalline titanium oxide obtained in Production Examples 1 to 4 above Spherical hardened titanium fine particles (Examples 1 to 4) or crystalline titanium oxide fine particles manufactured by West German Degussa and mainly dice-shaped (anatase-rutile type mixture 9 particle size distribution 15-50 nm, number average) Particle size 30nm
, trade name P-25) (Comparative Example 1), a foundation cream was prepared according to the following formulation.

タ     ル     り            
  15.0 重 量%カ   オ   リ   ン 
            4.0 重陽%の1化チタン
微粒子(lltII!12f11)20.0  重量%
酸化鉄(赤’)      0.27重量%酸化鉄(黄
)0.7重量% 酸化鉄(黒)      0.03重量%固形パラフィ
ン      3.0重量%ラ    ノ    リ 
   ン                10−0m
m %流動パラフィン      27.0重量%グリ
セリルモノオレイ漕エステル     5.0ffi1
%精   製   水          15.0重
量%香        料            適
  量タルク、カオリン、結晶性球状酸化チタン微粒子
、酸化鉄(赤、黄、黒)を混合し、ボールミルで処理し
て粉体部を得た。この粉体部に流動パラフィンの一部と
グリセリルモノオレイン酸エステルを加え、ホモミキサ
ーで均一に分散し、精製氷を除く他の成分を加熱融解し
てこれに加え、70℃に保って油相とした0次に精製水
を70℃に加熱したのち油相に加え、ホモミキサーで均
一に乳化分散し、攪拌しながら40℃に保ちファンデー
ションクリームを調製した。
Tarri
15.0 wt% kaolin
Titanium monoxide fine particles (lltII!12f11) with 4.0% deuterium (lltII!12f11) 20.0% by weight
Iron oxide (red') 0.27% by weight Iron oxide (yellow) 0.7% by weight Iron oxide (black) 0.03% by weight Solid paraffin 3.0% by weight La Nori
10-0m
m% liquid paraffin 27.0% by weight glyceryl monooleic ester 5.0ffi1
% purified water 15.0% by weight fragrance Appropriate amounts of talc, kaolin, crystalline spherical titanium oxide fine particles, and iron oxide (red, yellow, black) were mixed and processed in a ball mill to obtain a powder part. Add a part of liquid paraffin and glyceryl monooleate to this powder, disperse uniformly with a homomixer, heat and melt the other ingredients except for refined ice, add to this, and keep at 70°C to phase out the oil phase. Next, purified water was heated to 70°C, added to the oil phase, uniformly emulsified and dispersed with a homomixer, and kept at 40°C with stirring to prepare a foundation cream.

このファンデーションクリームまたは酸化チタン微粒子
について以下の如き試験を行なった。
The following tests were conducted on this foundation cream or titanium oxide fine particles.

(1)紫外線’(UV)遮蔽性 前記の処方により調製されたファンデーションクリーム
を透明石英板上に厚さ5涛層の膜厚を作り1日立228
型ダブルビーム分光光度計を用いて200〜400 n
mの波長領域の吸光度を測定し、UV遮蔽効果を調べた
。 UV遮蔽性の評価は300nm  (UV−8と略
す)の吸光度が2.8以上を■印で、2.7〜2.5の
吸光度をO印で、2.4〜2.0の吸光度をΔ印で、1
.9以下の吸光度をX印でそれぞれ示した。また3eO
nm  (UV−Aと略す)の吸光度が1.8以上を■
印で、1.7〜1.5の吸光度を0印で、1.4・〜1
.0の吸光度をΔ印で、0.9以下の吸光度をx印でそ
れぞれ示した。評価結果を第1表に示す、第1表から明
らかなように、結晶性球状酸化チタン微粒子を用いた本
発明のファンデーションクリームは、従来の酸化チタン
微粒子よりUV−AおよびUV−B共に遮蔽効果がすぐ
れていることが判る。
(1) Ultraviolet rays (UV) shielding property A foundation cream prepared according to the above formulation was made into a film with a thickness of 5 layers on a transparent quartz plate and 1 Hitachi 228
200-400 n using a type double beam spectrophotometer
The absorbance in the m wavelength region was measured to examine the UV shielding effect. For the evaluation of UV shielding properties, absorbance at 300 nm (abbreviated as UV-8) is 2.8 or higher with a ■ mark, absorbance between 2.7 and 2.5 is marked O, and absorbance between 2.4 and 2.0 is marked with a ■ symbol. With Δ mark, 1
.. Absorbance of 9 or less was indicated by an X mark. Also 3eO
If the absorbance of nm (abbreviated as UV-A) is 1.8 or more,
The mark indicates an absorbance of 1.7 to 1.5, and the mark indicates an absorbance of 1.4 to 1.
.. An absorbance of 0 is indicated by a Δ symbol, and an absorbance of 0.9 or less is indicated by an x symbol. The evaluation results are shown in Table 1. As is clear from Table 1, the foundation cream of the present invention using crystalline spherical titanium oxide fine particles has a higher UV-A and UV-B shielding effect than conventional titanium oxide fine particles. It turns out that it is excellent.

(2)化腓品基材油への分散性 化粧品基材に汎用されている油に対する酸化チタンの分
散性を検δ=f した。
(2) Dispersibility in cosmetic base oils The dispersibility of titanium oxide in oils commonly used as cosmetic base materials was examined (δ=f).

試験は50m1’目盛付沈降管(ウケナ管)に酸化チタ
ンIgを秤取し、汎用の基材油であるスクワラン、流動
パラフィンまたはヒマシ油をそれぞれ5OrsRずつ加
えて分散機を用い攪拌9分散させて静置後、1分、5分
、30分、60分、1日、3日および7日の7回にわた
り分散状態を観察し、沈降した粒子が認められないもの
を5点、すべて沈降または凝集状態にて沈降しているも
のを1点と評価することにより各観察時の評価点をつけ
、これを合計し、分散性が非常に良いものを10点、悪
いものを1点とする10段階法により評価することによ
り行なった。結果を第1表に示す。
For the test, titanium oxide Ig was weighed into a 50 m 1' graduated settling tube (Ukena tube), 5 OrsR of each of squalane, liquid paraffin, or castor oil, which are general-purpose base oils, were added and dispersed by stirring using a dispersion machine. After standing still, the dispersion state was observed 7 times for 1 minute, 5 minutes, 30 minutes, 60 minutes, 1 day, 3 days, and 7 days, and 5 points where no settled particles were observed were all settled or aggregated. An evaluation score is given for each observation by evaluating the condition of sedimentation as 1 point, and these are totaled to give a 10-point scale with 10 points for very good dispersibility and 1 point for poor dispersibility. This was done by evaluating according to the law. The results are shown in Table 1.

第1表から明らかなように、本発明で用いる結晶性球状
酸化チタン微粒子は、汎用されている化粧品基材油に良
好に分散することが判る。この理由は従来の酸化チタン
が、その粒子形状が一定していないのに対し、本発明で
用いる酸化チタンはその粒子の形状がビンポン玉のよう
なきれいな一定の球状をなしており、各々の粒子が凝集
しにくいことに起因するものと思われる。
As is clear from Table 1, the crystalline spherical titanium oxide fine particles used in the present invention are well dispersed in commonly used cosmetic base oils. The reason for this is that while conventional titanium oxide does not have a uniform particle shape, the titanium oxide used in the present invention has a uniform spherical particle shape similar to a bottle pong ball. This is thought to be due to the fact that it is difficult to aggregate.

(3)可視光透過性 従来の酸化チタン微粒子は干渉光による青白い発色がみ
られ肌を明るくみせる効果がほとんどなかった。そこで
製造例1と製造例3で得られた結晶性球状酸化チタン微
粒子および従来の重版の酸化チタン微粒子(***デグッ
サ社製P−25)を用いて可視光透過性を調べた。方法
は各々の酸化チタン4gをヒマシ油6g中に懸濁させた
後、3木ローラーを用いて充分に混練した。練ったスラ
リー0.25 gを採り、ざらにヒマシ油0.75gを
加えて軟膏箆で充分に分散させた。該分散液をアプリケ
−ターヲ用いてカラーマツチングパネルの黒地上へ0.
078mmの厚さに塗布し、塗布11ffを日立社製カ
ラーアナライザー607型で反射率を測定した。
(3) Visible light transmittance Conventional titanium oxide fine particles exhibit a bluish color due to interference light and have little effect on brightening the skin. Therefore, visible light transmittance was investigated using the crystalline spherical titanium oxide fine particles obtained in Production Examples 1 and 3 and the conventional reprinted titanium oxide fine particles (P-25, manufactured by Degussa, Germany). In the method, 4 g of each titanium oxide was suspended in 6 g of castor oil, and then thoroughly kneaded using a Miki roller. 0.25 g of the kneaded slurry was taken, and 0.75 g of castor oil was added to a colander and thoroughly dispersed with an ointment spatula. Using an applicator, apply the dispersion to the black surface of the color matching panel.
The coating was applied to a thickness of 0.078 mm, and the reflectance of the coated 11 ff was measured using a Color Analyzer Model 607 manufactured by Hitachi.

al一定結果を第8図に示した0図から明らかなように
、本発明で用いる結晶性球状酸化チタン微粒子は可視光
線の透過性が従来品よりも高く、しかも400〜500
 nmの青味の反射率も低いことが判る。
As is clear from Figure 8, which shows the al constant results, the crystalline spherical titanium oxide fine particles used in the present invention have higher visible light transmittance than conventional products, and have a transmittance of 400 to 500.
It can be seen that the blue-tinged reflectance of nm is also low.

このことは従来の酸化チタンが青白く見えるのに対し、
本発明で用いる結晶性球状酸化チタン微粒子は青白く見
えないことを意味しよう。
This means that while conventional titanium oxide looks pale,
This means that the crystalline spherical titanium oxide fine particles used in the present invention do not look pale.

(4)実使用時の紫外線防御効果および使用感(実使用
性) 次に前記の処方により調製されたファンデーションクリ
ーム(試料)を皮膚1 cta? 当り0.1gの割合
で女性パネラ−10人の上腕部および顔面部に塗布して
実使用時の紫外線防御効果および使用感を調べた。実使
用時の紫外線防御効果の調査は昭和61年7月27日(
快晴)、千葉県富津市富律海岸において行ない、午前1
1時から午後1時までの2時間、試料塗布皮11v面に
日光を照射したのち試料を落とし、日焼は状態(紅斑の
強弱)を1時間後および1日後の2回にわたり肉眼で判
定した。
(4) Ultraviolet protection effect and feeling of use during actual use (practical usability) Next, the foundation cream (sample) prepared according to the above formulation was applied to the skin 1 cta? The product was applied to the upper arms and faces of 10 female panelists at a rate of 0.1 g per sample to examine the UV protection effect and feeling of use during actual use. A survey of the UV protection effect during actual use was conducted on July 27, 1986 (
Clear skies), held at Tomitsu Beach, Futtsu City, Chiba Prefecture, 1:00 AM.
After irradiating the surface of the sample-applied skin 11v with sunlight for 2 hours from 1:00 to 1:00 p.m., the sample was dropped, and the condition of sunburn (strength or weakness of erythema) was visually determined twice, one hour later and one day later. .

また実使用時の使用感については、このファンデーショ
ンクリームについて「のび」、「つき」、「さっばり感
」および「総合評価」の4項目で評価した。結果は各項
目につき女性パネラ−が最も良いと回答した人数で示し
た。これらの結果を第1表に示した。これらの結果から
結晶性球状酸化チタン微粒子を用いた本発明のファンデ
ーションクリームは、従来品よりも実使用性能において
もすぐれていることが判る。
Regarding the feeling of use during actual use, this foundation cream was evaluated in four categories: ``spreadability'', ``stickiness'', ``light feeling'', and ``overall evaluation''. The results are shown by the number of people who answered that female panelists were the best for each item. These results are shown in Table 1. These results show that the foundation cream of the present invention using crystalline spherical titanium oxide fine particles has better performance in actual use than conventional products.

[発明の効果] 本発明の化粧料は製造時の粒子の分散性、貯蔵安定性が
良好である。
[Effects of the Invention] The cosmetic of the present invention has good particle dispersibility and storage stability during production.

また本発明の化粧料は紫外線遮蔽効果がすぐれており、
使用性も良好である。
In addition, the cosmetics of the present invention have excellent ultraviolet shielding effects,
It is also easy to use.

さらに本発明の化粧料は、可視光線の透過性の良好な酸
化チタン微粒子を用いているため、青白さがない。
Furthermore, since the cosmetic of the present invention uses titanium oxide fine particles that have good visible light transmittance, there is no pale appearance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる酸化チタン微粒子の1例につい
てのX線回折パターンであり、第2図は本発明で用いる
酸化チタン微粒子の1例についての電子顕微鏡写真であ
る。第3図は本発明の製造例で用いた装置を示す説明図
、第4図は本発明の製造例1で得られたアナターゼ型球
状酸化チタン微粒子のX線回折パターンであり、第5図
はその電子顕微鏡写真、第6図は本発明の製造例3で得
られたルチル型球状酸化チタン微粒子のX線回折パター
ンであり、第7図はその電子!11微鏡写真。 第8図は本発明の実施例1.実施例3および比較例1の
酸化チタン微粒子の可視光透過性を示すグラフである。 l・・・チタン化合物(原料)
FIG. 1 is an X-ray diffraction pattern of an example of titanium oxide fine particles used in the present invention, and FIG. 2 is an electron micrograph of an example of titanium oxide fine particles used in the present invention. FIG. 3 is an explanatory diagram showing the apparatus used in the production example of the present invention, FIG. 4 is an X-ray diffraction pattern of anatase type spherical titanium oxide fine particles obtained in production example 1 of the present invention, and FIG. The electron micrograph, FIG. 6, is the X-ray diffraction pattern of the rutile-type spherical titanium oxide fine particles obtained in Production Example 3 of the present invention, and FIG. 7 shows the electron! 11 Microscopic photo. FIG. 8 shows Example 1 of the present invention. 3 is a graph showing the visible light transmittance of titanium oxide fine particles of Example 3 and Comparative Example 1. l...Titanium compound (raw material)

Claims (1)

【特許請求の範囲】[Claims] (1)実質的に結晶性かつ実質的に球状の酸化チタン微
粒子を0.01〜50重量%配合してなる化粧料。
(1) A cosmetic containing 0.01 to 50% by weight of substantially crystalline and substantially spherical titanium oxide fine particles.
JP28777786A 1986-12-04 1986-12-04 Cosmetic Pending JPS63141912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28777786A JPS63141912A (en) 1986-12-04 1986-12-04 Cosmetic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28777786A JPS63141912A (en) 1986-12-04 1986-12-04 Cosmetic

Publications (1)

Publication Number Publication Date
JPS63141912A true JPS63141912A (en) 1988-06-14

Family

ID=17721613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28777786A Pending JPS63141912A (en) 1986-12-04 1986-12-04 Cosmetic

Country Status (1)

Country Link
JP (1) JPS63141912A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037560A1 (en) * 1995-05-24 1996-11-28 The Procter & Gamble Company Titanium dioxide hydrogel and sunscreen composition containing it
JP2008033128A (en) * 2006-07-31 2008-02-14 Kyocera Corp Optical receptacle and optical module using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037560A1 (en) * 1995-05-24 1996-11-28 The Procter & Gamble Company Titanium dioxide hydrogel and sunscreen composition containing it
JP2008033128A (en) * 2006-07-31 2008-02-14 Kyocera Corp Optical receptacle and optical module using the same

Similar Documents

Publication Publication Date Title
KR100849586B1 (en) Surface-modified zinc-titanium mixed oxides
US5827507A (en) Ultraviolet shielding composite fine particles, method for producing the same, and cosmetics
US6197282B1 (en) Fine ultraviolet screening particles, process for preparing the same, and cosmetic preparation
KR100717490B1 (en) Titanium-silica complex and cosmetic preparation compounding the same
EP1425350B1 (en) Silica-coated mixed crystal oxide particle, production process thereof and cosmetic material using the same
AU2006298378A2 (en) Process for producing fine particle of rutile-form titanium oxide
EP0609533A1 (en) Iron oxide containing titanium dioxide
JPS5862106A (en) Cosmetic
JP2006510765A (en) Powder mixture consisting of titanium dioxide, zinc oxide and zinc / titanium mixed oxide
JP2631963B2 (en) Ultraviolet ray shielding composite fine particles, method for producing the same, and cosmetics
EP1172334B1 (en) Production process of an ultrafine particulate zinc oxide
JPH0157084B2 (en)
KR100620945B1 (en) Silica-coated mixed crystal oxide particle, production process thereof and cosmetic material using the same
JPS63141912A (en) Cosmetic
JPH07118133A (en) Zinc oxide for cosmetic and its production
JP4382612B2 (en) Cosmetics
JPH0455403B2 (en)
AU692694B2 (en) Ceramic type sunscreens
JPH0930933A (en) Cosmetic
JPS63218615A (en) Anti-suntan skin cosmetic
JP4137335B2 (en) Titanium silica composite and cosmetics containing the same
JP2001200179A (en) Powder subjected to surface coating treatment, method for producing the same and skin preparation for external use containing the powder
JPH06199634A (en) Cosmetic
JPH0940528A (en) Cosmetic
JPH06227944A (en) Cosmetic