JPS62237401A - Antireflection film - Google Patents

Antireflection film

Info

Publication number
JPS62237401A
JPS62237401A JP61079899A JP7989986A JPS62237401A JP S62237401 A JPS62237401 A JP S62237401A JP 61079899 A JP61079899 A JP 61079899A JP 7989986 A JP7989986 A JP 7989986A JP S62237401 A JPS62237401 A JP S62237401A
Authority
JP
Japan
Prior art keywords
film
antireflection film
thickness
antireflection
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61079899A
Other languages
Japanese (ja)
Inventor
Kazuo Tozawa
戸沢 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61079899A priority Critical patent/JPS62237401A/en
Publication of JPS62237401A publication Critical patent/JPS62237401A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To maintain a low reflectivity even if the thickness of thin light transmittable films change slightly by providing rugged structure by crystal grains of a specific size onto at least one layer of the thin light transmittable film to constitute an antireflection film. CONSTITUTION:At least one thin light transmittable film of the antireflection film consisting of single or many layers of the thin light transmittable films 2-4 deposited on a transparent substrate 1 has the rugged structure consisting of the crystal grains having 500-1,000Angstrom size. Since the antireflection film 4 has the rugged structure, the incident light onto the substrate 1 receives scattering, diffraction and multiple reflections on the antireflection film and as a result, the reflectivity thereof decreases. The quantity of the transmitted light eventually increases. The effect of the interference of light is weakened and the limitation to the control of the film thickness is relieved if the antireflection film is made into the rugged structure. The increase of the reflectivity is thus not admitted even if the film thickness changes slightly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は反射防止膜、特に太陽電池のガラス基板のよう
に広い面積を有する基板上に被着するのに好適な反射防
止膜に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an antireflection film, particularly an antireflection film suitable for being deposited on a substrate having a large area such as a glass substrate for a solar cell. be.

(従来の技術) 従来、種々の光学機器において反射防止膜が用いられて
いる。特にレンズや眼鏡にはすぐれた特性を有する反射
防止膜が用いられているが、これらの反射防止膜は波長
450nm〜650nrnの可視域の光に対してのみ有
効である。したがって例えばガラス等の透光性基板上に
作られた光電変換装置に基板側から光を入射する場合は
より広い波長範囲に亘って低い反射率を有する反射防止
膜が必要である。
(Prior Art) Conventionally, antireflection films have been used in various optical devices. In particular, anti-reflection films with excellent properties are used in lenses and eyeglasses, but these anti-reflection films are only effective against light in the visible range of wavelengths from 450 nm to 650 nm. Therefore, when light is incident on a photoelectric conversion device formed on a transparent substrate such as glass from the substrate side, an antireflection film having low reflectance over a wider wavelength range is required.

(発明が解決しようとする問題点) 太陽電池など入射面積のきわめて広い装置に反射防止膜
を被着する場合、その膜厚の分布のばらつきが大きくな
る。従来の反射防止膜においては膜厚のばらつきが多少
でも有ると、反射防止特性は著しく劣化してしまう欠点
がある。すなわち、従来の反射防止膜は、特に多層の透
光性薄膜より成るものは各薄膜の厚さが最適な膜厚から
僅かにずれただけでも反射率が顕著に増加する欠点があ
った。
(Problems to be Solved by the Invention) When an antireflection film is applied to a device such as a solar cell having an extremely wide incident area, the distribution of the film thickness will vary widely. Conventional anti-reflection films have the disadvantage that their anti-reflection properties are significantly degraded if there is even a slight variation in film thickness. That is, conventional antireflection films, especially those consisting of multilayered light-transmitting thin films, have the disadvantage that the reflectance increases markedly even if the thickness of each thin film deviates even slightly from the optimum film thickness.

したがって本発明の目的は上述した欠点を除去し、透光
性薄膜の膜厚が多少変化しても低い反射率を維持するこ
とができ、また従来の可視域よりも広い400〜750
nmの波長範囲に亘って十分に低い反射率を有する反射
防止膜を提供しようとするものである。
Therefore, the purpose of the present invention is to eliminate the above-mentioned drawbacks, maintain a low reflectance even if the thickness of the light-transmitting thin film changes to some extent, and further improve the visibility range of 400 to 750, which is wider than the conventional visible range.
The present invention aims to provide an antireflection film having a sufficiently low reflectance over the nm wavelength range.

(問題点を解決するための手段) 本発明は、透明基板上に被着された単層または多層の透
光性薄膜より成る反射防止膜において、少なくとも一層
の透光性薄膜が500〜10000 Aの大きさの結晶
粒より成る凹凸構造を有することを特徴とするものであ
る。
(Means for Solving the Problems) The present invention provides an antireflection film consisting of a single-layer or multi-layer translucent thin film deposited on a transparent substrate, in which at least one layer of the translucent thin film has an opacity of 500 to 10,000 A. It is characterized by having an uneven structure consisting of crystal grains having a size of .

(作 用) 本発明の反射防止膜では凹凸構造を有しているため基板
への入射光が反射防止膜において散乱、回折、多重反射
を受ける。その結果、反射率が低下し、透過光量が増大
することになる。また反射防止膜を凹凸構造とすると光
の干渉の効果は弱くなり、膜厚の制御に対する制限は緩
くなり、膜厚が多少変化しても反射率の増大は認められ
ない。
(Function) Since the antireflection film of the present invention has an uneven structure, light incident on the substrate undergoes scattering, diffraction, and multiple reflections on the antireflection film. As a result, the reflectance decreases and the amount of transmitted light increases. Furthermore, when the antireflection film has a concavo-convex structure, the effect of light interference is weakened, and restrictions on controlling the film thickness are relaxed, and no increase in reflectance is observed even if the film thickness changes somewhat.

さらに光の干渉効果が弱くなることから低反射率を呈す
る波長範囲が従来の450〜650nmから4QQnm
〜750nmに広がることになる。
Furthermore, since the interference effect of light becomes weaker, the wavelength range that exhibits low reflectance has been extended from the conventional 450 to 650 nm to 4QQnm.
It will extend to ~750 nm.

(実施例) 第1図は本発明による反射防止膜の一実施例の構成を示
す断面図であり、三層の透光性薄膜を積層して形成した
ものである。すなわち、ガラス基板1上に屈折率が約1
.62のCeF3より成る第1の透光性薄膜2を850
人の厚さに堆積する。今、中心波長λを5500人とす
ると、この850への厚さはλ/4に相当する。このC
eF3薄膜2の上に屈折率が約2.0のITO(In2
03とSnO2との混合物)より成る第2の透光性薄膜
3を1375A (λ/2)の厚さに堆積する。このI
TO薄膜3は結晶粒により構成されているので、その表
面は凹凸構造となっている。
(Example) FIG. 1 is a sectional view showing the structure of an example of the antireflection film according to the present invention, which is formed by laminating three layers of light-transmitting thin films. That is, the refractive index is about 1 on the glass substrate 1.
.. The first transparent thin film 2 made of CeF3 of 850
Deposits to the thickness of a person. Now, if the center wavelength λ is 5500 people, the thickness to 850 corresponds to λ/4. This C
ITO (In2
A second transparent thin film 3 consisting of a mixture of SnO2 and SnO2 is deposited to a thickness of 1375A (λ/2). This I
Since the TO thin film 3 is composed of crystal grains, its surface has an uneven structure.

このITO薄膜3の上にさらに屈折率が約1.38のM
gF2より成る第3透光性薄膜4を1000人の厚さく
λ/4)に堆積形成する。この第3薄膜4は凹凸構造を
有する第2透光性薄膜3の表面上に形成されるので凹凸
状となる。
On this ITO thin film 3, M with a refractive index of about 1.38 is further added.
A third light-transmitting thin film 4 made of gF2 is deposited to a thickness of 1000 mm (λ/4). This third thin film 4 is formed on the surface of the second transparent thin film 3 having an uneven structure, so that it has an uneven shape.

次に上述した反射防止膜の製造方法について説明する。Next, a method for manufacturing the above-mentioned antireflection film will be explained.

先ずガラス基板1を真空蒸着装置内の基板ホルダに設置
する。真空槽内を2 X 1O−6Torr以下の圧力
に減圧し、基板ホルダに隣接して設けたヒータによりガ
ラス基板1を200〜300℃の温度に加熱する。この
状態でCeF3を蒸着し、第1透光性薄膜2を堆積形成
する。次いでITOを酸素分圧lXl0−’〜5 Xl
0−’Torrの圧力で蒸着する。このとき、基板側に
1〜数KVの負電圧を印加するイオンブレーティング法
や直流アーク放電によるイオン化を併用して蒸着速度を
15〜30人/秒に調整すると、ITOは柱状結晶粒と
なり、凹凸構造を有する第2透光性薄膜3が形成される
。次いで再び真空槽内を2 X 1O−6Torr以下
の圧力に減圧し、MgF。
First, the glass substrate 1 is placed in a substrate holder in a vacuum evaporation apparatus. The pressure inside the vacuum chamber is reduced to 2×1O−6 Torr or less, and the glass substrate 1 is heated to a temperature of 200 to 300° C. using a heater provided adjacent to the substrate holder. In this state, CeF3 is deposited to form the first transparent thin film 2. Then, ITO is heated to oxygen partial pressure lXl0-'~5Xl
Deposit at a pressure of 0-'Torr. At this time, when the evaporation rate is adjusted to 15 to 30 people/second using an ion blating method that applies a negative voltage of 1 to several KV to the substrate side and ionization by DC arc discharge, ITO becomes columnar crystal grains. A second transparent thin film 3 having an uneven structure is formed. Then, the pressure inside the vacuum chamber was reduced to 2 X 1O-6 Torr or less again, and MgF was added.

を蒸着して第3透光性薄膜4を形成する。本例では上述
したように第2透光性薄膜3を形成する際の蒸着速度を
15〜30人/秒と従来よりも高くすることにより柱状
結晶粒の凹凸構造を形成することができる。
is vapor-deposited to form the third transparent thin film 4. In this example, as described above, the uneven structure of columnar crystal grains can be formed by increasing the deposition rate when forming the second light-transmitting thin film 3 to 15 to 30 persons/second, which is higher than the conventional method.

第2図は分光反射率特性を示すものであり、曲線Aは上
述した第1図に示す本発明の反射防止膜の分光反射率を
示し、曲線Bは従来の3層構造の反射防止膜の分光反射
率を示す。この従来の3層反射防止膜はガラス基板上に
850人の膜厚のCeF3膜、1380への膜厚のIT
O膜、1000人の膜厚のMgF2膜を順次に堆積して
形成したものである。
Figure 2 shows the spectral reflectance characteristics, where curve A shows the spectral reflectance of the antireflection film of the present invention shown in Figure 1 above, and curve B shows the spectral reflectance of the conventional three-layer antireflection film. Indicates spectral reflectance. This conventional three-layer anti-reflection coating consists of a CeF3 film with a film thickness of 850 mm and an IT film with a film thickness of 1380 mm on a glass substrate.
The film was formed by sequentially depositing an O film and a MgF2 film with a thickness of 1,000 layers.

第3図は膜厚が最適値からずれた場合の分光反射率を示
すものであり、CeF3膜の膜厚が770 A。
FIG. 3 shows the spectral reflectance when the film thickness deviates from the optimum value, and the film thickness of the CeF3 film is 770 Å.

[TO膜の膜厚が1510人、MgF2膜の膜厚が90
0Aとなった場合であり、曲線Aが本発明、曲線Bが従
来の反射防止膜の分光反射率を示すものである。
[The thickness of the TO film is 1510, and the thickness of the MgF2 film is 90.
0A, where curve A shows the spectral reflectance of the present invention and curve B shows the spectral reflectance of the conventional antireflection film.

これら第2図および第3図に示すグラフから明らかなよ
うに、本発明の反射防止膜では400〜750nmとい
う広い波長範囲に亘って反射率がきわめて小さくなって
いるとともに膜厚が最適値からずれた場合でも反射率は
それほど増大しないのに対し、従来の反射防止膜におい
ては450〜650nmと云った狭い可視波長域におい
て反射率が小さくなっているとともに膜厚の変動によっ
て反射率が著しく増大する。したがって本発明の反射防
止膜は広い面積の基板上に堆積形成するのに特に好適で
ある。
As is clear from the graphs shown in FIGS. 2 and 3, the antireflection film of the present invention has extremely low reflectance over a wide wavelength range of 400 to 750 nm, and the film thickness deviates from the optimum value. However, with conventional antireflection films, the reflectance decreases in the narrow visible wavelength range of 450 to 650 nm, and the reflectance increases significantly with changes in film thickness. . Therefore, the antireflection coating of the present invention is particularly suitable for deposition on a wide area substrate.

その理由はこのように広い反射防止膜では膜厚を全面に
亘って均一とすることは非常に困難であり、変動が生じ
易いためである。
The reason for this is that with such a wide antireflection film, it is very difficult to make the film thickness uniform over the entire surface, and variations tend to occur.

第4図は本発明の反射防止膜を具える太陽電池の一例の
構成を示す断面図である。ガラス基板11の一方の表面
上に透明導電膜12を形成し、さらにその上にアモルフ
ァス・シリコン膜13を堆積形成し、その上にはさらに
金属電極膜14が蒸着されている。ガラス基板11の他
方の表面には本発明による′反射防止膜15が堆積形成
されている。本実施例では、この反射防止膜15は、屈
折率1.62のCeF、より成るλ/4の膜厚の第1透
光性薄膜16と、屈折率2のZrO□より成るλ/2の
膜厚の第2透光性薄膜17と、屈折率1.38のMgF
2より成る膜厚λ/4の第3透光性薄膜1Bとを順次堆
積して形成する。この場合ZrO□の蒸着速度を速くし
て柱状結晶粒による凹凸構造を形成する。
FIG. 4 is a sectional view showing the structure of an example of a solar cell provided with the antireflection film of the present invention. A transparent conductive film 12 is formed on one surface of a glass substrate 11, an amorphous silicon film 13 is further deposited thereon, and a metal electrode film 14 is further deposited thereon. On the other surface of the glass substrate 11, an antireflection film 15 according to the present invention is deposited. In this embodiment, the anti-reflection film 15 includes a first transparent thin film 16 of λ/4 thickness made of CeF with a refractive index of 1.62, and a λ/2 thickness of ZrO□ of refractive index of 2. A second transparent thin film 17 with a film thickness and MgF with a refractive index of 1.38.
A third light-transmitting thin film 1B having a film thickness of λ/4 consisting of 2 layers is sequentially deposited. In this case, the evaporation rate of ZrO□ is increased to form an uneven structure of columnar crystal grains.

(発明の効果) 上述した本発明の反射防止膜においては反射防止膜を構
成する透光性薄膜の少なくとも一層が500〜1ooo
o人の大きさの結晶粒による凹凸構造を有しているため
、入射光が散乱、回折、多重反射を受けるため反射率が
低下し、透過光量が増大する。
(Effects of the Invention) In the antireflection film of the present invention described above, at least one layer of the light-transmitting thin film constituting the antireflection film has a molecular weight of 500 to 1000.
o Since it has an uneven structure made up of human-sized crystal grains, incident light undergoes scattering, diffraction, and multiple reflections, resulting in a decrease in reflectance and an increase in the amount of transmitted light.

また、凹凸構造とすることによって光の干渉効果が弱く
なるため膜厚が多少変化しても反射率の増加は殆んど現
われない。したがって広い面積の反射防止膜として特に
有効である。また干渉′効果が弱くなるため、400〜
750nmと云ったきわめて広い波長範囲に亘って低い
反射率を呈する効果もある。
Further, since the uneven structure weakens the light interference effect, there is almost no increase in reflectance even if the film thickness changes to some extent. Therefore, it is particularly effective as an antireflection coating over a wide area. Also, since the interference' effect becomes weaker, 400~
It also has the effect of exhibiting low reflectance over an extremely wide wavelength range of 750 nm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の反射防止膜の一実施例の構成を示す断
面図、 第2図および第3図は本発明の反射防止膜および従来の
反射防止膜の分光反射率特性を示すグラフ、 第4図は本発明の反射防止膜を有する太陽電池の一実施
例の構成を示す断面図である。 1・・・ガラス基板
FIG. 1 is a cross-sectional view showing the structure of an embodiment of the anti-reflection film of the present invention; FIGS. 2 and 3 are graphs showing the spectral reflectance characteristics of the anti-reflection film of the present invention and a conventional anti-reflection film; FIG. 4 is a sectional view showing the structure of an embodiment of a solar cell having an antireflection film of the present invention. 1...Glass substrate

Claims (1)

【特許請求の範囲】 1、透明基板上に被着された単層または多層の透光性薄
膜より成る反射防止膜において、少なくとも一層の透光
性薄膜が500〜10000Åの大きさの結晶粒より成
る凹凸構造を有することを特徴とする反射防止膜。 2、前記凹凸構造を有する透光性薄膜が、In_2O_
3またはIn_2O_3とSnO_2の混合物より成る
ことを特徴とする特許請求の範囲第1項記載の反射防止
膜。
[Scope of Claims] 1. In an antireflection film consisting of a single layer or multilayer transparent thin film deposited on a transparent substrate, at least one layer of the transparent thin film is made of crystal grains with a size of 500 to 10,000 Å. An anti-reflection film characterized by having an uneven structure. 2. The light-transmitting thin film having the uneven structure is made of In_2O_
2. The antireflection film according to claim 1, wherein the antireflection film is made of a mixture of In_2O_3 and SnO_2.
JP61079899A 1986-04-08 1986-04-08 Antireflection film Pending JPS62237401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079899A JPS62237401A (en) 1986-04-08 1986-04-08 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079899A JPS62237401A (en) 1986-04-08 1986-04-08 Antireflection film

Publications (1)

Publication Number Publication Date
JPS62237401A true JPS62237401A (en) 1987-10-17

Family

ID=13703124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079899A Pending JPS62237401A (en) 1986-04-08 1986-04-08 Antireflection film

Country Status (1)

Country Link
JP (1) JPS62237401A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191102A (en) * 1988-01-26 1989-08-01 Canon Inc Antireflection film
US6327086B1 (en) * 1996-07-09 2001-12-04 Canon Kabushiki Kaisha Optical diffraction device and exposure apparatus
JP2013210682A (en) * 2006-05-31 2013-10-10 Semiconductor Energy Lab Co Ltd Display device
JP2014160667A (en) * 2006-05-31 2014-09-04 Semiconductor Energy Lab Co Ltd Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191102A (en) * 1988-01-26 1989-08-01 Canon Inc Antireflection film
US6327086B1 (en) * 1996-07-09 2001-12-04 Canon Kabushiki Kaisha Optical diffraction device and exposure apparatus
JP2013210682A (en) * 2006-05-31 2013-10-10 Semiconductor Energy Lab Co Ltd Display device
JP2014160667A (en) * 2006-05-31 2014-09-04 Semiconductor Energy Lab Co Ltd Display device

Similar Documents

Publication Publication Date Title
USRE39215E1 (en) Antireflection coating for a temperature sensitive substrate
US5270858A (en) D.C. reactively sputtered antireflection coatings
US5372874A (en) DC reactively sputtered optical coatings including niobium oxide
US4128303A (en) Anti reflection coating with a composite middle layer
JPH11271507A (en) Wide-band reflection preventive film with four sputtered layers
US6586101B2 (en) Anti-reflection coating with transparent surface conductive layer
KR102384800B1 (en) Colored glass for photovoltaic and photovoltaic panel using it
US20100127611A1 (en) Transparent electrode
US6532112B2 (en) Anti-reflection conducting coating
JPS62237401A (en) Antireflection film
JPS6273202A (en) Production of thin optical film
JPS62108207A (en) Colored mirror
JPS6470701A (en) Transparent plate having conductive antireflection film
JP2566634B2 (en) Multi-layer antireflection film
JP3934742B2 (en) Anti-reflection coating
US7662464B2 (en) Anti-reflection coating with low resistivity function and transparent conductive coating as outermost layer
JPS56162702A (en) Manufacture of reflecting mirror
JPS62143846A (en) Antireflection treatment of transparent substrate
JPS5689701A (en) Half mirror
KR970000382B1 (en) Low-reflection coating glass and its process
JPS6361202A (en) Optical thin film for infrared ray
JP3504965B2 (en) Substrate with transparent conductive film and method for manufacturing the same
JP3013099B2 (en) Optical component having conductive anti-reflection coating
JP2624827B2 (en) Half mirror
KR970000902B1 (en) Low-reflection coating glass and its process