JPS6173802A - Production of ultrafine metallic particle coated with plasma polymerized film - Google Patents

Production of ultrafine metallic particle coated with plasma polymerized film

Info

Publication number
JPS6173802A
JPS6173802A JP19636184A JP19636184A JPS6173802A JP S6173802 A JPS6173802 A JP S6173802A JP 19636184 A JP19636184 A JP 19636184A JP 19636184 A JP19636184 A JP 19636184A JP S6173802 A JPS6173802 A JP S6173802A
Authority
JP
Japan
Prior art keywords
low
plasma
metal
polymerized film
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19636184A
Other languages
Japanese (ja)
Inventor
Michio Ashida
芦田 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I S KK
IS KK
Original Assignee
I S KK
IS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I S KK, IS KK filed Critical I S KK
Priority to JP19636184A priority Critical patent/JPS6173802A/en
Publication of JPS6173802A publication Critical patent/JPS6173802A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce ultrafine metallic particles coated with a plasma polymerized film of an org. material by evaporating a metal in an inert gaseous or low-pressure gaseous oxygen atm. and subjecting simultaneously the same to low-temp. plasma polymn. by glow discharge in a low-pressure gaseous mixture added with the vapor of a specific org. compd. CONSTITUTION:The metal such as Zn, Cd, Al, Fe, Ni, Co, Cu, Ag or Au is put into a basket type heater made of a W wire in a reaction vessel and after the inside of the vessel is evacuated, the gaseous mixture composed of the vapor of 1 kind among the org. compd. such as benzene, styrene, pyridine, picoline or acrylnitrile and an inert gas such as Ar, He or N2 of low-pressure gaseous O2 of about 1.0Torr is introduced into the vessel. The above-mentioned metal is heated and evaporated in the low-pressure atmosphere of such gaseous mixture under 1.0-3.0Torr and at the same time the low-temp. plasma is generated by the high-frequency electroless glow discharge, by which the fine metallic particles coated with the extremely thin plasma polymerized film are produced.

Description

【発明の詳細な説明】 本発明はアルゴン、ヘリウム、窒素等の不活性ガスとス
チレン等の有機化合物の蒸気との混合気体の1.0To
rrから3.0Trrの低圧中で亜鉛、錫、カドミウム
、アルミウム、鉄、ニッケル、コバルト。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 1.0 To
Zinc, tin, cadmium, aluminum, iron, nickel, cobalt at low pressures from rr to 3.0 Trr.

銅、銀、金等の金属を加熱蒸発すると同時に2周波数1
3.56MHzの高周波電源、または平行平板方式によ
るグロー放電により、低温プラズマを発生させ、蒸発金
属が気相中で冷却凝結して生じた超微粒子を核としてプ
ラズマ重合反応を進め、 3nmから1μmまでの厚さ
のプラズマ重合膜でコーティングされた平均粒径10n
mから5μmの金属超微粒子の製造法である。または、
酸素ガスと有機物蒸気との低圧混合ガスを用いて同様に
金属を加熱蒸発し、低温プラズマを発生させることによ
り、プラズマ重合膜でコーティングされた金属酸化物の
超微粒子を製造する方法である。
Metals such as copper, silver, and gold are heated and evaporated at the same time with 2 frequencies and 1
A low-temperature plasma is generated using a 3.56 MHz high-frequency power supply or a glow discharge using a parallel plate method, and the plasma polymerization reaction proceeds using ultrafine particles produced by cooling and condensing the evaporated metal in the gas phase as nuclei, from 3 nm to 1 μm. Average particle size 10n coated with a plasma polymerized film with a thickness of
This is a method for producing ultrafine metal particles with a size of 5 μm to 5 μm. or
This method produces ultrafine metal oxide particles coated with a plasma polymerized film by similarly heating and vaporizing metal using a low-pressure mixed gas of oxygen gas and organic vapor to generate low-temperature plasma.

金属を不活性ガス中で加熱蒸発し、その蒸気をガス中で
冷却凝結させて得られる金属の超微細粒子は、純度が高
く粒度の揃った完全な結晶微粒子を生じる。また、不活
性ガスの圧力や金属の加熱温度により数nunから数十
μmまでの粒径の超微粒子が得られる。金属の超微粒子
は比表面積が大きく表面活性が大であるため、導電塗料
、導電性ゴム・プラスチックなどの複合材、磁性材料、
センサー、触媒等への用途などが考えられ、近年応用研
究が広く試みられるようになっている。金属は超微粒子
になるほど体積に比べ表面層の占める割合が著しく増大
し、超微粒子集合体の物性には表面効果が影響を与え、
金属バルク自体の物性と異なってくることが予想され、
新素材としての応用が期待されている。
Ultrafine metal particles obtained by heating and vaporizing metal in an inert gas and cooling and condensing the vapor in the gas produce perfectly crystalline fine particles with high purity and uniform particle size. Further, ultrafine particles having a particle size of several nanometers to several tens of micrometers can be obtained depending on the pressure of the inert gas and the heating temperature of the metal. Ultrafine metal particles have a large specific surface area and high surface activity, so they can be used in conductive paints, composite materials such as conductive rubber and plastics, magnetic materials,
Possible uses include sensors and catalysts, and applied research has been widely attempted in recent years. As metal particles become ultrafine, the proportion of the surface layer increases significantly compared to the volume, and surface effects affect the physical properties of ultrafine particle aggregates.
It is expected that the physical properties of the metal bulk itself will differ,
It is expected to be applied as a new material.

しかし、比表面積が著しく大きく表面活性であることは
、ガス等を吸着しやすく逆に超微粒子の取扱いを困難に
する欠点ともなる0例えば2反応容器内で作成した金属
超微粒子を空気中に取り出すと、金属によっては直ちに
表面が酸化されて金属酸化物で覆われ、ときには酸化反
応により発熱して燃焼することもある。また、不活性ガ
ス中で生じた微粒子は相互作用により融合して、塊状や
鎖状に連なり9個々の孤立した微粒子としては得難くな
る。このような凝集塊は先に述べた有機物や高分子材料
と混合して複合材として用いる場合。
However, the fact that the specific surface area is extremely large and the surface is active has the disadvantage of easily adsorbing gases, etc., and conversely making it difficult to handle the ultrafine particles.For example, when ultrafine metal particles created in a reaction vessel are taken out into the air. Depending on the metal, the surface is immediately oxidized and becomes covered with metal oxides, and sometimes the oxidation reaction generates heat and burns. Further, the fine particles generated in the inert gas are fused due to interaction and are connected in a lump or chain shape, making it difficult to obtain individual fine particles as individual particles. When such agglomerates are mixed with the organic substances and polymeric materials mentioned above and used as a composite material.

マトリックス中への金属微粒子の均一な分散を困難にす
る。
This makes it difficult to uniformly disperse metal particles into the matrix.

本発明によるプラズマ重合膜でコーティングした金属超
微粒子は、不活性ガス中で金属の超微粒子を形成し、直
ちに均一なピンホールのないプラズマ重合膜でコーティ
ングされるので、金属表面は外気の影響を受けず長期に
わたり作成時の表面性質を維持することができる。また
、こわらの金属超微粒子は金属の蒸発速度、真空度、気
体の種類、グロー放電の出力等の条件により、孤立した
粒子から連鎖状粒子まで種々の構造をとるが、プラズマ
重合によりその状態のまま重合膜でコーティングされる
。したがって、有機溶剤や高分子溶液と混合すると2重
合膜のマイクロカプセルにより金属超微粒子は作成時の
構造のままマトリックス中に均一に分散する利点がある
The ultrafine metal particles coated with the plasma polymerized film according to the present invention form ultrafine metal particles in an inert gas and are immediately coated with a uniform pinhole-free plasma polymerized film, so the metal surface is not affected by the outside air. It is possible to maintain the surface properties at the time of creation over a long period of time without any damage. In addition, ultrafine metal particles have various structures, from isolated particles to chain particles, depending on conditions such as the evaporation rate of the metal, the degree of vacuum, the type of gas, and the output of the glow discharge. It is coated with a polymer film as it is. Therefore, when mixed with an organic solvent or a polymer solution, the microcapsules of the bipolymer film have the advantage that the ultrafine metal particles are uniformly dispersed in the matrix with the same structure as when they were created.

以上のように金属超微粒子はプラズマ重合膜でコーティ
ングされることにより、導電塗料、導電性ゴム・プラス
チック、磁気テープへの利用等。
As mentioned above, by coating ultrafine metal particles with a plasma polymerized film, they can be used in conductive paints, conductive rubber/plastics, magnetic tape, etc.

有機溶剤や高分子材料との複合化、医学への利用に効果
を発揮することが期待される。
It is expected that it will be effective in compounding with organic solvents and polymeric materials and in medical applications.

以下、更に実施例について説明する。Examples will be further described below.

実施例1゜ 金属亜鉛の塊を反応容器中のタングステン線のバスケッ
ト型ヒーター中に入れ、排気後、スチレン蒸気分圧1.
0Torrとアルゴン1.5Torrの混合気体を導入
し、全圧2.5Torrの容器中で亜鉛を加熱する。亜
鉛が蒸発はじめると同等に2周波数13、56MHz 
、出力30Wの高周波無電極放電により混合気体の低温
プラズマを発生させる。亜鉛の蒸発分子は冷却凝集して
超微細粒子を形成し、有機ガスプラズマ中を通過してガ
ラス板上に補集され粒径が約0.2μm以下の六角板状
や鼓型の結晶で。
Example 1 A lump of metallic zinc is placed in a tungsten wire basket-type heater in a reaction vessel, and after evacuation, the partial pressure of styrene vapor is reduced to 1.
A gas mixture of 0 Torr and argon at 1.5 Torr is introduced to heat the zinc in a container with a total pressure of 2.5 Torr. When zinc begins to evaporate, the two frequencies are 13 and 56 MHz.
A low-temperature plasma of a mixed gas is generated by high-frequency electrodeless discharge with an output of 30 W. The evaporated zinc molecules coagulate on cooling and form ultrafine particles, which pass through an organic gas plasma and are collected on a glass plate as hexagonal plate-shaped or drum-shaped crystals with a particle size of about 0.2 μm or less.

その表面は約20nmの一様な厚さのプラズマ重合スチ
レン膜でコーティングされた亜鉛超微粒子を得た。スチ
レンモノマーの分圧がアルゴンの分圧より高いときは、
スチレン単独の球状の重合物を生じする。さらにスチレ
ンモノマーの分圧が増大すると、スチレン重合物は油状
となる。また、放電出力が高くなると、アルゴンプラズ
マにより亜鉛粒子は結晶化せず約10nrnの不定形の
超微粒子となり。
Ultrafine zinc particles were obtained whose surfaces were coated with a plasma-polymerized styrene film having a uniform thickness of about 20 nm. When the partial pressure of styrene monomer is higher than the partial pressure of argon,
Produces a spherical polymer of styrene alone. Furthermore, when the partial pressure of the styrene monomer increases, the styrene polymer becomes oily. Moreover, when the discharge output becomes high, the zinc particles are not crystallized by the argon plasma and become irregularly shaped ultrafine particles of about 10 nrn.

プラズマ重合物でコーティングされなくなる。No longer coated with plasma polymers.

実施例2゜ 金屑亜鉛の塊を反応容器中のタングステン線のバスケッ
ト型ヒーター中に入れ、排気後、ベンゼン蒸気分圧1.
5Torrと酸素ガス1.0Torrの混合気体を導入
し、全圧2.5Torrの容器中で亜鉛を加熱する。亜
鉛が蒸発しはじめると同時に、高周波無電極放電にによ
り低温プラズマを発生させ、蒸発金属粒子をプラズマ中
を通すその表面は約1nm厚のプラズマ重合膜によりコ
ーティングされた2粒子表面は酸化されている2粒径数
十nroの不定形の亜鉛超微粒子を得た。
Example 2 A lump of zinc scrap was placed in a tungsten wire basket-type heater in a reaction vessel, and after exhaust, the partial pressure of benzene vapor was reduced to 1.
A mixed gas of 5 Torr and oxygen gas of 1.0 Torr is introduced, and zinc is heated in a container with a total pressure of 2.5 Torr. At the same time as the zinc begins to evaporate, low-temperature plasma is generated by high-frequency electrodeless discharge, and the evaporated metal particles are passed through the plasma.The surfaces of the two particles are coated with a plasma polymerized film approximately 1 nm thick.The surfaces of the two particles are oxidized. 2. Amorphous ultrafine zinc particles with a particle size of several tens of nanometers were obtained.

実施例3゜ 純鉄の塊を反応容器中のタングステン線のバスケット型
ヒーター中に入九、排気後、スチレン蒸気分圧1.5T
orrとアルゴン1.0Torrの混合気体を導入し、
全圧2.5Torr中で鉄を加熱する。鉄が蒸発しはじ
めると同時に、グロー放電によりプラズマを発生させ、
蒸発鉄粒子はプラズマ中を通す。
Example 3 A lump of pure iron was placed in a tungsten wire basket type heater in a reaction vessel, and after exhaust, the partial pressure of styrene vapor was 1.5T.
Introducing a gas mixture of orr and argon at 1.0 Torr,
The iron is heated under a total pressure of 2.5 Torr. At the same time as the iron begins to evaporate, plasma is generated by glow discharge,
Evaporated iron particles pass through the plasma.

平均LOnmの径の粒子が鎖状に連なってその表面を非
常に薄いプラズマ重合膜でコーティングされた鉄超微粒
子を得た。
Ultrafine iron particles were obtained in which particles having an average diameter of LO nm were connected in a chain and the surfaces thereof were coated with a very thin plasma polymerized film.

特訳−出願人  板耳 幸蔵Special translation - Applicant Kozo Itami

Claims (1)

【特許請求の範囲】[Claims] アルゴン、ヘリウム、窒素等の不活性ガス、または酸素
の0.1 2.0Torrの低圧ガス中で、亜鉛、錫、
カドミウム、アルミウム、鉄、ニッケル、コバルト、銅
、銀、金等の金属を加熱蒸発すると同時に、ベンゼン、
スチレン、ピリジン、ピコリン、アクリルニトリル等の
有機化合物の蒸気を加えた1.0 3.0Torrの低
圧混合気体中で、グロー放電により低温プラズマを発生
しプラズマ重合させることを特徴とする、有機物のプラ
ズマ重合膜でコーティングされた金属超微粒子の製造法
Zinc, tin,
While heating and vaporizing metals such as cadmium, aluminum, iron, nickel, cobalt, copper, silver, and gold, benzene,
An organic plasma characterized by generating low-temperature plasma by glow discharge and causing plasma polymerization in a low-pressure mixed gas of 1.0 to 3.0 Torr containing vapors of organic compounds such as styrene, pyridine, picoline, and acrylonitrile. A method for producing ultrafine metal particles coated with a polymer film.
JP19636184A 1984-09-19 1984-09-19 Production of ultrafine metallic particle coated with plasma polymerized film Pending JPS6173802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19636184A JPS6173802A (en) 1984-09-19 1984-09-19 Production of ultrafine metallic particle coated with plasma polymerized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19636184A JPS6173802A (en) 1984-09-19 1984-09-19 Production of ultrafine metallic particle coated with plasma polymerized film

Publications (1)

Publication Number Publication Date
JPS6173802A true JPS6173802A (en) 1986-04-16

Family

ID=16356564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19636184A Pending JPS6173802A (en) 1984-09-19 1984-09-19 Production of ultrafine metallic particle coated with plasma polymerized film

Country Status (1)

Country Link
JP (1) JPS6173802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1938340B1 (en) * 2005-09-05 2015-07-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal powder and an electrically insulating polymer composite material, polymer composite material and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1938340B1 (en) * 2005-09-05 2015-07-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a metal powder and an electrically insulating polymer composite material, polymer composite material and electronic device

Similar Documents

Publication Publication Date Title
JP3419788B2 (en) Method for producing thin layer carrying non-evaporable getter material and getter device produced thereby
US9166170B1 (en) Apparatus for producing carbon-coated nanoparticles and carbon nanospheres
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
WO2000040509A1 (en) Amorphous nano-scale carbon tube and production method therefor
JPS61177366A (en) Production of ultrafine particle dispersed substrate
WO2002022918A1 (en) Nanocrystalline intermetallic powders made by laser evaporation
JP2002320848A (en) Hydrogen storage material
JPS634628B2 (en)
JPS6173802A (en) Production of ultrafine metallic particle coated with plasma polymerized film
KR20090092167A (en) Method for manufacturing metal nano powders coated by carbon and metal nano powders coated by carbon using the same
DE19826681A1 (en) Gas-absorbent nonvolatile getter material thin films for high vacuum production or gas storage
JP3062748B1 (en) Method for producing polymer-metal cluster-composite
JPH09270227A (en) Electric field electron emitting element, and manufacture of it
CN107848797A (en) Spherical nanoparticle hydride and preparation method thereof
TW200800397A (en) Method of preparing catalyst for catalyzing carbon nanotubes growth
JP4375526B2 (en) Method for producing tip-opening oriented carbon nanotube film
JP2003081619A (en) Apparatus for producing carbon fine particle
JP5633841B2 (en) Metal compound-encapsulated carbon nanotube and method for producing metal compound-encapsulated carbon nanotube
RU2685564C1 (en) Method of synthesis of metal nanoparticles by deposition on a porous carbon material
JPH09309713A (en) Fullerene and its production
JPS6211896B2 (en)
Amouzegar et al. Nonconventional applications of nebulizers: Nanomaterials synthesis
JPH03264610A (en) Manufacture of super fine particles
WO1999056870A1 (en) Gas-occluding material and method for occluding gas
JPH09256140A (en) Production of fine particle of gold, silver or copper