JPS61294756A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS61294756A
JPS61294756A JP60136560A JP13656085A JPS61294756A JP S61294756 A JPS61294756 A JP S61294756A JP 60136560 A JP60136560 A JP 60136560A JP 13656085 A JP13656085 A JP 13656085A JP S61294756 A JPS61294756 A JP S61294756A
Authority
JP
Japan
Prior art keywords
thin film
separator
organic electrolyte
anode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60136560A
Other languages
Japanese (ja)
Other versions
JPH0588506B2 (en
Inventor
Toru Nagaura
亨 永浦
Takayuki Aida
会田 孝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Ebaredei KK
Original Assignee
Sony Ebaredei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ebaredei KK filed Critical Sony Ebaredei KK
Priority to JP60136560A priority Critical patent/JPS61294756A/en
Publication of JPS61294756A publication Critical patent/JPS61294756A/en
Publication of JPH0588506B2 publication Critical patent/JPH0588506B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To decrease initial impedance and suppress increase in internal resistance after storage by forming an aluminum thin film on the surface, facing anode, of a separator placed between an anode and a cathode. CONSTITUTION:Li is used as negative active material and MnO2 or (CF)n is used as positive active material. A separator comprising polypropylene nonwoven fabric impregnated with organic electrolyte is placed between negative and positive active materials. An aluminum thin film is formed on the surface, facing the active material, of the separator by vacuum thin film forming technique such as vacuum vapor deposition, sputtering, or ion plating. The thickness of the aluminum thin film is preferable to limit to 0.02-5mum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、陰極にLiを用い、電解液に電解質を溶かし
た有機溶媒を用いた、いわゆる有機電解質電池に関する
ものであり、詳細には、この種の電池の内部抵抗の改善
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a so-called organic electrolyte battery that uses Li for the cathode and an organic solvent in which an electrolyte is dissolved in the electrolyte. This invention relates to improving the internal resistance of this type of battery.

〔発明の概要〕[Summary of the invention]

・ 本発明は、陰極にLiを用い、電解液に電解質を溶
かした有機溶媒を用いた有機電解質電池において、 陰極と対接する面にAj+薄膜を真空薄膜形成技術によ
り形成したセパレータを用いることにより、電池の設計
変更することなく、初期インピーダンスを低下し、保存
後の内部インピーダンスの上昇を抑えようとするもので
ある。
- The present invention is an organic electrolyte battery that uses Li for the cathode and an organic solvent in which the electrolyte is dissolved in the electrolyte, by using a separator in which an Aj+ thin film is formed by vacuum thin film formation technology on the surface that faces the cathode. The aim is to lower the initial impedance and suppress the increase in internal impedance after storage without changing the battery design.

〔従来の技術〕[Conventional technology]

電気陰性度の大きい金属リチウムを負極活物質として使
用し、陽極゛に二酸化マンガンやフッ化炭素を活物質と
した有機電解質電池は、上記金属リチウムの電極電位が
極めて低いので約3vと高い電池電圧を示すとともに、
上記金属リチウムの単位重量当りの電気容量が大きいの
でエネルギー密度の高い電池の一つとして知られている
。そして、この種の電池では、電解液に有機溶媒、例え
ばプロピレンカーボネートに過塩素酸リチウム等の電解
質を溶かしたものが使われ、この電解液中では金属リチ
ウムも陽極活物質も極めて安定なため、長期保存によっ
ても電池容量の低下がなく、保存性の点でも非常に良好
なものとなっている。
Organic electrolyte batteries that use metallic lithium, which has a high electronegativity, as the negative electrode active material and manganese dioxide or carbon fluoride as the anode active material have a high battery voltage of approximately 3V because the electrode potential of the metallic lithium is extremely low. In addition to showing
Since the above-mentioned metallic lithium has a large electric capacity per unit weight, it is known as one of the batteries with high energy density. In this type of battery, an organic solvent such as propylene carbonate in which an electrolyte such as lithium perchlorate is dissolved is used as the electrolyte, and both metallic lithium and the anode active material are extremely stable in this electrolyte. The battery capacity does not decrease even after long-term storage, and the battery has excellent storage stability.

したがって、近年、この有機電解質電池は、長期信転性
を必要とする電子ウォッチやICメモリのバックアップ
電源として用途が広がりつつある。
Therefore, in recent years, organic electrolyte batteries have been increasingly used as backup power sources for electronic watches and IC memories that require long-term reliability.

ところで、上述の電池においては、従来、放電とともに
電池の内部抵抗が増加し、さらに、高温での保存によっ
ても同様に電池の内部抵抗が大きくなるという欠点があ
り、その改善が大きな課題となっている。上記電池の内
部抵抗の増加は、電池の有効利用の妨げになり、例えば
時計等に使用 ゛した場合、内部抵抗による電圧低下か
ら、時計駆動電圧が低下し、時計が動かなくなったり、
液晶表示が点灯しなくなる等の不具合を生じる。
By the way, conventionally, the above-mentioned batteries have the disadvantage that the internal resistance of the battery increases with discharging, and furthermore, the internal resistance of the battery also increases with storage at high temperatures, and improvement of these problems has become a major issue. There is. An increase in the internal resistance of the battery mentioned above hinders the effective use of the battery. For example, when used in a watch, etc., the voltage drop due to the internal resistance causes the watch drive voltage to drop, causing the watch to stop working.
This may cause problems such as the liquid crystal display not lighting up.

このような内部抵抗の増加の原因としては、先ず第一に
、一般に有機電解質液中で金属リチウムは、安定である
が非常に活性であるので、放電進行とともに、あるいは
高温下での保存中に、徐々に有機電解液と反応し、その
表面に不活性な化合物被膜が生成することが考えられる
The reason for this increase in internal resistance is, first of all, because metallic lithium is generally stable but very active in organic electrolyte solutions, it increases as discharge progresses or during storage at high temperatures. It is thought that the organic electrolyte gradually reacts with the organic electrolyte, and an inert compound film is formed on its surface.

この場合、反応量は電池の容量の点ではほとんど影響な
い程度のものであるが、生成したリチウム表面の被膜は
リチウムのアノード反応を大きく妨げる。このため、電
池の内部抵抗の増加をもたらす。
In this case, although the amount of reaction has little effect on the capacity of the battery, the formed film on the surface of lithium greatly impedes the anode reaction of lithium. This results in an increase in the internal resistance of the battery.

そこで、このような欠点を解消するために、例えば米国
特許第4002492号公報や米国特許第405688
5号公報には、リチウム・アルミニウム合金を使用する
ことが提案されている。
Therefore, in order to eliminate such drawbacks, for example, US Patent No. 4002492 and US Patent No. 405688 are proposed.
No. 5 proposes the use of a lithium-aluminum alloy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述のリチグム・アルミニウム合金を使
用する場合には、この合金が陰極活物質ではないために
、所定の容量を確保するためには電池サイズの変更等の
設計変更を余儀なくされ、また、複雑な構造の電池に適
用するのは難しかった。
However, when using the above-mentioned lithium-aluminum alloy, since this alloy is not a cathode active material, design changes such as changing the battery size are required in order to secure the specified capacity, and it is complicated. It was difficult to apply it to batteries with a similar structure.

本発明″はかがる実情に鑑み提案されたものであって、
従来の構造に対して設計変更がほとんど必要なく、内部
抵抗の上昇が少なく電池電圧が安定な有機電解質電池を
提供することを目的とする。
The present invention was proposed in view of the actual situation, and
It is an object of the present invention to provide an organic electrolyte battery that requires almost no design change from a conventional structure, has a small increase in internal resistance, and has a stable battery voltage.

[問題点を解決するための手段〕 本発明者等は、陰極と陽極の間に介在されるセパレータ
にアルミニウムの薄膜を形成することがインピーダンス
特性改善に効果があることを見出し本発明を完成するに
至ったものであって、Liを主体とする陰極と、陽極と
、上記陰極と対接する面にAI!薄膜を真空薄膜形成技
術により形成したセパレータと、有機電解液とからなる
ことを特徴とするものである。
[Means for Solving the Problems] The present inventors have discovered that forming a thin aluminum film on the separator interposed between the cathode and the anode is effective in improving impedance characteristics, and have completed the present invention. It has a cathode mainly composed of Li, an anode, and a surface that is in contact with the cathode is coated with AI! It is characterized by consisting of a separator whose thin film is formed by vacuum thin film forming technology and an organic electrolyte.

本発明の有機電解質電池において、陰極の活物質として
はLiが使用され、陽極の活物質としては二酸化マンガ
ンMnO□やフッ化炭素(CF)。
In the organic electrolyte battery of the present invention, Li is used as the active material of the cathode, and manganese dioxide MnO□ or carbon fluoride (CF) is used as the active material of the anode.

等のような通常この種の電池の活物質として使用される
ものが使用される。
Those commonly used as active materials for this type of battery, such as, are used.

また、これら陰極活物質と陽極活物質との間には、ポリ
プロピレンの不織布等からなり有a電解液が含浸される
セパレータが配設される。
Further, a separator made of a nonwoven polypropylene fabric or the like and impregnated with an aqueous electrolyte is disposed between the cathode active material and the anode active material.

上記セパレータに含浸される有機電解液としては、一般
に、炭酸プロピレン、ブチロラクトン。
The organic electrolyte impregnated into the separator is generally propylene carbonate or butyrolactone.

テトラヒドロフラン、1.2−ジメトキシエタン。Tetrahydrofuran, 1,2-dimethoxyethane.

1.3−ジオキソラン等の単独もしくは2種以上の混合
溶媒に、過塩素酸リチウムまたはホウフッ化リチウム等
の電解質を溶解させたもの等が使用される。
A solvent in which an electrolyte such as lithium perchlorate or lithium fluoroborate is dissolved in a solvent such as 1.3-dioxolane alone or in a mixture of two or more is used.

一方、上記セパレータの陰極活物質との対接面には、真
空蒸着法、スパッタリング法、イオンブレーティング法
等の真空薄膜形成技術によりAaの薄膜が被着形成され
ている。
On the other hand, a thin film of Aa is formed on the surface of the separator that is in contact with the cathode active material by a vacuum thin film forming technique such as a vacuum evaporation method, a sputtering method, an ion blating method, or the like.

このAl薄膜の膜厚としては、0.02〜5μmの範囲
内であることが好ましい。膜厚が0.02μm未満では
膜にピンホールが生じ均一な膜とならず、所定の効果を
得ることが難しくなる。逆に膜厚が5μmを越えると、
真空薄膜形成技術で形成するには時間がかかり、生産性
や製造コストの点で問題が生ずる。
The thickness of this Al thin film is preferably within the range of 0.02 to 5 μm. If the film thickness is less than 0.02 μm, pinholes will occur in the film and the film will not be uniform, making it difficult to obtain the desired effect. On the other hand, if the film thickness exceeds 5 μm,
Formation using vacuum thin film formation technology takes time and poses problems in terms of productivity and manufacturing costs.

〔作用〕[Effect]

このように、セパレータの陰極との対接面にAj!薄膜
を形成することにより、陰極表面の不活性化が防止され
る。
In this way, Aj! on the surface of the separator facing the cathode! By forming a thin film, the cathode surface is prevented from being inactivated.

また、 上記へβ薄膜は、セパレータへの熱衝撃を緩和
する役割も果たす。例えば、いわゆるコイン型の有m電
解質電池にタブ端子をスポット溶接により溶接しようと
すると、従来の有機電解質電池では、Liの融点が18
9℃と低いことから、このLiが溶けてメツシュ状のセ
パレータ中にしみ込む戊れがあった。これに対して、本
発明の有機電解質電池では、セパレータに被着されるA
Jの融点がおよそ660℃程度であることから、このA
ll膜が溶けてセパレータ中にしみ込むことはなく、熱
衝撃が緩和される。
Furthermore, the β thin film described above also plays a role in mitigating thermal shock to the separator. For example, when trying to spot-weld a tab terminal to a so-called coin-shaped organic electrolyte battery, the melting point of Li is 18
Since the temperature was as low as 9° C., there were holes in which the Li melted and seeped into the mesh-like separator. In contrast, in the organic electrolyte battery of the present invention, the A
Since the melting point of J is approximately 660°C, this A
The ll film does not melt and seep into the separator, and thermal shock is alleviated.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、本
発明がこれら実施例に限定されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples.

実施例1゜ 市販の電解二酸化マンガンを300℃で約5時間熱処理
したもの88.9重量部に、9.3重量部のグラファイ
トを加え、さらに1.8重量部のポリテトラフルオルエ
チレンをバインダとして加えて陽極ミックスとし、これ
を直径15.5 曽■、重量0.655gの陽極ペレッ
ト(1)を作製した。
Example 1 9.3 parts by weight of graphite was added to 88.9 parts by weight of commercially available electrolytic manganese dioxide heat-treated at 300°C for about 5 hours, and 1.8 parts by weight of polytetrafluoroethylene was added as a binder. The mixture was added as an anode mix to produce an anode pellet (1) having a diameter of 15.5mm and a weight of 0.655g.

次に、厚さ0.4flのリチウム箔(2)を直径15゜
51に打ち抜き、アノードカップ(3)に貼り付はリチ
ウム陰極を形成した。
Next, a lithium foil (2) with a thickness of 0.4 fl was punched out to a diameter of 15°51, and was attached to the anode cup (3) to form a lithium cathode.

さらに、このリチウム陰極上にAl薄膜(4)を真空蒸
着法により被着したセパレータ(5)を置き、ポリプロ
ピレンのガスケット(6)をはめこみ、電解液としてI
 Mol/ 1のLiCROaを溶解したプロピレンカ
ーボネートを注入し、先の陽極ベレット(1)を入れて
カソードカン(7)をかぶせ、シールして第1図に示す
ような有機電解it池を組み立てた。なお、上記セパレ
ーク(5)には、厚さ300μmのポリプロピレン不織
布を使用した。
Furthermore, a separator (5) with an Al thin film (4) coated by vacuum evaporation is placed on the lithium cathode, a polypropylene gasket (6) is fitted, and I
Propylene carbonate in which LiCROa of Mol/1 was dissolved was injected, the anode pellet (1) was put in, and the cathode can (7) was covered and sealed to assemble an organic electrolysis cell as shown in FIG. 1. In addition, a polypropylene nonwoven fabric with a thickness of 300 μm was used for the above-mentioned separate lake (5).

上述の方法に従い、セパレータ(5)に被着形成される
All膜(4)の膜厚を0.02 μm、、 0.2 
pm、2.0μmとして有機電解i電池を組み立て、そ
れぞれ試料1.試料2.試料3とした。
According to the above method, the thickness of the All film (4) formed on the separator (5) was 0.02 μm, 0.2 μm.
pm and 2.0 μm, and assembled organic electrolytic i-batteries for sample 1. Sample 2. This was designated as sample 3.

これら各試料を温度20t、60’C,71℃の恒温槽
に貯蔵し、30日後のインピーダンスの変化を調べた。
Each of these samples was stored in a constant temperature bath at a temperature of 20t, 60'C, and 71°C, and changes in impedance after 30 days were examined.

なお、インピーダンスは交流、IKHzの条件で測定し
、10サンプルの平均値とした。
Note that the impedance was measured under AC and IKHz conditions, and was taken as the average value of 10 samples.

また、比較のために、セパレータにAl薄膜を設けない
で有機電解質電池を作製し、これを比較例1として同様
にインピーダンスの変化を調べた。
Further, for comparison, an organic electrolyte battery was produced without providing an Al thin film on the separator, and this was used as Comparative Example 1 to examine the change in impedance in the same manner.

結果を第1表に示す。The results are shown in Table 1.

第1表 この第1表より、A6i膜を形成することによりインピ
ーダンスの増加が抑制され、特にこのAl薄膜の膜厚を
2.0μmとしたときに効果が大きいことがわかる。
Table 1 From Table 1, it can be seen that the increase in impedance is suppressed by forming the A6i film, and the effect is particularly large when the thickness of this Al thin film is set to 2.0 μm.

実施例2゜ 次に、本発明を、いわゆる渦巻式の有機電解質電池に適
用した実施例について説明する。
Example 2 Next, an example in which the present invention is applied to a so-called spiral organic electrolyte battery will be described.

渦巻式電池の電極は、第2図および第3図に示すように
、集電用リード(11)、  リチウムシート負極(1
2)及びこのリチウムシート負極(12)の両面に圧着
したポリプロピレンの不織布からなるセパレータ(13
)によって構成されている。
As shown in Figures 2 and 3, the electrodes of the spiral battery include a current collection lead (11), a lithium sheet negative electrode (1
2) and a separator (13) made of a polypropylene nonwoven fabric crimped on both sides of the lithium sheet negative electrode (12).
).

ソシて、本実施例では、このポリプロピレンのセパレー
タ(13)のリチウムシート負極(12)との対接面に
、Afii膜(14)が形成されている。なお、本実施
例では、このAl薄膜(14)は真空蒸着法によりリチ
ウムシート負極(12)のサイズに合わせてマスキング
して行い、その膜厚は2.0μmとした。
In this embodiment, an Afii film (14) is formed on the surface of the polypropylene separator (13) that faces the lithium sheet negative electrode (12). In this example, the Al thin film (14) was formed by masking according to the size of the lithium sheet negative electrode (12) by vacuum evaporation, and the film thickness was 2.0 μm.

このように構成される電極を用い、第4図および第5図
に示すように、上記集電用リード(11)を中心にして
間に陽極活物質(15)を充填して巻き込み、カソード
カン(16)に入れた後、ガスケット(17)を介して
アノードカン(18)により封入し、渦巻型有機電解質
電池を作製し試料4とした。このように、本発明は渦巻
式電池のような複雑な構造の電池にも何ら設計変更する
ことなく適用できる。
Using the electrode configured in this way, as shown in FIGS. 4 and 5, the cathode active material (15) is filled and rolled in between the current collecting lead (11) and the cathode can. (16) and then sealed with an anode can (18) via a gasket (17) to produce a spiral organic electrolyte battery, which was designated as Sample 4. In this manner, the present invention can be applied to batteries with complex structures such as spiral batteries without any design changes.

この試料4を温度20℃、60℃、71℃の恒温槽に貯
蔵し、30日後のインピーダンスの変化を調べた。なお
、インピーダンスは交流、IKHzの条件で測定し、1
0サンプルの平均値とした。
This sample 4 was stored in a constant temperature bath at temperatures of 20° C., 60° C., and 71° C., and changes in impedance after 30 days were examined. In addition, impedance is measured under AC, IKHz conditions, and 1
The average value of 0 samples was taken as the average value.

また、比較のために、セパレータにAl薄膜を設けない
で渦巻式有機電解質電池を作製し、これを比較例2とし
て同様にインピーダンスの変化を調べた。結果を第2表
に示す。
For comparison, a spiral organic electrolyte battery was fabricated without providing an Al thin film on the separator, and this was used as Comparative Example 2 to examine changes in impedance in the same manner. The results are shown in Table 2.

第2表 この第2表からも、Al1Fi!膜の形成がインピーダ
ンスの低下に効果のあることが明らかである。
Table 2 From this Table 2, Al1Fi! It is clear that the formation of the film is effective in reducing impedance.

実施例3゜ フッ化炭素(CF)、70重量部、グラファイトlO重
量部、ポリテトラフルオルエチレン20重量部からなる
混合物を陽極ミックスとし、これを直径15.5m、重
量0.655 gの陽極ペレットに加工した。
Example 3 A mixture consisting of 70 parts by weight of carbon fluoride (CF), 20 parts by weight of graphite 1O, and 20 parts by weight of polytetrafluoroethylene was used as an anode mix, and this was used as an anode with a diameter of 15.5 m and a weight of 0.655 g. Processed into pellets.

次に、厚さ0.41のリチウム箔を直径15.5nに打
ち抜き、アノードカップに貼り付はリチウム陰極を形成
した。
Next, a lithium foil having a thickness of 0.41 mm was punched out to a diameter of 15.5 nm and attached to the anode cup to form a lithium cathode.

さらに、このリチウム陰極上に膜厚0.2μmのAlf
f1膜を真空蒸着法により被着したセパレータを置き、
ポリプロピレンのガスケットをはめこみ、電解液として
I Mol/βの硼弗化リチウムを溶解したプロピレン
カーボネート・1.2−ジメトキシエタン混合溶媒(容
量比1:1)を注入し、先の陽極ペレットを入れてカソ
ードカンをかぶせ、シールして先の実施例1と同様に第
1図に示すようなを機雷解質電池を組み立て試料5とし
た。なお、上記セパレータには、厚さ300μmのポリ
プロピレン不織布を使用した。
Furthermore, on this lithium cathode, an Alf film with a thickness of 0.2 μm was added.
Place a separator coated with f1 film by vacuum evaporation method,
Fit a polypropylene gasket, inject a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (volume ratio 1:1) in which I Mol/β lithium borofluoride is dissolved as an electrolyte, and put in the anode pellet. A cathode can was covered and sealed, and a mine decomposition cell as shown in FIG. 1 was assembled in the same manner as in Example 1, and sample 5 was prepared. Note that a polypropylene nonwoven fabric with a thickness of 300 μm was used for the separator.

この試料を温度20℃および60℃の恒温槽に貯蔵し、
30日後のインピーダンスの変化を調べた。なお、イン
ピーダンスは交流、IKHzの条件で測定し、10サン
プルの平均値とした。また、比較のために、セパレータ
にAl薄膜を設けないで有機電解質電池を作製し、これ
を比較例3として同様にインピーダンスの変化を調べた
。結果を第3表に示す。
This sample was stored in a constant temperature bath at a temperature of 20°C and 60°C,
Changes in impedance after 30 days were examined. Note that the impedance was measured under AC and IKHz conditions, and was taken as the average value of 10 samples. In addition, for comparison, an organic electrolyte battery was prepared without providing an Al thin film on the separator, and this was used as Comparative Example 3 to similarly examine changes in impedance. The results are shown in Table 3.

第3表 この第3表より、陽極活物質にフッ化炭素を用いた有機
電解質電池においても、Al薄膜の形成がインピーダン
ス増加抑制にを効であることがわかる。
Table 3 From Table 3, it can be seen that the formation of an Al thin film is effective in suppressing impedance increase even in organic electrolyte batteries using fluorocarbon as the anode active material.

(発明の効果) 以上の説明からも明らかなように、本発明の有機電解質
電池においては、陰極(Li)と陽極の間に設けられる
セパレータの陰極との対接面にAIF!膜を形成してい
るので、初期インピーダンスが低下し、保存後の内部イ
ンピーダンスの上昇も抑えられる。
(Effects of the Invention) As is clear from the above description, in the organic electrolyte battery of the present invention, AIF! Since a film is formed, the initial impedance is reduced and the increase in internal impedance after storage is also suppressed.

また、上記AI2薄膜の形成による電池の設計変更は必
要なく容易に製作変更することができ、他の性能面で従
来のものに比べて劣るところもない。
In addition, the formation of the AI2 thin film does not require any design changes to the battery, and manufacturing changes can be easily made, and there is no inferiority to conventional batteries in other performance aspects.

さらに、本発明は、例えば渦巻式を機雷解質電池等のよ
うな構造の複雑な電池にでも容易に適用することができ
る。
Further, the present invention can be easily applied to batteries with a complicated structure, such as a mine decomposition battery using a spiral type battery.

あるいはタブ端子をスポット溶接する必要がある場合等
には、上記Al薄膜がセパレータへの熱衝撃を緩和する
という効果もある。
Alternatively, when it is necessary to spot weld tab terminals, the Al thin film has the effect of alleviating thermal shock to the separator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をコイン型の有機電解質電池に適用した
一実施例を示す断面図である。 第2図は本発明を渦巻式の有機電解質電池に適用した場
合の電極の構成を一部切り欠いて示す展開図、第3図は
第2図A−A線における断面図、第4図は本発明を適用
した渦巻式の有機電解質電池の一部破断側面図、第5図
は第4図B−B線における断面図である。 1・・・陽極ベレット(陽極) 2・・・リチウム!(陰極) 12・・・リチウムシート負極(陰極)15・・・陽極
活物質(陽極) 5.13・・・セパレータ 4.14・・・Al薄膜 特許出願人 ソニー・エバレディ式会社代理人  弁理
士  小部  晃 同   日付 榮− 】 ・・・ J’4tkペレット 2・・・ リチウム議 4・・・ Ai簿喰 5 ・・・ ″已!剋−フ 第1図
FIG. 1 is a sectional view showing an embodiment in which the present invention is applied to a coin-type organic electrolyte battery. Fig. 2 is a partially cutaway exploded view showing the structure of an electrode when the present invention is applied to a spiral organic electrolyte battery, Fig. 3 is a sectional view taken along line A-A in Fig. 2, and Fig. 4 is FIG. 5 is a partially cutaway side view of a spiral-type organic electrolyte battery to which the present invention is applied, and FIG. 5 is a sectional view taken along line B--B in FIG. 1... Anode pellet (anode) 2... Lithium! (Cathode) 12... Lithium sheet negative electrode (cathode) 15... Anode active material (anode) 5.13... Separator 4.14... Al thin film patent applicant Sony Everady company representative Patent attorney Kodo Kobe Date Ei- ] ... J'4tk pellet 2 ... Lithium meeting 4 ... Ai bookkeeping 5 ... ``已! 剋-fu Figure 1

Claims (1)

【特許請求の範囲】[Claims] Liを主体とする陰極と、陽極と、上記陰極と対接する
面にAl薄膜を真空薄膜形成技術により形成したセパレ
ータと、有機電解液とからなる有機電解質電池。
An organic electrolyte battery comprising a cathode mainly composed of Li, an anode, a separator in which a thin Al film is formed using vacuum thin film formation technology on the surface that faces the cathode, and an organic electrolyte.
JP60136560A 1985-06-22 1985-06-22 Organic electrolyte battery Granted JPS61294756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136560A JPS61294756A (en) 1985-06-22 1985-06-22 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136560A JPS61294756A (en) 1985-06-22 1985-06-22 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS61294756A true JPS61294756A (en) 1986-12-25
JPH0588506B2 JPH0588506B2 (en) 1993-12-22

Family

ID=15178089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136560A Granted JPS61294756A (en) 1985-06-22 1985-06-22 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS61294756A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004448A1 (en) * 1997-07-21 1999-01-28 Duracell Inc. Lithium ion electrochemical cell
US6761744B1 (en) 1999-07-16 2004-07-13 Quallion Llc Lithium thin film lamination technology on electrode to increase battery capacity
EP2234196A1 (en) * 2007-12-14 2010-09-29 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same
US8445137B1 (en) 2002-11-27 2013-05-21 Quallion Llc Primary battery having sloped voltage decay

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999004448A1 (en) * 1997-07-21 1999-01-28 Duracell Inc. Lithium ion electrochemical cell
US5948569A (en) * 1997-07-21 1999-09-07 Duracell Inc. Lithium ion electrochemical cell
US6761744B1 (en) 1999-07-16 2004-07-13 Quallion Llc Lithium thin film lamination technology on electrode to increase battery capacity
US8445137B1 (en) 2002-11-27 2013-05-21 Quallion Llc Primary battery having sloped voltage decay
EP2234196A1 (en) * 2007-12-14 2010-09-29 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same
EP2234196A4 (en) * 2007-12-14 2012-01-04 Panasonic Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same
US8563157B2 (en) 2007-12-14 2013-10-22 Panasonic Corporation Nonaqueous electrolyte secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0588506B2 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
CA2345518C (en) Sandwich cathode design for alkali metal electrochemical cell with high discharge rate capability
US4002492A (en) Rechargeable lithium-aluminum anode
US7531274B1 (en) Sandwich electrode design having relatively thin current collectors
CA2415881A1 (en) Dual chemistry electrode design
JP2000215897A (en) Lithium secondary battery
JPS5949673B2 (en) A battery with a cathode made of a light metal, a nonaqueous electrolyte, and an anode
CA2363282A1 (en) Double current collector cathode design using mixtures of two active materials for alkali metal or ion electrochemical cells
EP4395021A1 (en) Button cell, preparation method therefor and electronic device
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
JPH06231764A (en) Button type lithium organic secondary battery and its manufacture
JPH05234583A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JPS61294756A (en) Organic electrolyte battery
JPH0456079A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof
JPH0210666A (en) Nonaqueous electrolyte secondary battery
JP2812943B2 (en) Organic electrolyte battery
JPH0359963A (en) Lithium secondary battery
JPS59134567A (en) Organic electrolytic battery
JPH0763016B2 (en) Organic electrolyte battery
JPH0424828B2 (en)
JPH0254870A (en) Organic electrolyte battery
JP2006324258A (en) Lithium secondary battery and its manufacturing method
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JPS5973849A (en) Nonaqueous electrolyte battery
JPS63292572A (en) Organic electrolyte cell
JPS63307662A (en) Organic electrolyte battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term