JPS6273202A - Production of thin optical film - Google Patents

Production of thin optical film

Info

Publication number
JPS6273202A
JPS6273202A JP60213845A JP21384585A JPS6273202A JP S6273202 A JPS6273202 A JP S6273202A JP 60213845 A JP60213845 A JP 60213845A JP 21384585 A JP21384585 A JP 21384585A JP S6273202 A JPS6273202 A JP S6273202A
Authority
JP
Japan
Prior art keywords
thin film
refractive index
substances
optical thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60213845A
Other languages
Japanese (ja)
Inventor
Yoshiharu Oi
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP60213845A priority Critical patent/JPS6273202A/en
Publication of JPS6273202A publication Critical patent/JPS6273202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a hard and tough film having high adhesive strength between a substrate and thin film by using a sputtering target having the construction in which >=2 kinds of materials having different refractive index values are disposed at a suitable area ratio and forming the thin film by a high-frequency sputtering method. CONSTITUTION:The thin film material consisting of 2 kinds of the different materials A and B is disposed as a sputtering target in a container C of a sputtering device. The compsn. of the thin film to be formed on the substrate S depends on the probability at which the respective materials are sputtered by ionizing gaseous Ar<+>, i.e., the area ratio at which the respective materials exposed to the ionizing gas occupy in the entire part of the target and sputtering rate (the molecular number of the materials released by the collision of one molecule of the ionizing gas). The thin film having the intermediate refractive index value of 2 kinds of the materials is formed by the high-frequency sputtering method using the dielectric thin film materials SiO2 (n=1.45), MgO (n=1.69), ZrO2 (n=2.0), Ta2O5 (n=2.2).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希望する屈折率値を有する光学薄膜を製造す
ることができる光学薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing an optical thin film that can produce an optical thin film having a desired refractive index value.

(従来の技術) 光学薄膜は反射防止膜として利用されている。(Conventional technology) Optical thin films are used as antireflection films.

反射防止膜は主としてガラスまたは他の透明物質の表面
での反射を減らし透過率を増加させるための膜である。
An anti-reflection coating is a coating mainly used to reduce reflection on the surface of glass or other transparent materials and increase transmittance.

種々の屈折率値を有する光学基板に対して、反射防1)
.股を形成する場合、その光学基板特有の反射防止条件
を満たず屈折率をもつ薄膜が必要である。
Anti-reflection 1) for optical substrates with various refractive index values
.. When forming a crotch, a thin film that does not satisfy the antireflection conditions specific to the optical substrate and has a refractive index is required.

そのため、真空蒸着方法により目的に応した屈折率をも
つ薄膜の製造方法が種々提案されている。
Therefore, various methods have been proposed for producing thin films having refractive indexes suitable for purposes using vacuum evaporation methods.

(1)混合蒸着法 混合蒸着法は、2種以上の物質をあらかじめある割合で
混合して1つの蒸着源から蒸着させ、その中間の屈折率
の膜を作る方法である。
(1) Mixed Vapor Deposition Method The mixed vapor deposition method is a method in which two or more substances are mixed in advance at a certain ratio and deposited from one vapor deposition source to produce a film having a refractive index between the two or more substances.

この方法では、融点の違いが大きい物質の混合物を蒸着
できないため、使用できる物質が限定される。
This method does not allow the deposition of mixtures of substances with large differences in melting point, which limits the types of substances that can be used.

(2)二源蒸着法 二源蒸着法は、異なる蒸着物質を別々の蒸着源から同時
に蒸発させ、それぞれの蒸発速度を制御することによっ
て、所望の屈折率膜を17るものである。
(2) Two-source evaporation method The two-source evaporation method is a method in which a desired refractive index film is obtained by simultaneously evaporating different evaporation substances from separate evaporation sources and controlling their respective evaporation rates.

この方法によれば、融点の違いが大きい物質の蒸着が可
能になるが、蒸発速度制御が難しいため屈折率値の再現
性が悪い。
This method allows the deposition of substances with large differences in melting point, but it is difficult to control the evaporation rate, resulting in poor reproducibility of refractive index values.

(3)酸化度法 酸化度法は、Ti、Zr、Siまたばその低級酸化物を
蒸発し、雰囲気中の酸素と反応さ4!、その酸化の度合
によって屈折率を変化させる方法である。
(3) Oxidation degree method In the oxidation degree method, Ti, Zr, Si, or their lower oxides are evaporated and reacted with oxygen in the atmosphere. This is a method of changing the refractive index depending on the degree of oxidation.

この方法も屈折率値の再現性が悪く、光吸収の多い膜が
でき易い。
This method also has poor reproducibility of refractive index values and tends to produce a film that absorbs a lot of light.

(4)等価膜性・コンボシソI・膜性 この方法は所望の屈折率お3■、び光学的膜厚を、この
屈折率よりも高い屈折率と低い屈折率の物質の2層膜で
作る方法である。
(4) Equivalent film properties / Combosiso I / Film properties This method creates a desired refractive index and optical film thickness using a two-layer film of materials with a higher refractive index and a lower refractive index than this refractive index. It's a method.

この方法では、股の層数が多くなるため生産能率が悪い
In this method, the number of layers in the crotch increases, resulting in poor production efficiency.

(発明が解決しようとする問題点) ′(4) 一般に前述の真空蒸着法で作成された膜は、膜の充填密
度が小さく、基板付着強度が弱い。
(Problems to be Solved by the Invention) '(4) Generally, the film formed by the above-mentioned vacuum evaporation method has a low film packing density and weak adhesion strength to the substrate.

その結果、真空蒸着法により得られた薄膜は、膜質が軟
らかで、はが才1易いものが多い。
As a result, many of the thin films obtained by vacuum evaporation are soft and easy to peel off.

また、前述のように屈折率を蒸着により調整したvii
膜の各製法(1)〜(4)は前に記したように、屈折率
値の再現性が悪く、生産性も余り良くない。
In addition, vii whose refractive index was adjusted by vapor deposition as described above
As described above, the film manufacturing methods (1) to (4) have poor reproducibility of refractive index values and poor productivity.

本発明の目的は、基板との付着強度が強く、充填密度が
高く硬くて丈夫な光学的性質が安定で、[1的とする屈
折率をも一つ光学薄膜を再現性良く製造することができ
る光学薄膜の製造方法を提供するごとにある。
The purpose of the present invention is to manufacture an optical thin film with good reproducibility, which has strong adhesion strength to a substrate, has a high packing density, is hard and durable, and has stable optical properties, and has a refractive index of 1. The purpose of this invention is to provide a method for manufacturing optical thin films that is possible.

(問題点を解決するための手段) 前記目的を達成するために本発明による光学薄膜の製造
方法は、光学薄膜を形成しようとする基板と、異なる屈
折率値を有する2種以上の物質を希望する面積比を保っ
て配置したスパッタターゲントを高周波スパッタリング
装置に収容して、2種以上の物質を前記基板の表面に稠
密に付着させることにより前記基板に前記2種以上の物
質の各屈折率と面積比により決定される屈折率の光学薄
膜を形成するように構成されている。
(Means for Solving the Problems) In order to achieve the above object, the method for manufacturing an optical thin film according to the present invention includes a substrate on which an optical thin film is to be formed, and two or more substances having different refractive index values. A sputtering target arranged with an area ratio of The optical thin film is configured to form an optical thin film having a refractive index determined by the area ratio.

また前記スパンタターゲソ1−を変えてさらにスパフタ
リングを行うことにより多層の光学筒I9を形成するこ
とができる。
Further, by changing the spunter target 1- and further performing sputtering, a multilayer optical tube I9 can be formed.

(実施例) 以下、図面等を参照して本発明をさらに詳しく説明する
(Example) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

本発明における高周波スパッタ法による薄膜作成は真空
蒸着法と異なり、ガス放電に伴うイオン化ガスによるW
Jl―材料のスパッタリング機構を利用するものである
Unlike the vacuum evaporation method, thin film formation by the high-frequency sputtering method in the present invention is different from the vacuum evaporation method.
This method utilizes the sputtering mechanism of Jl-material.

第1図は本発明方法で利用するスパッタリング装置の略
図である。
FIG. 1 is a schematic diagram of a sputtering apparatus utilized in the method of the present invention.

スパッタリング装置の容器Cに2種の異なる物質Aおよ
びBから成る薄膜材料をスパソタターゲソ]・とじて配
置する。基板Sに形成される薄膜の組成は各物質がイオ
ン化ガスAr+にスパッタされる確率、すなわちイオン
化ガスにさらされている各物質のターゲット全体に占め
る面積比とスパンタL・−]・(イオン化ガス1分子の
衝突に対して放出される物質の分子数)に依存する。
A thin film material consisting of two different substances A and B is placed in a container C of a sputtering apparatus with a sputtering target. The composition of the thin film formed on the substrate S is determined by the probability that each substance is sputtered by the ionized gas Ar+, that is, the area ratio of each substance exposed to the ionized gas to the entire target, and the sputter L・−]・(ionized gas 1 It depends on the number of molecules of the substance ejected in response to a molecular collision).

次に、誘電体薄膜材料5i02  (n=1.45)。Next, dielectric thin film material 5i02 (n=1.45).

MgO(n=1.69)、ZrO2(n=2.0)。MgO (n=1.69), ZrO2 (n=2.0).

Ta206  (n−2,2)を用いて、2種の物質の
中間の屈折率値をもつ薄膜を高周波スパッタ法により作
成した実施例について説明する。
An example will be described in which a thin film using Ta206 (n-2,2) and having a refractive index value intermediate between the two types of materials was created by high-frequency sputtering.

第2図は5i02とTa2O,の光学薄膜を製造する方
法で使用するターゲットの実施例を示す平面図である。
FIG. 2 is a plan view showing an example of a target used in a method for manufacturing optical thin films of 5i02 and Ta2O.

直径100mmの5i02ターゲツト1」−に直径6m
mのTa205ターゲット2を直径60mmの円周上に
複数個均等に配置したスパッタターゲットを示す。
5i02 target 1'' with a diameter of 100mm - 6m in diameter
A sputter target is shown in which a plurality of m Ta205 targets 2 are evenly arranged on a circumference with a diameter of 60 mm.

第3図は第2図に示すターゲットでTa205の面積(
個数)を変えて製造したときの薄膜の屈折率を示すグラ
フである。
Figure 3 shows the area of Ta205 (
2 is a graph showing the refractive index of thin films produced by changing the number of thin films.

Ta205の面積(個数)を増加さ廿Ta205のイ・
1着量を次第に増加させると屈折率も増加していること
が理解できる。
The area (number) of Ta205 is increased.
It can be seen that the refractive index also increases as the amount of coating is gradually increased.

このグラフはこの方法により屈折率1.45から1゜5
5を越える範囲の任意の屈折率をT a 205の面積
(個数)を変えることにより得られることを示している
This graph shows that the refractive index can be changed from 1.45 to 1°5 using this method.
It is shown that any refractive index in a range exceeding 5 can be obtained by changing the area (number) of T a 205.

第4図はターゲットとしてMgOとT;r 206を用
いる光学薄膜製造方法においてTa205の面積(個数
)を変えて製造したときの薄膜の屈折率を示すグラフで
ある。
FIG. 4 is a graph showing the refractive index of thin films produced by varying the area (number) of Ta205 in an optical thin film manufacturing method using MgO and T;r206 as targets.

直径100mrnのMgOターゲソト一りに直径6mm
のTa205ターゲットを直径60mmの円周上に第2
図に示すように配置する。
6mm diameter for one MgO target with a diameter of 100mrn
A second Ta205 target was placed on the circumference with a diameter of 60 mm.
Arrange as shown.

’pa205の面積(個数)を増加させTa 205の
付着量を次第に増加さ・Uると屈折率も増加しているこ
とが理解できる。
It can be seen that when the area (number) of 'pa205' is increased and the amount of Ta205 deposited is gradually increased, the refractive index also increases.

このグラフはこの方法により1.70より小さい屈折率
から1.80を越える範囲の任意の屈折率をTa205
の面積(個数)を変えることにより得られることを示し
ている。
This graph shows that any refractive index in the range from less than 1.70 to more than 1.80 can be calculated using this method for Ta205.
This shows that it can be obtained by changing the area (number) of .

第5図はターゲットとして7.rO2と5102を用い
る光学薄1!ti製造方法において5IO2の面積(I
l?II数)を変えて製造したときの薄膜の屈折率を示
すグラフである。
Figure 5 shows 7. as a target. Optical thin 1 using rO2 and 5102! In the ti production method, the area of 5IO2 (I
l? 2 is a graph showing the refractive index of thin films produced by changing the number II.

直径1)00rnのzro2ターゲット上に直径lQm
mのSiO2ターゲットを直160mmの円周」−に第
2図に示すように均等に配置したスパッタターゲットを
用いる。
Diameter lQm on zro2 target with diameter 1)00rn
A sputtering target is used in which SiO2 targets of m diameter are evenly arranged in a circumference of 160 mm as shown in FIG.

5i02の面積(lllil数)を増加させZ r O
2L対する5i02の付着量を次第に増加させると屈折
率が減少していることが理解できる。
Increase the area (lllil number) of 5i02 and Z r O
It can be seen that as the amount of 5i02 attached to 2L is gradually increased, the refractive index decreases.

このグラフはこの方法により2.1より小さい屈折率か
ら1.7を越える範囲の任意の屈折率を5ho2の面積
(個数)を変えることにより得られることを示している
This graph shows that by this method, any refractive index in the range from less than 2.1 to more than 1.7 can be obtained by changing the area (number) of 5ho2.

次に、このような任意の屈折率値をもつ薄膜の製法を利
用して硼珪酸ガラス、1.1Nb03結晶について、単
一波長(He−Neレーザ波:λ=633nm)用反射
防止膜を作成した時の実施例を説明する。
Next, an antireflection film for a single wavelength (He-Ne laser wave: λ = 633 nm) was created for borosilicate glass and 1.1Nb03 crystal using this thin film manufacturing method with an arbitrary refractive index value. An example will be described below.

第6図は、硼珪酸ガラス基板に対する本発明方法で製造
された2N反射防止膜の構造を示す断面図である。
FIG. 6 is a cross-sectional view showing the structure of a 2N antireflection film produced by the method of the present invention on a borosilicate glass substrate.

硼珪酸ガラス3 (no −1,49)のにに第4図に
示した方法でMgOにTa205を添加したスパソタタ
ーゲソ]・を用いることにより屈折率1.76の膜厚λ
/4の薄膜4を形成する。
A film thickness λ with a refractive index of 1.76 was obtained by using borosilicate glass 3 (no -1,49) with a refractive index of 1.76.
/4 thin film 4 is formed.

その上に形成される薄膜5は屈折率1.45、膜厚λ/
4の5ho2膜である。
The thin film 5 formed thereon has a refractive index of 1.45 and a film thickness of λ/
4 5ho2 membrane.

硼珪酸ガラスFi3の両面に前記反射防止膜を形成する
ことにより、I−1e −N eレーザ(波長λ−63
3nm)での透過率を形成前93%から99.8%に改
善できることを確認した。
By forming the antireflection film on both sides of the borosilicate glass Fi3, the I-1e-N e laser (wavelength λ-63
It was confirmed that the transmittance at 3 nm) could be improved from 93% before formation to 99.8%.

第7図は、I、1Nh03結晶に対する本発明方法で製
造された単層反射防止膜のJR造を示す断面図である。
FIG. 7 is a cross-sectional view showing the JR structure of a single-layer antireflection film manufactured by the method of the present invention for I, 1Nh03 crystal.

リチウムニオブ酸結晶(L i NbO2)  6  
(n(。
Lithium niobate crystal (L i NbO2) 6
(n(.

=2.24)は電気光学効果を示す結晶である。=2.24) is a crystal that exhibits an electro-optic effect.

屈折率1.5のλ/4の薄膜は第2図に示したターゲッ
トを利用することによって得られる。
A λ/4 thin film with a refractive index of 1.5 can be obtained by using the target shown in FIG.

第8図は、本発明方法で製造された透明溝電膜8 (I
TO)付きLiNbO3結晶6に対する反射防1)−膜
の構造を示す断面図である。
FIG. 8 shows a transparent trench electrical film 8 (I
1) is a cross-sectional view showing the structure of an anti-reflection 1) film for a LiNbO3 crystal 6 with TO).

透明導電膜(ITO: Inx5nl−x)03)8を
電極とU7て形成すると結晶6を光変調器として利用す
ることができる。
When a transparent conductive film (ITO: Inx5nl-x) 03) 8 is formed as an electrode U7, the crystal 6 can be used as an optical modulator.

屈折率1.5のλ/4の薄膜7は第2図に示したターゲ
ットを利用することによって得られる。
A λ/4 thin film 7 with a refractive index of 1.5 is obtained by using the target shown in FIG.

前述のように、反射防止膜7を両面に形成することによ
り、He−Neレーザでの透過率を形成前74%から9
9.5%に向上できることを確認した。
As mentioned above, by forming the anti-reflection film 7 on both sides, the transmittance of the He-Ne laser can be increased from 74% before formation to 9.
It was confirmed that it could be improved to 9.5%.

なおこれ等の反射防止膜は強固で安定したものであり、
基板を人気中および真空中で400°Cまで加熱したが
膜のはがれ、変質等は認められなかった。
Furthermore, these anti-reflection coatings are strong and stable.
Although the substrate was heated to 400°C in a hot room and in a vacuum, no peeling or deterioration of the film was observed.

以」−詳しく説明した実施例について、本発明の範囲内
で種々の変形を施すことができる。
Various modifications may be made to the embodiments described in detail within the scope of the invention.

前記実施例では、硼珪酸ガラスとLiNbO3結晶の基
板について説明したが、基板材料はこれらに限定される
ものではない。
In the embodiments described above, the substrates were made of borosilicate glass and LiNbO3 crystal, but the substrate materials are not limited to these.

また前期実施例では墜−波長についての反射防止膜につ
いて説明したが、多層膜構造にすれば広い波長範囲にわ
たって反射ta失を低減できる。
Further, in the previous embodiment, the antireflection film for low wavelengths was explained, but if a multilayer film structure is used, reflection loss can be reduced over a wide wavelength range.

またターゲットの構造についても2種の円形ターゲソ]
・の組合せについて説明したが、ターゲット構成物質の
種頬、形状に制約は無く、わ〕末物質から成る混合スパ
ッタターゲットを用いることも可能である。
There are also two types of circular targets with regard to the structure of the target]
Although the combinations of (1) and (2) have been described, there are no restrictions on the type or shape of the target constituent materials, and it is also possible to use a mixed sputtering target made of mixed materials.

またターゲット材料として前述し2だ酸化物誘電体(S
 i02 、 Z r02 、 Ta205 、 Mg
’))の他にA1203  (n=1.60)、5iO
(n=1.90) 、Hf 02  (n−2,1) 
、Nt)20.(n = 2.0 ) 、  T I 
()2  (n = 2.5 )等を利用4−イ。
In addition, as a target material, the above-mentioned 2D oxide dielectric (S
i02, Z r02, Ta205, Mg
')) In addition to A1203 (n=1.60), 5iO
(n=1.90), Hf 02 (n-2,1)
, Nt)20. (n = 2.0), T I
()2 (n = 2.5) etc. 4-i.

ことができる。be able to.

また、S ig N4  (n=2.0)等の窒化物誘
電体も同様に利用できる。
Additionally, nitride dielectrics such as S ig N4 (n=2.0) can be used as well.

(発明の効果) 以上説明したように、本発明方法は2種1ミし1−の異
なる屈折率値をもつ物質を適当な面積比で配lRした構
造のスパッタターゲットを用いて、高周波スパッタ法で
薄膜を作成している。
(Effects of the Invention) As explained above, the method of the present invention uses a sputter target having a structure in which two kinds of substances having different refractive index values are arranged in an appropriate area ratio, and a high-frequency sputtering method is used. to create a thin film.

したがって、屈折率の異なる2種の物質を適当な面積比
で配置したターゲットを用いることにより、その中間の
任意の屈折率値の膜を製造できる。
Therefore, by using a target in which two types of substances with different refractive indexes are arranged at an appropriate area ratio, a film having an arbitrary refractive index value between them can be manufactured.

また高周波スパッタ法によるので従来の真空蒸着法によ
り得られる薄膜と比較して、基板と薄膜との付着強度が
大きく、硬く丈夫な膜が得られる。
Furthermore, since the high-frequency sputtering method is used, the adhesion strength between the substrate and the thin film is greater, and a hard and durable film can be obtained compared to a thin film obtained by conventional vacuum evaporation method.

さらに、薄膜材料の融点の相違は関係ないため、利用で
きる物質の選択の自由度が大きくなる。
Furthermore, since differences in the melting points of thin film materials are irrelevant, there is greater freedom in selecting the materials that can be used.

そのため必要な屈折率の薄膜を種々の組合せにより容易
に製造できる。
Therefore, thin films having the required refractive index can be easily manufactured by various combinations.

本発明方法は、ハイパワーレーザ用光学薄膜素子や高温
用薄膜素子の新しい分野での広い応用が期待できる。
The method of the present invention can be expected to find wide application in new fields of optical thin film devices for high power lasers and thin film devices for high temperature use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による方法で使用するスパッタリング装
置内における基板とターゲットの配置例を示す略図であ
る。 第2図は5i02とTa205の光学薄膜を製造する方
法で使用するターゲットの実施例を示す平面図である。 第3図は第2図に示すターゲットでTa206の面積(
個数)を変えて製造したときのiiV 1)%の屈折率
を示すグラフである。 第4図はターゲノ]・としてM g OとTa、、05
を用いる光学薄膜製造方法においてT a2 (Tl 
5の面積(個数)を変えて製造したときの薄膜の屈折率
を示すグラフである。 第5図はターゲットとしてZrO2とS i (12を
用いる光学薄膜製造方法において3102の面積(個数
)を変えて1).!造U2だときの薄膜の屈折率を示す
グラフである。 第6図は、本発明方法で製造された硼珪酸ガラス基板に
対する2層反射防止映の構造を示す断面図である。 第7図は、本発明方法で製造されたLiNbO3結晶に
対する中層反射防1)一般の構造を示す図である。 第8図は、本発明方法で製造された透明導電膜(ITO
)付き1.1Nbn3結晶に対する反射防IL膜の構造
を示す断面図である。 S・・・JJIJ、t         A、  n・
・・ターゲット材利C・・スパッタリング4□5置の容
器 1−iffi’ i¥I (10rn mのターゲノ1
2・・・直IM 6 m mまたは直径10mmのター
ケノト3・・・硼珪酸ガラス 4・・・屈折率1.76、光学的膜厚λ/4の薄膜5・
・・屈折率1.45、光学的膜厚λ/4のSi(”)2
股 6・・・■、i N b O3結晶 7・・屈折率j、50、光学的膜厚λ/4の薄膜8・・
・屈折率2.0.光学的膜厚λ/2のITO股特許出願
人 浜松ボIニクス株式会ン1(’S、理人 弁理士 
 井 ) ロ  壽才4図 才5図 オ6図       オフ図 り′8図 λ=〆刀ηm
FIG. 1 is a schematic diagram showing an example of the arrangement of a substrate and a target in a sputtering apparatus used in the method according to the invention. FIG. 2 is a plan view showing an example of a target used in the method for manufacturing optical thin films of 5i02 and Ta205. Figure 3 shows the area of Ta206 (
2 is a graph showing the refractive index of iiV 1)% when manufactured by changing the number of particles). Figure 4 shows M g O and Ta, 05
In the optical thin film manufacturing method using T a2 (Tl
5 is a graph showing the refractive index of thin films produced by changing the area (number) of No. 5. FIG. 5 shows an optical thin film manufacturing method using ZrO2 and Si (12) as targets by changing the area (number) of 3102 (1). ! It is a graph showing the refractive index of the thin film when it is made of U2. FIG. 6 is a sectional view showing the structure of a two-layer antireflection film for a borosilicate glass substrate manufactured by the method of the present invention. FIG. 7 is a diagram showing the general structure of intermediate layer reflection protection 1) for a LiNbO3 crystal produced by the method of the present invention. FIG. 8 shows a transparent conductive film (ITO) produced by the method of the present invention.
) is a sectional view showing the structure of an anti-reflection IL film for a 1.1Nbn3 crystal. S...JJIJ, t A, n.
...Target material C...Sputtering 4□5 containers 1-iffi' i\I (10rnm target material 1
2... Direct IM 6 mm or diameter 10 mm glass material 3... Borosilicate glass 4... Thin film with refractive index 1.76 and optical thickness λ/4 5.
...Si('')2 with refractive index 1.45 and optical thickness λ/4
Crotch 6... ■, i N b O3 crystal 7... Thin film 8 with refractive index j, 50 and optical thickness λ/4...
・Refractive index 2.0. ITO crotch patent applicant with optical film thickness λ/2 Hamamatsu Bonics Co., Ltd. 1 ('S, attorney, patent attorney)
I) B Jusai 4 fig.

Claims (4)

【特許請求の範囲】[Claims] (1)光学薄膜を形成しようとする基板と、異なる屈折
率値を有する2種以上の物質を希望する面積比を保って
配置したスパッタターゲットを高周波スパッタリング装
置に収容して、2種以上の物質を前記基板の表面に稠密
に付着させることにより前記基板に前記2種以上の物質
の各屈折率と面積比により決定される屈折率の光学薄膜
を形成する光学薄膜の製造方法。
(1) A substrate on which an optical thin film is to be formed and a sputtering target in which two or more types of substances having different refractive index values are arranged while maintaining a desired area ratio are housed in a high-frequency sputtering device, and the two or more types of substances are A method for producing an optical thin film, the method comprising: forming an optical thin film on the substrate with a refractive index determined by the respective refractive indexes and area ratios of the two or more types of substances by densely adhering to the surface of the substrate.
(2)光学薄膜を形成しようとする基板と、異なる屈折
率値を有する2種以上の物質を希望する面積比を保って
配置した第1のスパッタターゲットを高周波スパッタリ
ング装置に収容して、前記2種以上の物質を前記基板の
表面に稠密に付着させることにより前記基板に前記2種
以上の物質の各屈折率と面積比により決定される屈折率
の第1の光学薄膜を形成し、次いで1種類または他の屈
折率と面積比の組合せの2種以上の物質を希望する面積
比を保って配置した第2のスパッタターゲットを高周波
スパッタリング装置に収容して、前記2種以上の物質を
前記第1の光学薄膜の表面に稠密に付着させることによ
り前記1種類または前記2種以上の物質の各屈折率と面
積比により決定される屈折率の第2の光学薄膜を形成す
る光学薄膜の製造方法。
(2) A substrate on which an optical thin film is to be formed and a first sputter target in which two or more types of substances having different refractive index values are arranged while maintaining a desired area ratio are housed in a high-frequency sputtering apparatus, and the A first optical thin film having a refractive index determined by each refractive index and area ratio of the two or more types of substances is formed on the substrate by densely adhering two or more types of substances to the surface of the substrate; A second sputter target in which two or more types of substances or other combinations of refractive index and area ratio are arranged while maintaining a desired area ratio is housed in a high frequency sputtering apparatus, and the two or more types of substances are A method for producing an optical thin film, which forms a second optical thin film having a refractive index determined by each refractive index and area ratio of the one or more substances by densely adhering the second optical thin film to the surface of the first optical thin film. .
(3)前記スパッタターゲットの物質の組合せは、酸化
物誘電体および窒化物誘電体中の異なる屈折率をもつ物
質の2以上の組合せである特許請求の範囲第1項記載の
光学薄膜の製造方法。
(3) The method for manufacturing an optical thin film according to claim 1, wherein the combination of substances of the sputter target is a combination of two or more substances having different refractive indexes in an oxide dielectric and a nitride dielectric. .
(4)前記酸化物誘電体SiO_2、SiO、ZrO_
2、Ta_2O_5、Al_2O_3、MgO、HfO
_2、Nb_2O_5、TiO_2等である特許請求の
範囲第3項記載の光学薄膜の製造方法。
(4) The oxide dielectric SiO_2, SiO, ZrO_
2, Ta_2O_5, Al_2O_3, MgO, HfO
_2, Nb_2O_5, TiO_2, etc. The method for producing an optical thin film according to claim 3.
JP60213845A 1985-09-27 1985-09-27 Production of thin optical film Pending JPS6273202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60213845A JPS6273202A (en) 1985-09-27 1985-09-27 Production of thin optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60213845A JPS6273202A (en) 1985-09-27 1985-09-27 Production of thin optical film

Publications (1)

Publication Number Publication Date
JPS6273202A true JPS6273202A (en) 1987-04-03

Family

ID=16645968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60213845A Pending JPS6273202A (en) 1985-09-27 1985-09-27 Production of thin optical film

Country Status (1)

Country Link
JP (1) JPS6273202A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259301A (en) * 1987-11-20 1989-10-17 Raytheon Co Optical element
JPH02901A (en) * 1988-03-03 1990-01-05 Asahi Glass Co Ltd Optical body having excellent durability
JPH02111871A (en) * 1988-10-18 1990-04-24 Nippon Telegr & Teleph Corp <Ntt> Production of tantalum oxide-silicon oxide mixed film
JPH02178601A (en) * 1988-12-28 1990-07-11 Toshiba Glass Co Ltd Optical glass
JPH03177568A (en) * 1989-08-01 1991-08-01 Asahi Glass Co Ltd Sputtering target and film composed essentially of silicon dioxide
US5264286A (en) * 1988-03-03 1993-11-23 Asahi Glass Company Ltd. Laminated glass structure
US5354446A (en) * 1988-03-03 1994-10-11 Asahi Glass Company Ltd. Ceramic rotatable magnetron sputtering cathode target and process for its production
US5399435A (en) * 1988-03-03 1995-03-21 Asahi Glass Company Ltd. Amorphous oxide film and article having such film thereon
US5772862A (en) * 1988-03-03 1998-06-30 Asahi Glass Company Ltd. Film comprising silicon dioxide as the main component and method for its productiion
WO1998052074A1 (en) * 1997-05-16 1998-11-19 Hoya Kabushiki Kaisha Plastic optical component having a reflection prevention film and mechanism for making reflection prevention film thickness uniform
JP2000178728A (en) * 1998-12-18 2000-06-27 Olympus Optical Co Ltd Device for producing optical thin film and production of optical thin film
US8760978B2 (en) 2011-12-05 2014-06-24 HGST Netherlands B.V. Magnetic recording head and system having optical waveguide core and/or cladding of an alloyed oxide material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537429A (en) * 1978-09-04 1980-03-15 Horiba Ltd Production of optical thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537429A (en) * 1978-09-04 1980-03-15 Horiba Ltd Production of optical thin film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259301A (en) * 1987-11-20 1989-10-17 Raytheon Co Optical element
US5772862A (en) * 1988-03-03 1998-06-30 Asahi Glass Company Ltd. Film comprising silicon dioxide as the main component and method for its productiion
US5264286A (en) * 1988-03-03 1993-11-23 Asahi Glass Company Ltd. Laminated glass structure
US5354446A (en) * 1988-03-03 1994-10-11 Asahi Glass Company Ltd. Ceramic rotatable magnetron sputtering cathode target and process for its production
US5399435A (en) * 1988-03-03 1995-03-21 Asahi Glass Company Ltd. Amorphous oxide film and article having such film thereon
JPH02901A (en) * 1988-03-03 1990-01-05 Asahi Glass Co Ltd Optical body having excellent durability
JPH02111871A (en) * 1988-10-18 1990-04-24 Nippon Telegr & Teleph Corp <Ntt> Production of tantalum oxide-silicon oxide mixed film
JPH02178601A (en) * 1988-12-28 1990-07-11 Toshiba Glass Co Ltd Optical glass
JPH03177568A (en) * 1989-08-01 1991-08-01 Asahi Glass Co Ltd Sputtering target and film composed essentially of silicon dioxide
JP2669120B2 (en) * 1989-08-01 1997-10-27 旭硝子株式会社 Method for forming a film containing silicon dioxide as a main component
WO1998052074A1 (en) * 1997-05-16 1998-11-19 Hoya Kabushiki Kaisha Plastic optical component having a reflection prevention film and mechanism for making reflection prevention film thickness uniform
US6250758B1 (en) 1997-05-16 2001-06-26 Hoya Corporation Plastic optical devices having antireflection film and mechanism for equalizing thickness of antireflection film
JP2000178728A (en) * 1998-12-18 2000-06-27 Olympus Optical Co Ltd Device for producing optical thin film and production of optical thin film
US8760978B2 (en) 2011-12-05 2014-06-24 HGST Netherlands B.V. Magnetic recording head and system having optical waveguide core and/or cladding of an alloyed oxide material

Similar Documents

Publication Publication Date Title
US5958155A (en) Process for producing thin film
JPH05254887A (en) Transparent laminated substrate, its use and laminating method, method and device for laminating on base material, and hafnium oxynitride
JPS6273202A (en) Production of thin optical film
JP3846641B2 (en) Optical waveguide manufacturing method
JP3243474B2 (en) Method for manufacturing multilayer bandpass filter and multilayer bandpass filter having substantially zero wavelength shift temperature coefficient
JP2566634B2 (en) Multi-layer antireflection film
TW201400850A (en) Optical element
JPS63159811A (en) Reflecting mirror consisting of multi-layered films and its production
US3421811A (en) Coated optical devices
JPH02102036A (en) Article covered with optical film
JP2902729B2 (en) Manufacturing method of dielectric multilayer film
JPS61183810A (en) Transparent electrode
KR970000382B1 (en) Low-reflection coating glass and its process
JPS62237401A (en) Antireflection film
JPH0631850A (en) High gas barrier transparent conductive film
JP2546203B2 (en) Optical element using TiOx thin film
JP2002266071A (en) Thin film deposition method and thin film deposition apparatus
JPH01257801A (en) Antireflection film
US3421810A (en) Coated optical devices
JPH01310302A (en) Spectral filter
JP2002040236A (en) Multilayered optical thin film
JPH02113201A (en) Article coated with optical multilayered film
JPH0623903A (en) Transparent conductive film having high gas barrier properties
JPH02275904A (en) Optical thin film
JP2003057404A (en) Antireflection film for faraday rotator