JPH06231764A - Button type lithium organic secondary battery and its manufacture - Google Patents

Button type lithium organic secondary battery and its manufacture

Info

Publication number
JPH06231764A
JPH06231764A JP1066543A JP6654389A JPH06231764A JP H06231764 A JPH06231764 A JP H06231764A JP 1066543 A JP1066543 A JP 1066543A JP 6654389 A JP6654389 A JP 6654389A JP H06231764 A JPH06231764 A JP H06231764A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
aluminum
plate
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1066543A
Other languages
Japanese (ja)
Other versions
JP2558519B2 (en
Inventor
Kazumi Yoshimitsu
一三 由光
Kozo Kajita
耕三 梶田
Toshikatsu Manabe
俊勝 真辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP60050170A priority Critical patent/JPH0630246B2/en
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1066543A priority patent/JP2558519B2/en
Publication of JPH06231764A publication Critical patent/JPH06231764A/en
Application granted granted Critical
Publication of JP2558519B2 publication Critical patent/JP2558519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase an electric capacity per a unit volume and to prevent an internal short circuit by using a plate lithium-aluminum alloy having uniform thickness as a negative electrode constituting a lithium organic secondary battery and assigning lithium composition in the negative electrode. CONSTITUTION:Alloying is carried out while regulating the thickness of a lithium plate and an aluminum plate when a negative electrode is produced, and contained lithium composition is controlled to 35-58atom%. A lithium-aluminum alloy layer is positioned on a separator side while an aluminum layer is arranged on a negative electrode can side. In this way, electrochemical alloy reaction of lithium ion during charging is proceeded smoothly, so that collecting ability on the negative electrode side is increased and charge/discharge characteristics are improved. For a positive electrode active material, any substance that can be used for the positive electrode active material is available, and for example, titanium disulfide or molybdenum disulfide is available, while lithium ion conducting organic electrolyte solution, for example 1, 2 dimethoxyethane or polypropylene carbonate, is used for the electrolyte.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボタン形リチウム有機二次電池およ びその製造方法に関する。TECHNICAL FIELD The present invention relates to a button type lithium organic secondary battery and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、リチウム有機二次電池の負極には金属リ チウムが単独で用いられていたが、充電時の析出 リチウムが非常に活性で電解液と反応したり、あ るいは析出リチウムのデンドライト成長のため内 部短絡を起こすなどの問題があった。その改良と して、リチウム合金を負極に用いることが提案さ れている。たとえば、米国特許第3639174号明細 書には1〜20重量%のリチウムと残部がアルミニ ウムのリチウム−アルミニウム合金を負極に用い ることが提案され、また、特開昭52−5423号公報 には、63〜90モル%のリチウムと残部がアルミニ ウムのリチウム合金を負極に用いることが提案さ れている。 In the past, lithium metal was used alone for the negative electrode of lithium organic secondary batteries, but the deposited lithium during charging is very active and reacts with the electrolyte solution, or due to the dendrite growth of the deposited lithium. There was a problem such as an internal short circuit. As an improvement, it has been proposed to use a lithium alloy for the negative electrode. For example, U.S. Pat.No. 3,639,174 proposes to use a lithium-aluminum alloy having 1 to 20% by weight of lithium and the balance of aluminum for the negative electrode, and JP-A-52-5423 discloses that , 63-90 mol% of lithium and the balance of aluminum is used for the negative electrode.

特に後者においては、チタン、ニオブなどの遷 移金属カルコゲナイトを正極に用いた電池系にお いて、種々の検討がなされており、その中でリチ ウム含量が30〜50原子%のリチウム−アルミニウ ム合金を負極に用いた場合には、負極の重量が増 え、電位が0.3V低くなるので好ましくないとい う指摘がなされている。 Especially in the latter, various studies have been made on battery systems using transition metals such as titanium and niobium for the positive electrode. Among them, lithium-aluminum with a lithium content of 30 to 50 atomic% is being studied. It has been pointed out that when an alloy is used for the negative electrode, the weight of the negative electrode increases and the potential decreases by 0.3 V, which is not preferable.

〔発明が解決しようとする課題〕 しかしながら、上記特開昭52−5423号公報で指 摘されたリチウム−アルミニウム合金は、リチウ ムとアルミニウムとを不活性雰囲気中で溶融して 合金化したものであり、また、負極は、上記リチ ウム−アルミニウム合金を高エネルギーの不活性 ガス流で粉砕して得た粉末にバインダーを加えて ペーストとしたものを成形し、その成形物を焼結 して有孔率45〜50%の多孔質体にしたものであっ て、このような負極は、単位体積当たりの電気容 量が小さく、小体積で大電気容量のリチウム有機 二次電池を得るには適しておらず、そのことが前 記指摘につながっているものと考えられる。[Problems to be Solved by the Invention] However, the lithium-aluminum alloy specified in JP-A-52-5423 is an alloy obtained by melting lithium and aluminum in an inert atmosphere. The negative electrode was formed by forming a paste by adding a binder to powder obtained by crushing the above-mentioned lithium-aluminum alloy with a high-energy inert gas flow, and sintering the formed product. It is a porous material with a porosity of 45 to 50%. Such a negative electrode has a small electric capacity per unit volume and is suitable for obtaining a lithium organic secondary battery with a small volume and a large electric capacity. No, and it is thought that this has led to the point mentioned above.

そこで、上記欠点を解消するために、特開昭53 -75434号公報では、負極を板状のものとし、該負 極の作製にあたって、リチウム板とアルミニウム 板とを重ね合わせて電気化学的に合金化する方法 が提案され、その合金化に際しては、合金化が充 分かつ円滑に進行するように、アルミニウム板に 孔をあけることが推奨されている。 Therefore, in order to solve the above-mentioned drawbacks, in JP-A-53-75434, a negative electrode is formed into a plate shape, and a lithium plate and an aluminum plate are superposed on each other and electrochemically alloyed in producing the negative electrode. A method has been proposed, and it is recommended to make holes in the aluminum plate during the alloying so that the alloying will proceed sufficiently and smoothly.

しかしながら、このようにして得られるリチウ ム−アルミニウム合金負極は、孔のあいたアルミ ニウム板とリチウム板とを重ね合わせて合金化し たものであるため、厚みが不均一であり、薄形の いわゆるボタン形電池に適用した場合には、環状 ガスケットを締め付けて封口したときに、電池内 部での圧縮応力にむらが生じるため、正極との間 に挟まれたセパレータが強く圧着される部分でリ チウムが局所的に電析して、充放電状態が電池系 内で不均一になり、全体としての充放電特性が劣 ったものになる。 However, since the lithium-aluminum alloy negative electrode thus obtained is an alloy obtained by stacking a perforated aluminum plate and a lithium plate on top of each other, it has a non-uniform thickness and a thin so-called button. When it is applied to a battery, the compression stress inside the battery becomes uneven when the ring gasket is tightened and sealed. Is locally deposited and the charge / discharge state becomes non-uniform in the battery system, resulting in poor charge / discharge characteristics as a whole.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、このような従来技術の欠点を解 消し、薄肉小形の形状で、体積に比べて電気容量 が大きく、しかも充放電特性の優れたリチウム有 機二次電池を得るために、種々検討を重ねた結果、 負極として厚みの均一な板状のリチウム−アル ミニウム合金を用いる必要があること、限られ たスペースで、単位体積当たりの電気容量を大き くし充放電サイクル試験において内部短絡を生じ ないためには、負極中のリチウムの組成を35〜58 原子%の範囲に制御すべきこと、このような狭 い範囲の組成比にリチウム含量を制御するには、 合金化前の軟らかく加工し易いリチウム、アルミ ニウムの単体の板の厚みを管理することによって 組成比の調整を行うことが、工程的に望ましいこ とを見出して、本発明をなしたのである。 In order to solve the above-mentioned drawbacks of the prior art and to obtain a lithium organic secondary battery having a thin and compact shape, a large electric capacity compared to the volume, and excellent charge / discharge characteristics, As a result of various studies, it was necessary to use a plate-shaped lithium-aluminum alloy with a uniform thickness as the negative electrode, and in a limited space, the electric capacity per unit volume was increased to increase the internal short circuit in the charge / discharge cycle test. To prevent this, the composition of lithium in the negative electrode should be controlled in the range of 35 to 58 atomic%. To control the lithium content in such a narrow composition range, it is necessary to soften the alloy before alloying. The present invention has been made based on the finding that it is desirable in process to adjust the composition ratio by controlling the thickness of a single plate of lithium and aluminum that is easy to process.

すなわち、ボタン形電池のように、厚みが薄く かつ小形の電池では、負極の厚みが均一でないと、 前述のごとく封口したときに電池内部での圧縮応 力にむらが生じて、リチウムの局所的電析が発生 して充放電特性が低下する原因になるが、負極の 厚みが均一であると、そのようなトラブル発生が なく、また、中実な板状のリチウム−アルミニウ ム合金であるから、前記多孔質体のものに比べて 単位体積当たりの電気容量を高め得るのである。 That is, in a small and small battery such as a button-type battery, if the thickness of the negative electrode is not uniform, the compression response inside the battery becomes uneven when the negative electrode is sealed as described above, and the lithium local Electrodeposition occurs, which causes deterioration of charge and discharge characteristics.However, if the thickness of the negative electrode is uniform, such trouble does not occur, and since it is a solid plate-shaped lithium-aluminum alloy. The electric capacity per unit volume can be increased as compared with the porous body.

また、単位体積当たりの電気容量を大きくし充 放電サイクル試験において内部短絡を生じないよ うにするために、前記の要件、つまりリチウム −アルミニウム合金中のリチウムの組成を35〜58 原子%に制御することが必要であるというのは、 リチウム−アルミニウム合金を負極に用いる場合、 活物質として作用するのはリチウムであるから、 リチウムが35原子%より少なくなると、リチウム の減少により電気容量が小さくなって、負極を構 成するリチウム−アルミニウム合金の単位体積当 たりの電気容量が低下し、また、リチウムが58原 子%より多くなると、充電時にデンドライトが成 長しやすくなり、内部短絡が生じるようになるか らである。 In addition, in order to increase the electric capacity per unit volume and prevent internal short circuit during charge / discharge cycle test, the above requirement, that is, the composition of lithium in the lithium-aluminum alloy is controlled to 35 to 58 atomic%. The reason is that when a lithium-aluminum alloy is used for the negative electrode, it is lithium that acts as the active material, so when the lithium content is less than 35 atom%, the lithium content decreases and the electric capacity decreases. , If the electric capacity per unit volume of the lithium-aluminum alloy that constitutes the negative electrode decreases, and if the lithium content exceeds 58% by volume, dendrites are likely to grow during charging, causing an internal short circuit. It will be.

そして、負極の作製にあたっては、前記のよう に、リチウム板、アルミニウム板の厚みを管理す ることによって合金化することが採用されるが、 そのような合金化を電気化学的に行った場合、リ チウムの組成が48原子%より少ないと、アルミニ ウムが一部残り、リチウム−アルミニウム合金層 とアルミニウム層とになる。この場合において、 リチウム−アルミニウム合金層がセパレータ側で アルミニウム層が負極缶側に配置するようにして おくと、充電時のリチウムイオンの電気化学的合 金化反応が円滑に進行するとともに、負極側の集 電能力が高くなるので、充放電特性がより一層向 上する。 Then, in the production of the negative electrode, it is adopted to alloy by controlling the thickness of the lithium plate and the aluminum plate as described above, but when such alloying is performed electrochemically, When the composition of lithium is less than 48 atomic%, a portion of the aluminum remains, forming a lithium-aluminum alloy layer and an aluminum layer. In this case, when the lithium-aluminum alloy layer is arranged on the separator side and the aluminum layer is arranged on the negative electrode can side, the electrochemical ionization reaction of lithium ions during charging proceeds smoothly and the negative electrode side. Since the current collection capacity of the battery is increased, the charge / discharge characteristics are further improved.

負極作製にあたってのリチウムとアルミニウム との合金化は、一般的な加熱によるかまたは電解 液の存在下での電気化学的合金化によって行われ る。特に後者の電解液の存在下での電気化学的合 金化は、通常、電池内で行われるが、いずれの合 金化方法を採用する場合でも、合金化を電池外で 行い、得られたリチウム−アルミニウム合金を電 池内に充填するようにしてもよい。 The alloying of lithium and aluminum for producing the negative electrode is performed by general heating or by electrochemical alloying in the presence of an electrolytic solution. In particular, the latter electrochemical compounding in the presence of an electrolytic solution is usually performed inside the battery, but whichever method of compounding is used, alloying was performed outside the battery. The lithium-aluminum alloy may be filled in the battery.

本発明において、正極活物質は、二次電池の正 極活物質として使用可能なものであればいずれも 用い得るが、たとえば二硫化チタン(TiS2)、 二硫化モリブデン(MoS2)、三硫化モリブデン (MoS3)、二硫化鉄(FeS2)、硫化ジルコニ ウム(ZrS2)、二硫化ニオブ(NbS2)、三硫 化リンニッケル(NiPS3)、二酸化マンガン( MnO2)、ポリアニリン、バナジウムセレナイド (VSe2)などが二次電池特性が優れていること から好ましい。In the present invention, any positive electrode active material may be used as long as it can be used as a positive electrode active material of a secondary battery. For example, titanium disulfide (TiS 2 ), molybdenum disulfide (MoS 2 ), trisulfide Molybdenum (MoS 3 ), iron disulfide (FeS 2 ), zirconium sulfide (ZrS 2 ), niobium disulfide (NbS 2 ), phosphorus nickel trisulfide (NiPS 3 ), manganese dioxide (MnO 2 ), polyaniline, vanadium Selenide (VSe 2 ) and the like are preferable because they have excellent secondary battery characteristics.

電解液としては、この種の電池に通常用いられ るリチウムイオン伝導性の有機電解質溶液、たと えば1,2−ジメトキシエタン、1,2−ジエトキシ エタン、プロピレンカーボネート、γ−ブチロラ クトン、テトラヒドロフラン、2−メチルテトラ ヒドロフラン、1,3−ジオキソラン、4−メチル −1,3−ジオキソランなどの単独または2種以上 の混合溶媒に、たとえばLiClO4、LiPF6、 LiBF4、LiB(C6H5)4などの電解質を1種 または2種以上溶解した有機電解質溶液が用いら れる。また、上記有機電解質溶液中には、LiP F6などの安定性に欠ける電解質の分解を抑制す るために、ヘキサメチルホスホリックトリアミド などの安定剤を含有させてもよい。As the electrolyte, a lithium ion conductive organic electrolyte solution which is usually used in this type of battery, for example, 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, γ-butyrolactone, tetrahydrofuran, 2 -Methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane and the like alone or in a mixed solvent of two or more kinds, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 An organic electrolyte solution in which one or more kinds of electrolytes such as the above are dissolved is used. In addition, the organic electrolyte solution may contain a stabilizer such as hexamethylphosphoric triamide in order to suppress the decomposition of the electrolyte such as LiP F 6 lacking in stability.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説 明する。 Next, the present invention will be described in more detail with reference to examples.

実施例1 厚さ1mmのリチウム板をアルゴン雰囲気中に設 置された冷間圧延機を用い、圧下率76%で圧延を 行い、厚みが0.24mmのリチウム板を得た。一方、 厚さ3mmのアルミニウム板を同様の装置で圧下率 92%で圧延し、厚みが0.25mmのアルミニウム板を 得た。このようにして得られたリチウム板とアル ミニウム板とを重ね合わせ、円形に打ち抜いた後、 セパレータ、正極と共に電池内に組み込んで電解 液と接触させ、電気化学的合金化を行って負極と した。このリチウム−アルミニウム合金における リチウムとアルミニウムとの割合は、リチウムが 42.5原子%で、アルミニウムが57.5原子%である。Example 1 A lithium plate having a thickness of 0.24 mm was obtained by rolling a 1 mm-thick lithium plate at a rolling reduction of 76% using a cold rolling mill placed in an argon atmosphere. On the other hand, an aluminum plate having a thickness of 3 mm was rolled in the same apparatus at a reduction rate of 92% to obtain an aluminum plate having a thickness of 0.25 mm. The lithium plate and the aluminum plate thus obtained were superposed, punched out in a circular shape, and then assembled into a battery together with a separator and a positive electrode and brought into contact with an electrolytic solution to perform electrochemical alloying to obtain a negative electrode. . The ratio of lithium to aluminum in this lithium-aluminum alloy is 42.5 atomic% for lithium and 57.5 atomic% for aluminum.

正極には二硫化チタンを活物質とする成形合剤 を用い、電解液としては4−メチル−1,3−ジオ キソラン66.6容量%、1,2−ジメトキシエタン28 .2容量%およびヘキサメチルホスホリックトリア ミド5.2容量%からなる混合溶媒にLiPF6を 1.0mol/l溶解させた有機電解質溶液を用い、第 1図に示すボタン形リチウム有機二次電池を組み 立てた。A molding compound containing titanium disulfide as the active material was used for the positive electrode, and as the electrolyte, 66.6% by volume of 4-methyl-1,3-dioxorane, 28.2% by volume of 1,2-dimethoxyethane and hexamethylphosphine were used. A button-type lithium organic secondary battery shown in FIG. 1 was assembled using an organic electrolyte solution in which 1.0 mol / l of LiPF 6 was dissolved in a mixed solvent containing 5.2% by volume of folic triamide.

第1図において、(1)は負極缶で、この負極缶(1) はステンレス鋼製で表面にニッケルメッキが施さ れており、2はステンレス鋼製の集電網で、上記 負極缶(1)の内面にスポット溶接されている。3は 負極で、この負極3は前記のようにリチウム板3a と、アルミニウム板3bとを重ね合わせ、電池内に 組み込んで電解液と接触させ、電気化学的合金化 を行ったものである。なお、図面では理解を容易 にするために合金化が進行する前の状態を示して いるが、実際の電池では合金化が進行して図示の 状態とは異なった状態になる。たとえばリチウム が約48原子%以上では合金化により一体化してリ チウム−アルミニウム合金となって、図示のよう な境界線はなくなる。しかし、リチウムの原子比 が本実施例のように約48原子%より少ない場合に はアルミニウムが一部残り、リチウム−アルミニ ウム合金層とアルミニウム層とになる。4は微孔 性ポリプロピレンフィルムからなるセパレータで、 5はポリプロピレン不織布からなる電解液吸収体 であり、6は二硫化チタンを正極活物質とする合 剤の加圧成形体からなる正極である。7はステン レス鋼製の集電網で、8はスレンレス鋼製で表面 にニッケルメッキを施した正極缶であり、9はポ リプロピレン製の環状ガスケットである。 In FIG. 1, (1) is a negative electrode can, the negative electrode can (1) is made of stainless steel and the surface is nickel-plated, and 2 is a stainless steel collector net. It is spot welded to the inner surface of. Reference numeral 3 denotes a negative electrode, and the negative electrode 3 is obtained by stacking the lithium plate 3a and the aluminum plate 3b as described above, incorporating them into the battery, bringing them into contact with the electrolytic solution, and electrochemically alloying them. Although the drawing shows the state before alloying progresses for easier understanding, in an actual battery, alloying progresses and the state is different from that shown in the figure. For example, when the lithium content is about 48 atomic% or more, they are integrated by alloying into a lithium-aluminum alloy, and the boundary line as shown in the figure disappears. However, when the atomic ratio of lithium is less than about 48 atomic% as in the present embodiment, a portion of aluminum remains, forming a lithium-aluminum alloy layer and an aluminum layer. Reference numeral 4 is a separator made of a microporous polypropylene film, 5 is an electrolytic solution absorber made of polypropylene nonwoven fabric, and 6 is a positive electrode made of a pressure-molded body of a mixture containing titanium disulfide as a positive electrode active material. Reference numeral 7 is a stainless steel collector net, 8 is a positive electrode can made of stainless steel and the surface of which is nickel-plated, and 9 is an annular gasket made of polypropylene.

比較例1 厚み0.24mmの中実リチウム板の上に、開口率50 %、厚み0.50mmの穴あきアルミニウム板を重ね、 上記以外は実施例1と同様にしてボタン形リチウ ム有機二次電池を作製した。リチウムとアルミニ ウムとの使用割合は実施例1と同一であった。Comparative Example 1 A solid lithium plate having a thickness of 0.24 mm was overlaid with a perforated aluminum plate having an aperture ratio of 50% and a thickness of 0.50 mm, and a button type lithium organic secondary battery was used in the same manner as in Example 1 except for the above. It was made. The usage ratios of lithium and aluminum were the same as in Example 1.

上記実施例1の電池および比較例1の電池を、 1mAの定電流で0.5mAhの充放電を1.5〜2. 5Vの電圧範囲でサイクルさせた際の0.5mAh 放電終了時の電池電圧と充放電サイクル数の関係 を第2図に示す。 Battery voltage and charge / discharge at the end of 0.5 mAh discharge when the battery of Example 1 and the battery of Comparative Example 1 were cycled at a constant current of 1 mA at a charge / discharge of 0.5 mAh in a voltage range of 1.5 to 2.5 V. The relationship of the number of cycles is shown in FIG.

第2図に示すように、本発明の実施例1の電池 は、比較例1の電池に比べて、各サイクルにおけ る0.5mAh放電終了時の電池電圧が高く、また 1.5V終了で見た場合の0.5mAh放電可能なサ イクル数も多く、充放電特性が優れていることが わかる。これは実施例1の電池の負極の厚みが均 一であるためであると考えられる。つまり、比較 例1の電池では、同じ組成のリチウム−アルミニ ウム合金を負極に用いているにもかかわらず、負 極の厚みが均一でないため、環状ガスケットを締 め付けて封口したときに、電池内部での圧縮応力 にむらが生じて、リチウムの局所的電析が発生し たために充放電特性が低下したが、実施例1の電 池では、負極の厚みが均一であるため、そのよう なトラブルが発生することなく、優れた充放電特 性が発揮されたものと考えられる。 As shown in FIG. 2, the battery of Example 1 of the present invention had a higher battery voltage at the end of 0.5 mAh discharge in each cycle than the battery of Comparative Example 1, and was observed at the end of 1.5 V. In this case, the number of cycles capable of discharging 0.5 mAh is large, and it can be seen that the charge / discharge characteristics are excellent. It is considered that this is because the thickness of the negative electrode of the battery of Example 1 was uniform. That is, in the battery of Comparative Example 1, even though the lithium-aluminium alloy having the same composition was used for the negative electrode, the thickness of the negative electrode was not uniform, so when the annular gasket was tightened and sealed, the battery was The charge and discharge characteristics were deteriorated due to unevenness in the compressive stress inside and the local electrodeposition of lithium occurred. However, in the battery of Example 1, the thickness of the negative electrode was uniform, which It is considered that the excellent charge / discharge characteristics were exhibited without any trouble.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、充放電 特性の優れたボタン形リチウム有機二次電池が提 供される。 As described above, according to the present invention, a button type lithium organic secondary battery having excellent charge / discharge characteristics is provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のボタン形リチウム有機二次電 池の一実施例を示す断面図であり、第2図は本発 明の実施例1の電池と比較例1の電池の充放電サ イクルに対する0.5mAh放電終了時点の電池電 圧と充放電サイクル数との関係を示す図である。 3…負極、 3a…リチウム板、 3b…アルミニ ウム板、 4…セパレータ、 6…正極 FIG. 1 is a cross-sectional view showing an embodiment of a button type lithium organic secondary battery of the present invention, and FIG. 2 is a charge / discharge cycle of the battery of Example 1 of the present invention and the battery of Comparative Example 1. FIG. 5 is a diagram showing the relationship between the battery voltage and the number of charge / discharge cycles at the end of 0.5 mAh discharge with respect to FIG. 3 ... Negative electrode, 3a ... Lithium plate, 3b ... Aluminum plate, 4 ... Separator, 6 ... Positive electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および電解液を備えたボタ
ン形 リチウム有機二次電池において、上記負極がリ チウムとアルミニウムとからなる板で、リチウ ムの組成が35〜58原子%であることを特徴とす るボタン形リチウム有機二次電池。
1. A button type lithium organic secondary battery comprising a positive electrode, a negative electrode and an electrolytic solution, wherein the negative electrode is a plate composed of lithium and aluminum, and the lithium composition is 35 to 58 atomic%. Characteristic button type lithium organic secondary battery.
【請求項2】 負極中のリチウムの組成が35原子%以上
48 原子%未満で、負極がリチウム−アルミニウム 合金層とアルミニウム層とからなり、リチウム −アルミニウム合金層がセパレータ側に配置し ている特許請求の範囲第1項記載のボタン形リ チウム有機二次電池。
2. The composition of lithium in the negative electrode is 35 atomic% or more.
The button type lithium organic secondary battery according to claim 1, wherein the negative electrode is less than 48 atomic% and the negative electrode is composed of a lithium-aluminum alloy layer and an aluminum layer, and the lithium-aluminum alloy layer is disposed on the separator side. .
【請求項3】 正極、負極および電解液を備えたボタ
ン形 リチウム有機二次電池の製造にあたり、リチウ ム板とアルミニウム板とを、負極中のリチウム の組成比が35〜58原子%となるように厚みを調 整して重ね合わせ、合金化して負極を作製する ことを特徴とするボタン形リチウム有機二次電 池の製造方法。
3. A button type lithium organic secondary battery comprising a positive electrode, a negative electrode and an electrolytic solution, wherein a lithium plate and an aluminum plate are used so that the composition ratio of lithium in the negative electrode is 35 to 58 atomic%. A method for manufacturing a button-type lithium organic secondary battery, which is characterized in that the negative electrode is produced by adjusting the thicknesses, superimposing them, and alloying them to produce a negative electrode.
JP1066543A 1985-03-12 1989-03-18 Button type lithium organic secondary battery and method of manufacturing the same Expired - Lifetime JP2558519B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60050170A JPH0630246B2 (en) 1985-03-12 1985-03-12 Button type lithium organic secondary battery
JP1066543A JP2558519B2 (en) 1985-03-12 1989-03-18 Button type lithium organic secondary battery and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60050170A JPH0630246B2 (en) 1985-03-12 1985-03-12 Button type lithium organic secondary battery
JP1066543A JP2558519B2 (en) 1985-03-12 1989-03-18 Button type lithium organic secondary battery and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60050170A Division JPH0630246B2 (en) 1985-03-12 1985-03-12 Button type lithium organic secondary battery

Publications (2)

Publication Number Publication Date
JPH06231764A true JPH06231764A (en) 1994-08-19
JP2558519B2 JP2558519B2 (en) 1996-11-27

Family

ID=26390617

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60050170A Expired - Lifetime JPH0630246B2 (en) 1985-03-12 1985-03-12 Button type lithium organic secondary battery
JP1066543A Expired - Lifetime JP2558519B2 (en) 1985-03-12 1989-03-18 Button type lithium organic secondary battery and method of manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP60050170A Expired - Lifetime JPH0630246B2 (en) 1985-03-12 1985-03-12 Button type lithium organic secondary battery

Country Status (1)

Country Link
JP (2) JPH0630246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135011A1 (en) * 2017-01-20 2018-07-26 マクセルホールディングス株式会社 Wound-type battery

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2615328A1 (en) * 1987-05-12 1988-11-18 Bridgestone Corp ELECTRIC CELL AND MANUFACTURING METHOD
JPS63285865A (en) * 1987-05-18 1988-11-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
GB8800082D0 (en) * 1988-01-05 1988-02-10 Alcan Int Ltd Battery
JPH06231755A (en) * 1993-06-08 1994-08-19 Hitachi Maxell Ltd Button type lithium organic secondary battery and its manufacture
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
WO2001039303A1 (en) * 1999-11-23 2001-05-31 Moltech Corporation Lithium anodes for electrochemical cells
US7771870B2 (en) 2006-03-22 2010-08-10 Sion Power Corporation Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries
EP2441106A4 (en) * 2009-06-09 2014-06-11 3M Innovative Properties Co Thin film alloy electrodes
CN103947027B (en) 2011-10-13 2016-12-21 赛昂能源有限公司 Electrode structure and manufacture method thereof
WO2014071160A1 (en) 2012-11-02 2014-05-08 Sion Power Corporation Electrode active surface pretreatment
EP3192112A4 (en) 2014-09-09 2018-04-11 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
JP6964003B2 (en) 2015-05-20 2021-11-10 シオン・パワー・コーポレーション Protective layer for electrodes
US10879527B2 (en) 2016-05-20 2020-12-29 Sion Power Corporation Protective layers for electrodes and electrochemical cells
US20210391573A1 (en) 2018-10-10 2021-12-16 Sumitomo Chemical Company, Limited Anode active material for nonaqueous electrolyte secondary battery, anode, battery, and aluminum clad metal laminate
CN113948693A (en) * 2021-09-23 2022-01-18 西安交通大学 Lithium indium alloy cathode material for lithium battery and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130070A (en) * 1983-01-18 1984-07-26 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981743A (en) 1975-06-06 1976-09-21 Esb Incorporated Method of preparing a lithium-aluminum electrode
JPS5271633A (en) * 1975-12-12 1977-06-15 Hitachi Maxell Method of making nonnaqueous electrolyte batteries
US4056885A (en) * 1976-12-15 1977-11-08 Exxon Research & Engineering Co. Method of preparing lithium-aluminum alloy electrodes
JPS6053426B2 (en) * 1977-11-17 1985-11-26 住友化学工業株式会社 Primary battery using aluminum or its alloy for the negative electrode
JPS5686463A (en) * 1979-12-18 1981-07-14 Toshiba Battery Co Ltd Organic solvent battery
JPS59146157A (en) * 1983-02-07 1984-08-21 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130070A (en) * 1983-01-18 1984-07-26 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135011A1 (en) * 2017-01-20 2018-07-26 マクセルホールディングス株式会社 Wound-type battery

Also Published As

Publication number Publication date
JPH0630246B2 (en) 1994-04-20
JPS61208750A (en) 1986-09-17
JP2558519B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JPH06342673A (en) Lithium secondary battery
JPH0646578B2 (en) Non-aqueous secondary battery
JP3152307B2 (en) Lithium secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
KR20010037099A (en) Lithium secondary battery and fabrication method thereof
JPH0746602B2 (en) Method for manufacturing lithium organic secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JPH06231755A (en) Button type lithium organic secondary battery and its manufacture
JP2812943B2 (en) Organic electrolyte battery
JPS61116758A (en) Lithium battery
JPS6153828B2 (en)
JP3462647B2 (en) Non-aqueous electrolyte lithium battery and method of manufacturing the same
JPS63285878A (en) Nonaqueous secondary battery
JPS6220248A (en) Nonaqueous electrolyte secondary battery
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0773044B2 (en) Non-aqueous electrolyte secondary battery
JPS62119865A (en) Lithium secondary cell
JP2771580B2 (en) Manufacturing method of lithium alloy plate
JPS6313266A (en) Lithium secondary battery
JPS6174258A (en) Lithium organic secondary battery
JPH0467750B2 (en)
JPS6313265A (en) Lithium secondary battery
JPH10255845A (en) Nonaqueous electrolyte battery and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term