JP3081336B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3081336B2
JP3081336B2 JP04006737A JP673792A JP3081336B2 JP 3081336 B2 JP3081336 B2 JP 3081336B2 JP 04006737 A JP04006737 A JP 04006737A JP 673792 A JP673792 A JP 673792A JP 3081336 B2 JP3081336 B2 JP 3081336B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
amount
less
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04006737A
Other languages
Japanese (ja)
Other versions
JPH05190171A (en
Inventor
育朗 中根
精司 吉村
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04006737A priority Critical patent/JP3081336B2/en
Publication of JPH05190171A publication Critical patent/JPH05190171A/en
Application granted granted Critical
Publication of JP3081336B2 publication Critical patent/JP3081336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム等のアルカリ金
属、あるいはアルカリ土類金属を活物質とする負極と、
二酸化マンガン、三酸化モリブデン、五酸化バナジウ
ム、硫化チタンなどを活物質とする正極とを備えた非水
電解質二次電池に関する。
BACKGROUND OF THE INVENTION The present invention relates to a negative electrode having an active material of an alkali metal such as lithium or an alkaline earth metal,
The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode using manganese dioxide, molybdenum trioxide, vanadium pentoxide, titanium sulfide, or the like as an active material.

【0002】[0002]

【従来の技術】リチウム等のアルカリ金属、あるいはア
ルカリ土類金属を活物質とする負極と、二酸化マンガ
ン、三酸化モリブデン、五酸化バナジウム、硫化チタン
などを活物質とする正極とを備えた非水電解質二次電池
は、現在二次電池として多用されているニカド電池など
に比べ、電池容量が多いことが知られており、盛んにそ
の研究が成されており、一部実用化の域に達している。
2. Description of the Related Art A non-aqueous solution provided with a negative electrode using an alkali metal such as lithium or an alkaline earth metal as an active material and a positive electrode using manganese dioxide, molybdenum trioxide, vanadium pentoxide, titanium sulfide or the like as an active material. Electrolyte secondary batteries are known to have a larger battery capacity than nickel-cadmium batteries, which are currently widely used as secondary batteries, and have been actively studied, and some of them have reached practical use. ing.

【0003】ところがこの種電池の問題点としては、負
極活物質であるリチウムが、充電の際に負極表面に樹枝
状に成長して正極に接し、内部短絡を引き起こすために
充放電サイクルが極めて短いことが挙げられる。
However, a problem with this type of battery is that lithium as the negative electrode active material grows in a dendritic manner on the surface of the negative electrode during charging and comes into contact with the positive electrode, causing an internal short circuit. It is mentioned.

【0004】このリチウムの負極表面への樹枝状成長に
対する対策として負極をリチウム合金で構成することが
提案されている。
As a countermeasure against the dendritic growth of lithium on the surface of the negative electrode, it has been proposed to form the negative electrode from a lithium alloy.

【0005】これはリチウム単独の場合、放電によって
リチウムがイオンになって溶出すると負極表面が凹凸状
となり、その後の充電の際、リチウムが凸部に集中的に
電析して樹枝状に成長するのに対し、リチウム合金の場
合には充電時にリチウムが負極の基体となる金属と合金
を形成するように復元するため、リチウムの樹枝状成長
が抑制されるという利点を奏すためである。このような
基体となる金属としてはアルミニウム合金や、鉛、錫、
カドミウムなどの合金が提案されており、特にアルミニ
ウム中にマンガンを添加した合金を基体材料としたリチ
ウム合金を使用すればサイクル特性が優れた電池を作製
でき、実用化されている。
In the case of lithium alone, when lithium is ionized and eluted by discharging, the surface of the negative electrode becomes uneven, and during subsequent charging, lithium is intensively electrodeposited on the convex portion and grows in a dendritic manner. On the other hand, in the case of a lithium alloy, since lithium is restored to form an alloy with the metal serving as the base of the negative electrode during charging, there is an advantage that the dendritic growth of lithium is suppressed. Examples of such base metal include aluminum alloy, lead, tin, and the like.
Alloys such as cadmium have been proposed. In particular, a battery having excellent cycle characteristics can be manufactured and practically used by using a lithium alloy using an alloy obtained by adding manganese to aluminum as a base material.

【0006】[0006]

【発明が解決しようとする課題】然し乍らこの種のリチ
ウム合金を用いた電池では保存後のサイクル特性が劣化
するという新たな課題が存在することが判明した。これ
は保存によりリチウムとアルミニウムの合金が電解液と
反応してリチウム−アルミニウム合金表面に負活性皮膜
が生成し、充放電時リチウムの挿入、脱離反応を阻害す
るため負極反応が局在化し、その反応が集中して生じる
部分でリチウム−アルミニウム合金の微粉化が生じ、電
極の膨張や電極の脱落等が起きるためである。
However, it has been found that a battery using such a lithium alloy has a new problem that the cycle characteristics after storage are deteriorated. This is because the lithium-aluminum alloy reacts with the electrolyte solution during storage to form a negative active film on the surface of the lithium-aluminum alloy. This is because pulverization of the lithium-aluminum alloy occurs in a portion where the reaction is concentrated, and the electrode expands or falls off.

【0007】[0007]

【課題を解決するための手段】本発明はこのような新た
な課題に鑑みて為されたものであって、非水電解質二次
電池の負極として、アルミニウム及びマンガンに、アル
ミニウムよりも電気化学的に貴な金属、即ちバナジウ
ム、クロム、チタンから選ばれる少なくとも一種を添加
した合金から成る基体材料と、活物質であるリチウムと
を合金化したものを用いている。
SUMMARY OF THE INVENTION The present invention has been made in view of such a new problem, and has been proposed as a negative electrode of a non-aqueous electrolyte secondary battery, in which aluminum and manganese are used more electrochemically than aluminum. Noble metal , namely vanadium
Base material consisting of an alloy to which at least one selected from the group consisting of
Is used.

【0008】[0008]

【課題を解決するための手段】そして、この基体材料中
のマンガンの添加量は、0.1wt%以上、2.0wt
%以下であり、且つバナジウム、クロム、チタンより選
ばれる少なくとも一種の添加量は、0.01wt%以
上、2.0wt%以下としている。
Means for Solving the Problems The amount of manganese added to the base material is 0.1 wt% or more and 2.0 wt% or more.
%, And the amount of addition of at least one selected from vanadium, chromium, and titanium is 0.01 wt% or more and 2.0 wt% or less .

【0009】[0009]

【作用】本発明によれば、サイクル特性寿命が長く、し
かも保存後のサイクル特性にも優れた非水電解質二次電
池を得ることができる。
According to the present invention, a nonaqueous electrolyte secondary battery having a long cycle characteristic life and excellent cycle characteristics after storage can be obtained.

【0010】この理由は基体材料としてアルミニウム
特定量のマンガンとの合金を用いることによって、
極中にて活物質であるリチウムとの反応の活性点が増加
し、反応の局在化が抑制されサイクル特性が向上し、更
、特定量のバナジウム、クロム、チタンの添加効果に
より保存時に負極表面上の不活性被膜の生成を抑制す
るため、保存後のサイクル特性の劣化を抑えることがで
きたものと考えられる。またここでバナジウム、クロ
ム、チタンの添加が不活性被膜の生成を抑制する理由は
定かではないが、これらの金属が電解液とリチウムとの
反応の被毒作用があるためではなかろうか。
The reason for this is that the use of an alloy of aluminum and a specific amount of manganese as a base material makes it possible to reduce the negative effect.
In the electrode, the active point of the reaction with lithium as an active material increases, the localization of the reaction is suppressed, the cycle characteristics are improved, and a specific amount of vanadium, chromium, and titanium are added. It is considered that due to the effect , the generation of an inert film on the surface of the negative electrode during storage was suppressed, so that the deterioration of the cycle characteristics after storage could be suppressed. Further, where vanadium, chromium, although the addition of titanium why inhibiting the formation of the inactive coating is not certain, either would not by way of these metals is poisoning of the reaction between the electrolytic solution and the lithium.

【0011】[0011]

【実施例】図1は本発明に係る非水電解質二次電池の一
実施例を示す断面図であって、1は本発明の特徴とする
リチウム合金から成る負極であって、負極缶2の内底面
に固着した負極集電体3に圧着されている。4は正極で
あって、活物質としてのマンガン酸化物にアセチレンブ
ラック導電剤とフッ素樹脂結着剤とを80:10:10
(重量比)の割合で混合した合剤を成型したものであ
り、正極缶5の内底面の正極集電体6に圧接されてい
る。
FIG. 1 is a sectional view showing an embodiment of a nonaqueous electrolyte secondary battery according to the present invention. In FIG. 1, reference numeral 1 denotes a negative electrode made of a lithium alloy which is a feature of the present invention. It is pressure-bonded to the negative electrode current collector 3 fixed to the inner bottom surface. Reference numeral 4 denotes a positive electrode, which is obtained by adding a acetylene black conductive agent and a fluororesin binder to manganese oxide as an active material at 80:10:10.
It is formed by molding a mixture mixed at a ratio of (weight ratio), and is pressed against the positive electrode current collector 6 on the inner bottom surface of the positive electrode can 5.

【0012】7はポリプロピレン不織布よりなるセパレ
ータであって、このセパレータはプロピレンカーボネー
トと1.2ジメトキシエタンとの等体積混合溶媒に過塩
素酸リチウムを1モル/リットル溶解した非水電解液が
含浸されている。8は正、負極缶を電気絶縁する絶縁パ
ッキングである。尚、電池寸法は直径25mmφ、厚み
3.0mmである。
Numeral 7 is a separator made of a polypropylene nonwoven fabric. This separator is impregnated with a non-aqueous electrolyte obtained by dissolving lithium perchlorate at 1 mol / l in a mixed solvent of propylene carbonate and 1.2 dimethoxyethane in an equal volume. ing. 8 is an insulating packing for electrically insulating the positive and negative electrode cans. The dimensions of the battery were 25 mm in diameter and 3.0 mm in thickness.

【0013】次に本発明の特徴とする負極1の作成例に
ついて詳述する。
Next, an example of preparing the negative electrode 1 which is a feature of the present invention will be described in detail.

【0014】[作成例 1]アルミニウム中にマンガン
1.0wt%と、バナジウムを表1に示す量になるよう
に添加して溶融して鋳造した後、冷却して得たアルミニ
ウムのインゴットを冷間圧延し厚み0.5mmのAl−
Mn−V合金の板を作製した。
[Preparation Example 1] 1.0 wt% of manganese and vanadium were added to aluminum in an amount shown in Table 1, and the mixture was melted and cast, and then cooled to form an ingot of aluminum. Rolled and 0.5mm thick Al-
A plate of an Mn-V alloy was produced.

【0015】[0015]

【表1】 [Table 1]

【0016】斯様にして作製したAl−Mn−V合金板
を直径19mmの円盤上に打ち抜き、これを1モル/リ
ットルとなるようにLiClO4を溶解した1.3ジオ
キソラン中で電解し、200mAhの電気量に相当する
リチウムと反応させて合金化した。このようにして作製
した負極1を用いて作製した電池のうち、バナジウムV
の添加量が0.01wt%〜2.0wt%のものをそれ
ぞれ本発明電池A−1〜A−8とし、バナジウムを添加
していなもの、並びに添加量3.0wt%のものを比較
電池H−1、H−2とする。
The Al—Mn—V alloy plate thus prepared was punched out on a disk having a diameter of 19 mm, and this was electrolyzed in 1.3 dioxolane in which LiClO 4 was dissolved so as to have a concentration of 1 mol / liter, and 200 mAh And reacted with lithium corresponding to the amount of electricity of the alloy to form an alloy. Among the batteries fabricated using the anode 1 fabricated in this manner, vanadium V
Of the present invention are batteries of 0.01 wt% to 2.0 wt%, respectively, batteries of the present invention A-1 to A-8, and those of the batteries to which vanadium is not added and those of 3.0 wt% added are comparative batteries H -1, H-2.

【0017】図2にバナジウム添加量を横軸にとり、縦
軸にサイクル数をとったサイクル特性図を示す。この図
において、実線は電池組立て直後の二次電池の特性、破
線は電池組立て後、室温で1年間保存したものの特性を
それぞれ示しており、バナジウムの添加量が0.01w
t%〜2.0wt%のもの(A−1〜A−8)が優れた
サイクル特性を示すことがわかる。またバナジウムの添
加量が0.1wt%〜1.0wt%のもの(A−2〜A
−6)のものが特に優れた特性を示している。
FIG. 2 is a cycle characteristic diagram in which the abscissa represents the amount of vanadium added and the ordinate represents the number of cycles. In this figure, the solid line shows the characteristics of the secondary battery immediately after battery assembly, and the broken line shows the characteristics of the battery after storage for one year at room temperature after battery assembly.
It can be seen that those with t% to 2.0 wt% (A-1 to A-8) show excellent cycle characteristics. In addition, those containing vanadium in an amount of 0.1 wt% to 1.0 wt% (A-2 to A
-6) shows particularly excellent characteristics.

【0018】尚、この時の試験条件は放電容量12mA
hとし、充電は3mAで3.2Vを終止としている。
The test conditions at this time were a discharge capacity of 12 mA.
h, charging ends at 3.2 V at 3 mA.

【0019】[作成例 2]バナジウムの代わりにクロ
ムを使用する他は作成例1と同様にして電池を作製し
た。ここで表2に本発明電池B−1〜B−8と比較電池
H−1、H−3の負極基体材料中のクロム添加量を示
す。
[Preparation Example 2] A battery was prepared in the same manner as in Preparation Example 1, except that chromium was used instead of vanadium. Here, Table 2 shows the amount of chromium added to the negative electrode base materials of the batteries B-1 to B-8 of the present invention and the comparative batteries H-1 and H-3.

【0020】[0020]

【表2】 [Table 2]

【0021】図3にクロム添加量を横軸にとり、縦軸に
サイクル数をとったサイクル特性図を示す。この図にお
いて、実線は電池組立て直後の電池の特性、破線は室温
で1年間保存後の電池の特性をそれぞれ示しており、ク
ロムの添加量が0.01wt%〜2.0wt%の電池
(B−1〜B−8)が優れたサイクル特性を示すことが
わかる。またクロムの添加量が0.1wt%〜1.0w
t%のもの(B−2〜B−6)のものが特に優れた特性
を示している。尚、この時の試験条件は、作成例1と同
様である。
FIG. 3 is a cycle characteristic diagram in which the chromium addition amount is plotted on the horizontal axis and the cycle number is plotted on the vertical axis. In this figure, the solid line shows the characteristics of the battery immediately after battery assembly, and the broken line shows the characteristics of the battery after storage at room temperature for one year. The battery (B) containing 0.01 wt% to 2.0 wt% of chromium was added. -1 to B-8) show excellent cycle characteristics. The amount of chromium added is 0.1 wt% to 1.0 w
Those with t% (B-2 to B-6) show particularly excellent characteristics. Note that the test conditions at this time are the same as those in Preparation Example 1.

【0022】[作成例 3]バナジウムの代わりにチタ
ンを使用する他は作成例1と同様にして電池を作製し
た。ここで表3に本発明電池C−1〜C−8と比較電池
H−1、H−4の負極基体材料中のチタン添加量を示
す。
[Preparation Example 3] A battery was prepared in the same manner as in Preparation Example 1, except that titanium was used instead of vanadium. Here, Table 3 shows the amount of titanium added to the negative electrode base material of the batteries of the present invention C-1 to C-8 and the comparative batteries H-1 and H-4.

【0023】[0023]

【表3】 [Table 3]

【0024】図4にチタン添加量を横軸にとり、縦軸に
サイクル数をとったサイクル特性図を示す。この図にお
いて、実線は電池組立て直後のものの特性、破線は室温
で1年間保存後のものの特性をそれぞれ示しており、チ
タンの添加量が0.01wt%〜2.0wt%の電池
(C−1〜C−8)が優れたサイクル特性を示すことが
わかる。またチタンの添加量が0.1wt%〜1.0w
t%のもの(C−2〜C−6)のものが特に優れた特性
を示している。尚、この時の試験条件も、作成例1と同
様である。
FIG. 4 is a cycle characteristic diagram in which the amount of titanium is plotted on the horizontal axis and the number of cycles is plotted on the vertical axis. In this figure, the solid line shows the characteristics of the battery immediately after battery assembly, and the broken line shows the characteristics of the battery after storage at room temperature for one year. The battery (C-1) containing 0.01 wt% to 2.0 wt% of titanium was added. ~ C-8) show excellent cycle characteristics. The amount of titanium added is 0.1 wt% to 1.0 w
Those with t% (C-2 to C-6) show particularly excellent characteristics. Note that the test conditions at this time are the same as those in Preparation Example 1.

【0025】[作成例 4]アルミニウム中にバナジウ
ム0.5wt%と、マンガンを表4に示す量になるよう
に添加して溶融して鋳造した後、冷却して得たアルミニ
ウムのインゴットを冷間圧延し厚み0.5mmのAl−
Mn−V合金の板を作製した。
[Preparation Example 4] 0.5 wt% of vanadium and manganese were added to aluminum in an amount shown in Table 4 and then melted and cast. Rolled and 0.5mm thick Al-
A plate of an Mn-V alloy was produced.

【0026】[0026]

【表4】 [Table 4]

【0027】斯様にして作製したAl−Mn−V合金板
を直径19mmの円盤上に打ち抜き、これを1モル/リ
ットルとなるようにLiClO4を溶解した1.3ジオ
キソラン中で電解し、200mAhの電気量に相当する
リチウムと反応させて合金化した。このようにして作製
した負極1を用いて作製した電池のうち、マンガンMn
の添加量が0.01wt%〜2.0wt%のものをそれ
ぞれ本発明電池D−1〜D−8とし、マンガンを添加し
ていなもの、並びに添加量3.0wt%のものを比較電
池H−5、H−6とする。
The Al—Mn—V alloy plate thus produced was punched out on a disk having a diameter of 19 mm, and the plate was electrolyzed in 1.3 dioxolane in which LiClO 4 was dissolved so as to have a concentration of 1 mol / liter. And reacted with lithium corresponding to the amount of electricity of the alloy to form an alloy. Among the batteries manufactured using the negative electrode 1 thus manufactured, manganese Mn was used.
Batteries D-1 to D-8 according to the present invention, respectively, in which the addition amount of manganese was 0.01 wt% to 2.0 wt%. -5 and H-6.

【0028】図5にマンガン添加量を横軸にとり、縦軸
にサイクル数をとったサイクル特性図を示す。この図に
おいて、実線は電池組立て直後の二次電池の特性で、破
線は組立て後、室温で1年間保存した電池の特性をそれ
ぞれ示しており、マンガンの添加量が0.01wt%〜
2.0wt%のもの(D−1〜D−8)が優れたサイク
ル特性を示すことがわかる。またマンガンの添加量が
0.1wt%〜2.0wt%の電池(D−2〜D−8)
が特に優れた特性を示している。尚、この時の試験条件
も、作成例1の場合と同じである。
FIG. 5 is a cycle characteristic diagram in which the manganese addition amount is plotted on the horizontal axis and the cycle number is plotted on the vertical axis. In this figure, the solid line shows the characteristics of the secondary battery immediately after battery assembly, and the broken line shows the characteristics of the battery stored for 1 year at room temperature after assembly.
It can be seen that 2.0 wt% (D-1 to D-8) show excellent cycle characteristics. Batteries containing 0.1 wt% to 2.0 wt% of manganese (D-2 to D-8)
Show particularly excellent characteristics. Note that the test conditions at this time are also the same as those in the case of Preparation Example 1.

【0029】[0029]

【発明の効果】本発明は以上の説明から明らかなよう
に、非水電解質二次電池の負極として、アルミニウム及
び特定量のマンガンに、バナジウム、クロム、チタンを
特定量添加した基体材料と、活物質であるリチウムとを
合金化したものを用いているので、二次電池にとって重
要なサイクル特性が改善されており、特に電池組立てた
後に保存状態に置かれていた電池のサイクル特性が著し
く改善され、非水電解質二次電池に対する工業的価値は
極めて高い。
As is apparent from the above description, the present invention provides aluminum and aluminum as a negative electrode of a non-aqueous electrolyte secondary battery.
And a certain amount of manganese with vanadium, chromium and titanium
A base material added in a specific amount and lithium as an active material
The use of alloyed alloys has improved the cycle characteristics that are important for secondary batteries, especially the batteries that have been stored after battery assembly have been significantly improved, and the non-aqueous electrolyte secondary The industrial value for batteries is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解質二次電池の縦断面図で
ある。
FIG. 1 is a longitudinal sectional view of a non-aqueous electrolyte secondary battery according to the present invention.

【図2】本発明電池A−1〜A−8と比較電池H−1、
H−2とのサイクル特性図である。
FIG. 2 shows batteries A-1 to A-8 of the present invention and comparative battery H-1,
It is a cycle characteristic figure with H-2.

【図3】本発明電池B−1〜B−8と比較電池H−1、
H−3とのサイクル特性図である。
FIG. 3 shows batteries B-1 to B-8 of the present invention and comparative battery H-1,
It is a cycle characteristic figure with H-3.

【図4】本発明電池C−1〜C−8と比較電池H−1、
H−4とのサイクル特性図である。
FIG. 4 shows the present batteries C-1 to C-8 and a comparative battery H-1,
It is a cycle characteristic figure with H-4.

【図5】本発明電池D−1〜D−8と比較電池H−5、
H−6とのサイクル特性図である。
FIG. 5 shows the batteries D-1 to D-8 of the present invention and a comparative battery H-5.
It is a cycle characteristic figure with H-6.

【符号の説明】[Explanation of symbols]

1 負極 4 正極 7 セパレータ 1 Negative electrode 4 Positive electrode 7 Separator

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−16551(JP,A) 特開 昭64−86451(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/46 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-16551 (JP, A) JP-A-64-86451 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/02 H01M 4/46 H01M 10/40

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(1) 充放電可能な正極と、非水電解質と、負Chargeable and dischargeable positive electrode, non-aqueous electrolyte, negative
極とを備えた非水電解質二次電池であって、前記負極A non-aqueous electrolyte secondary battery comprising:
は、アルミニウムとマンガンとバナジウムとからなる合Is a composite of aluminum, manganese, and vanadium.
金の基体材料と、活物質であるリチウムとを合金化したAlloyed gold base material and lithium as active material
ものから成り、前記基体材料中の前記マンガンの添加量And the amount of manganese in the base material
が0.1wt%以上、2.0wt%以下であり、前記基Is 0.1 wt% or more and 2.0 wt% or less,
体材料中の前記バナジウムの添加量が0.01wt%以The amount of vanadium added in the body material is 0.01 wt% or less.
上、2.0wt%以下であることを特徴とする非水電解Non-aqueous electrolysis characterized by being 2.0 wt% or less
質二次電池。Quality rechargeable battery.
【請求項2】(2) 前記バナジウムの添加量が、0.1wtThe amount of the vanadium added is 0.1 wt.
%以上、1.0wt%以下であることを特徴とする請求% Or more and 1.0 wt% or less.
項1記載の非水電解質二次電池。Item 2. The non-aqueous electrolyte secondary battery according to Item 1.
【請求項3】(3) 充放電可能な正極と、非水電解質と、負Chargeable and dischargeable positive electrode, non-aqueous electrolyte, negative
極とを備えた非水電解質二次電池であって、前記負極A non-aqueous electrolyte secondary battery comprising:
は、アルミニウムとマンガンとクロムとからなる合金のIs an alloy of aluminum, manganese and chromium
基体材料と、活物質であるリチウムとを合金化したものAlloyed base material and lithium as active material
から成り、前記基体材料中の前記マンガンの添加量がAnd the amount of manganese added in the base material is
0.1wt%以上、2.0wt%以下であり、前記基体0.1 wt% or more and 2.0 wt% or less, wherein the substrate
材料中の前記クロムの添加量が0.01wt%以上、The amount of the chromium in the material is 0.01 wt% or more;
2.0wt%以下であることを特徴とする非水電解質二A non-aqueous electrolyte having a content of 2.0 wt% or less;
次電池。Next battery.
【請求項4】(4) 前記クロムの添加量が、0.1wt%以The chromium addition amount is 0.1 wt% or less.
上、1.0wt%以下であることを特徴とする請求項34. The composition according to claim 3, wherein the content is 1.0 wt% or less.
記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to the above.
【請求項5】(5) 充放電可能な正極と、非水電解質と、負Chargeable and dischargeable positive electrode, non-aqueous electrolyte, negative
極とを備えた非水電解質二次電池であって、前記負極A non-aqueous electrolyte secondary battery comprising:
は、アルミニウムとマンガンとチタンとからなる合金のIs an alloy of aluminum, manganese and titanium
基体材料と、活物質であるリチウムとを合金化したものAlloyed base material and lithium as active material
から成り、前記基体材料中の前記マンガンの添加量がAnd the amount of manganese added in the base material is
0.1wt%以上、2.0wt%以下であり、前記基体0.1 wt% or more and 2.0 wt% or less, wherein the substrate
材料中の前記チタンの添加量が0.01wt%以上、The amount of titanium in the material is 0.01 wt% or more;
2.0wt%以下であることを特徴とする非水電解質二A non-aqueous electrolyte having a content of 2.0 wt% or less;
次電池。Next battery.
【請求項6】6. 前記チタンの添加量が、0.1wt%以The amount of titanium added is 0.1 wt% or less.
上、1.0wt%以下であることを特徴とする請求項56. The amount is not more than 1.0 wt%.
記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to the above.
【請求項7】7. 前記負極が、前記基体材料と活物質であThe negative electrode comprises the base material and the active material.
るリチウムとで電気化学的に反応させて作製されたことProduced by electrochemical reaction with lithium
を特徴とする請求項1〜6に記載の非水電解質二次電The non-aqueous electrolyte secondary battery according to any one of claims 1 to 6,
池。pond.
JP04006737A 1992-01-17 1992-01-17 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3081336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04006737A JP3081336B2 (en) 1992-01-17 1992-01-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04006737A JP3081336B2 (en) 1992-01-17 1992-01-17 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05190171A JPH05190171A (en) 1993-07-30
JP3081336B2 true JP3081336B2 (en) 2000-08-28

Family

ID=11646535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04006737A Expired - Fee Related JP3081336B2 (en) 1992-01-17 1992-01-17 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3081336B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690517B1 (en) * 1994-05-30 2003-10-01 Canon Kabushiki Kaisha Rechargeable lithium battery
KR100243830B1 (en) 1994-05-30 2000-02-01 미다라이 후지오 Rechargeable battery
EP0693792B1 (en) * 1994-07-19 2003-01-08 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
JP3717085B2 (en) * 1994-10-21 2005-11-16 キヤノン株式会社 Negative electrode for secondary battery, secondary battery having the negative electrode, and method for producing electrode
JP3347555B2 (en) * 1994-12-01 2002-11-20 キヤノン株式会社 Method for manufacturing negative electrode of lithium secondary battery
JP3227080B2 (en) * 1994-12-02 2001-11-12 キヤノン株式会社 Lithium secondary battery
JP3048899B2 (en) * 1995-09-06 2000-06-05 キヤノン株式会社 Lithium secondary battery
US5728482B1 (en) * 1995-12-22 1999-11-09 Canon Kk Secondary battery and method for manufacturing the same
CA2228095C (en) 1997-01-28 2002-01-08 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and process for the production of said electrode structural body and said rechargeable battery
US6517974B1 (en) 1998-01-30 2003-02-11 Canon Kabushiki Kaisha Lithium secondary battery and method of manufacturing the lithium secondary battery
JP3620703B2 (en) 1998-09-18 2005-02-16 キヤノン株式会社 Negative electrode material for secondary battery, electrode structure, secondary battery, and production method thereof
EP1033767B9 (en) 1998-09-18 2010-09-01 Canon Kabushiki Kaisha Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
TW521451B (en) 2000-03-13 2003-02-21 Canon Kk Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode

Also Published As

Publication number Publication date
JPH05190171A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US4002492A (en) Rechargeable lithium-aluminum anode
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP3066126B2 (en) Non-aqueous electrolyte battery
JPH07176323A (en) Electrolytic solution and negative electrode for li secondary battery
JPH05101846A (en) Non-aqueous electrolytic secondary battery
JP3081336B2 (en) Non-aqueous electrolyte secondary battery
US4316777A (en) Rechargeable nonaqueous silver alloy anode cell
USH723H (en) Lithium electrochemical cell containing diethylcarbonate as an electrolyte solvent additive
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
EP0139756B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JP2001250541A (en) Nonaqueous electrolyte secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
JP3512114B2 (en) Organic electrolyte for organic electrolyte battery and organic electrolyte battery using the same
JP3157152B2 (en) Non-aqueous electrolyte battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPH01274359A (en) Nonaqueous electrolyte secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPH09171839A (en) Secondary battery having nonaqueous solvent electrolyte
JP2567674B2 (en) Non-aqueous electrolyte secondary battery
JPS61179063A (en) Lithium secondary battery
JPH0441471B2 (en)
JPH0935716A (en) Lithium battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees