JPH0210666A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0210666A
JPH0210666A JP63161573A JP16157388A JPH0210666A JP H0210666 A JPH0210666 A JP H0210666A JP 63161573 A JP63161573 A JP 63161573A JP 16157388 A JP16157388 A JP 16157388A JP H0210666 A JPH0210666 A JP H0210666A
Authority
JP
Japan
Prior art keywords
carbonate
lithium
aqueous electrolyte
dec
dmc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63161573A
Other languages
Japanese (ja)
Other versions
JP2701327B2 (en
Inventor
Hiromi Okuno
奥野 博美
Hide Koshina
秀 越名
Nobuo Eda
江田 信夫
Yukio Nishikawa
幸雄 西川
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63161573A priority Critical patent/JP2701327B2/en
Publication of JPH0210666A publication Critical patent/JPH0210666A/en
Application granted granted Critical
Publication of JP2701327B2 publication Critical patent/JP2701327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase charge-discharge efficiency by adding a specified amount of chain carbonate to a nonaqueous electrolyte containing propylene carbonate. CONSTITUTION:As the chain carbonate, at least one of dimethyl carbonate(DMC) and diethyl carbonate(DEC) is used. The adding ratio of DMC to propylene carbonate(PC) is 0.1-0.4 by volume, and that of DEC is 0.2-0.7 by volume. A negative electrode is made of an alloy capable of absorbing and desorbing lithium ions or metallic lithium. By adding DMC and/or DEC, the contact of deposited lithium with PC in an electrolyte is prevented, and charge-discharge efficiency is increased. The chain carbonate is represented by indicated formulas and an example of charge-discharge efficiency is shown in tables.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池に関し、特にその電解液
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to non-aqueous electrolyte secondary batteries, and particularly to improvements in the electrolyte thereof.

従来の技術 従来、この種の非水電解液電池は、高電圧・高エネルギ
ー密度を有し、かつ貯蔵性、耐漏液性などの信頼性にす
ぐれるため、広く民生用電子機器の電源に用いられてい
る。また、最近ではこの電池を二次電池化する試みが盛
んである。二次電池は負極にリチウム合金あるいは金属
リチウム、正極には負極から溶出したリチウムイオンを
収納できる反応席をもった、結晶構造が層状あるいはト
ンネル構造を有する遷移金属の酸化物やカルコゲン化合
物が検討されており、充放電リチウムイオンが電解液を
介し正極、負極の間を移動する。電解液については、−
次電池においてプロピレンカーボネートが、その支持塩
をよく溶かし、リチウムに対し安定で、しかも放電特性
に優れるという性質からリチウム/二酸化マンガン、リ
チウム/酸化銅電池などの一次電池で広く用いられてい
る。
Conventional technology Conventionally, this type of non-aqueous electrolyte battery has been widely used as a power source for consumer electronic devices because it has high voltage and high energy density, and has excellent reliability such as storage performance and leakage resistance. It is being Recently, there have been many attempts to convert this battery into a secondary battery. For secondary batteries, the negative electrode is a lithium alloy or metallic lithium, and the positive electrode is a transition metal oxide or chalcogen compound that has a layered or tunnel crystal structure and has a reaction site that can store lithium ions eluted from the negative electrode. The charging and discharging lithium ions move between the positive and negative electrodes via the electrolyte. Regarding the electrolyte, −
In secondary batteries, propylene carbonate is widely used in primary batteries such as lithium/manganese dioxide and lithium/copper oxide batteries because it dissolves its supporting salt well, is stable against lithium, and has excellent discharge characteristics.

発明が解決しようとする課題 このように−次電池では優れた電解液であるプロピレン
カーボネートであるが、二次電池の電解液として用いる
場合、確かに充電効率はほぼ100チの値を示すが、充
放電効率(放電容量÷充電容量)は約60〜60%と低
い。
Problems to be Solved by the Invention As described above, propylene carbonate is an excellent electrolyte for secondary batteries, but when used as an electrolyte for secondary batteries, the charging efficiency certainly shows a value of approximately 100 cm. The charge/discharge efficiency (discharge capacity/charge capacity) is as low as about 60 to 60%.

これは多くの文献などに示されているように、電析した
活性なリチウムとプロピレンカーボネートとが反応して
プロピレンカーボネートが分解するためである。このた
め、二次電池には用りがだい。
This is because, as shown in many literatures, the electrodeposited active lithium reacts with propylene carbonate and the propylene carbonate decomposes. For this reason, secondary batteries are of little use.

その反応は次に示す式に従って起こる。The reaction occurs according to the equation shown below.

まり負[にリチウム−アルミニウム合金などのリチウム
合金を用いた場合でも同じことがおこるといえる。
The same thing can be said to occur even when a lithium alloy such as a lithium-aluminum alloy is used for the negative electrode.

本発明にはこのような従来の問題点を解消し、電解液中
のプロピレンカーボネートと電析する活性なリチウムと
の接触を妨げ、プロピレンカーボネートの分解忙よるガ
ス発生を抑制して二次電池としての実使用にたえること
ができるようにすることを目的とするものである。
The present invention solves these conventional problems, prevents contact between propylene carbonate in the electrolyte and active lithium to be electrodeposited, and suppresses gas generation due to the decomposition of propylene carbonate, thereby making it possible to use it as a secondary battery. The purpose is to make it suitable for practical use.

課題を解決するための手段 そこで、本発明は、プロピレンカーボネートを含む非水
電解液にジメチルカーボネート、ジエチルカーボネート
のうちの少なくとも1つを添加したものである。
Means for Solving the Problems According to the present invention, at least one of dimethyl carbonate and diethyl carbonate is added to a non-aqueous electrolyte containing propylene carbonate.

作  用 このように電解液にジエチルカーボネート、ジの エチルカーボネートのうぢ少なくとも1つを添加するこ
とにより、電析リチウムと電解液中のプロピレンカーボ
ネートとの接触を妨げ、充放電効率を上げることができ
ることとなる。
Effect: By adding at least one of diethyl carbonate and di-ethyl carbonate to the electrolytic solution in this way, it is possible to prevent contact between the electrodeposited lithium and propylene carbonate in the electrolytic solution, thereby increasing the charging and discharging efficiency. It becomes possible.

実施例 以下、本発明の一実施例を、図面とともに説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は実施例に用いたコイン形二次電池の断面図であ
る。図で1は耐食性ステンレス製のケース、2は同じ材
質の封口板、3は封口板2の内面にヌボット溶接したニ
ッケルのグリッド、4はリチウム−アルミニウム合金(
リチウム80M量%)で、直径15廖、厚さ0.24r
tmのディスク状に打ち抜いた負極活物質であシ、ニッ
ケルグリッド3に固着されている。6はポリプロピレン
製のセパレータである。6は正極で、市販の電解二酸化
マンガンを大気中において35C)Cで5時間熱処理し
たもの100重量部に導電材としてカーボンブラック1
ON量部とフッ素樹脂結着剤10重量部を混合し、その
o、1oyを直径16M、厚さ0.7閣に成型したもの
である。
FIG. 1 is a sectional view of a coin-shaped secondary battery used in an example. In the figure, 1 is a case made of corrosion-resistant stainless steel, 2 is a sealing plate made of the same material, 3 is a nickel grid welded to the inner surface of the sealing plate 2, and 4 is a lithium-aluminum alloy (
Lithium (80M amount%), diameter 15 Liao, thickness 0.24r
The negative electrode active material is punched out into a disk shape of TM and is fixed to a nickel grid 3. 6 is a separator made of polypropylene. Reference numeral 6 is a positive electrode, in which 100 parts by weight of commercially available electrolytic manganese dioxide was heat-treated at 35 C) in the atmosphere for 5 hours, and 1 part carbon black was added as a conductive material.
Parts of ON and 10 parts by weight of a fluororesin binder were mixed, and the mixture was molded to have a diameter of 16M and a thickness of 0.7mm.

電解液はプロピレンカーボネ−1−(PC)、ジメトキ
ンエクン(DME)の二種に加え、ジメチルカーボネー
ト(DMC)、  ジエチルカーボネート(DEC)の
少なくともいずれかひとつから成る混合溶媒に過塩素酸
リチウムを1モlし/lの濃度に溶解したものを用いた
が、添加剤(ジメチルカーボネート、ジエチルカーボネ
ート〕の効果を調べるため、次の■〜0に示す11種類
の溶媒をそれぞれ用いたコイン形電池を作製し、それぞ
れの電池について充放電試験を行った。
The electrolyte is a mixed solvent consisting of propylene carbonate (PC), dimethquinequine (DME), and at least one of dimethyl carbonate (DMC) and diethyl carbonate (DEC), and one portion of lithium perchlorate. To investigate the effect of additives (dimethyl carbonate, diethyl carbonate), we used coin-shaped batteries using each of the 11 types of solvents shown in (1) to (0) below. A charging and discharging test was conducted on each battery.

■ スタンダード:PC:DME=50:50(容量混
合比)■ PC:DMC:DME=45 : 5 : 
6jO■ PC:DMC:DME=40: 1o:ts
■ Standard: PC: DME = 50:50 (capacity mixing ratio) ■ PC: DMC: DME = 45: 5:
6jO■ PC:DMC:DME=40: 1o:ts
.

■ PC:DMC:DME=35:15:50■ PC
:DMC:DME=30:20:50■ PC:DMC
:DME−25:25:50以上DMC添加グループと
する。
■ PC:DMC:DME=35:15:50■ PC
:DMC:DME=30:20:50■ PC:DMC
:DME-25: 25:50 or more DMC addition group.

■ PC:DEC:DME=45:5:50■ PC:
DEC:DME=40:10:50■ PC:DEC:
DME=35:15:50Q  PC:DEC:DME
−30:20:50@  PC:DEC:DME=25
:25:50以上DEC添加グループとする。
■ PC:DEC:DME=45:5:50■ PC:
DEC:DME=40:10:50■ PC:DEC:
DME=35:15:50Q PC:DEC:DME
-30:20:50@PC:DEC:DME=25
: 25:50 or more DEC addition group.

電解液を封口板内に注液後、上記の正極6を載置し、7
のポリプロピレン製ガスケットとともにかしめ、封口し
た。
After pouring the electrolyte into the sealing plate, place the above positive electrode 6, and
It was caulked and sealed with a polypropylene gasket.

これらの電池を20℃で2mA で充電が3.90V、
放電が2.OVまでの範囲で充放電試験を行った。
Charging these batteries at 20°C with 2mA is 3.90V,
The discharge is 2. A charge/discharge test was conducted in the range up to OV.

このときのそれぞれの電池の5サイクル目の充放電効率
を第2図に示す。又、11種類の電池について、2つの
グループ(DMC添加、DEC添加)に分け、電解液中
の溶媒成分の容積比、添加した鎖状カーボネートとPC
のモル比、電池の充放電効率を以下の表1に示す。電池
にはA−にのアルファベット名を便宜上つけた。
The charging and discharging efficiency of each battery at this time in the 5th cycle is shown in FIG. In addition, the 11 types of batteries were divided into two groups (DMC addition, DEC addition), and the volume ratio of the solvent component in the electrolyte, the added chain carbonate and PC
The molar ratio of and charge/discharge efficiency of the battery are shown in Table 1 below. For convenience, the batteries were given alphabetical names A-.

以上の実施例において第2図から明らかなようにDMC
の添加量は電解液全量の6〜16%の範囲、言い換えれ
ばPCに対するモル比が0.1〜0.4の範囲で充放電
効率は比較的高い値を示す。
In the above embodiment, as is clear from FIG.
The charge/discharge efficiency shows a relatively high value when the amount of addition is in the range of 6 to 16% of the total amount of the electrolyte, in other words, the molar ratio to PC is in the range of 0.1 to 0.4.

これは添加しない場合に比べ放電容量が増加したためで
ある。又、DECを添加した場合にも電解液全量に対し
添加率が10〜20容量% 、PCに対するモル比が約
0.15〜0.6の範囲で放電容量の増加による充放電
効率のアップが見られた。これらの結果に対する考察を
以下に示す。
This is because the discharge capacity increased compared to the case without addition. Furthermore, when DEC is added, the charging and discharging efficiency can be improved by increasing the discharge capacity when the addition rate is 10 to 20% by volume based on the total amount of electrolyte and the molar ratio to PC is in the range of about 0.15 to 0.6. It was seen. A discussion of these results is shown below.

DMC,DECはそれぞれ次の様な構造を持つ鎖状カー
ボネートである。
DMC and DEC are chain carbonates each having the following structure.

DMC(ジメチルカーボネート) DEC(ジエチルカーボネート) リチウムとジメチルカーボネートの反応からはリチウム
メタノキシド、リチウムとジエチルカーボネートからは
リチウムエタノキシドが生成される。それらのりチウム
アルコキシドがリチウム表面上を膜状に被い、そのため
電析した活性なリチウムとプロピレンカーボネートの反
応を阻止していると考えられる。
DMC (dimethyl carbonate) DEC (diethyl carbonate) Lithium methanoxide is generated from the reaction of lithium and dimethyl carbonate, and lithium ethanoxide is generated from the reaction of lithium and diethyl carbonate. It is thought that these lithium alkoxides form a film on the lithium surface, thereby preventing the reaction between the electrodeposited active lithium and propylene carbonate.

発明の効果 以上のように本発明によれば、プロピレンカーボネート
を含む非水電解液にジメチルカーボネートヲプロピレン
カーポネートに対して体積比で0.1〜0.4の割合で
添加するか、もしくはジエチルカーボネートをプロピレ
ンカーボネートに対して体積比で0.2〜0.7の割合
で添加した非水電解液電池を構成することによシ、プロ
ピレンカーボネートと電析した活性なリチウムとの反応
を防止し、充放電効率を向上するという優れた結果が得
られる。
Effects of the Invention As described above, according to the present invention, dimethyl carbonate is added to a nonaqueous electrolyte containing propylene carbonate at a volume ratio of 0.1 to 0.4 to propylene carbonate, or diethyl By configuring a non-aqueous electrolyte battery in which carbonate is added to propylene carbonate at a volume ratio of 0.2 to 0.7, the reaction between propylene carbonate and electrodeposited active lithium can be prevented. , an excellent result of improving charging and discharging efficiency can be obtained.

なお、実施例では正極活物質に二酸化マンガンを用いた
が、他の例えば、クロム酸化物(Cr3o8゜Cr 2
05など)、三硫化モリブデン、酸化バナジウム(V2
O3,V6O13,V3O8)、二硫化チタン。
In the examples, manganese dioxide was used as the positive electrode active material, but other materials such as chromium oxide (Cr3o8゜Cr2
05, etc.), molybdenum trisulfide, vanadium oxide (V2
O3, V6O13, V3O8), titanium disulfide.

オキシリンItWA 、 硫化バナジウム(v2S15
)。
Oxyrin ItWA, vanadium sulfide (v2S15
).

Limn0  などであってもよい。It may be Limn0 or the like.

又、負極活物質にはりチウム−アルミニウム合金を用い
たが、リチウムとアルシミニウム以外トの合金や、純金
属リチウムであってもよい。
Further, although a lithium-aluminum alloy is used as the negative electrode active material, an alloy of lithium and other materials other than aluminum or pure metal lithium may be used.

又、電解液の溶質に過塩素酸リチウムを用いたが、これ
もL z A s F e 、 L I CF s S
 Os 、L I B F 4 。
In addition, lithium perchlorate was used as the solute of the electrolytic solution, but this also
Os, L I B F 4 .

L I A I C14などであってもよい。It may be LI A I C14 or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるコイン形電池の断面図
、第2図は11種類の電池のそれぞれの5サイクル目の
充放電効率を示す図である。 1・・・・・・ケース、2・・・・・・封口板、3・・
・・・・ニッケルのグリッド、4・・・・・・リチウム
−アルミニウム合金、5・・・・・・セパレータ、6・
・・・・・正極、7・・・・・・ガスケット。
FIG. 1 is a cross-sectional view of a coin-shaped battery in an example of the present invention, and FIG. 2 is a diagram showing the charging/discharging efficiency of each of 11 types of batteries at the fifth cycle. 1... Case, 2... Sealing plate, 3...
... Nickel grid, 4 ... Lithium-aluminum alloy, 5 ... Separator, 6.
...Positive electrode, 7...Gasket.

Claims (3)

【特許請求の範囲】[Claims] (1)リチウムイオンを吸蔵、放出できる合金、あるい
は金属リチウムからなる負極と、プロピレンカーボネー
トを含む非水電解液と、正極とを備え、上記非水電解液
に鎖状カーボネートを添加した非水電解液二次電池。
(1) A non-aqueous electrolyte comprising a negative electrode made of an alloy or metallic lithium that can absorb and release lithium ions, a non-aqueous electrolyte containing propylene carbonate, and a positive electrode, and a chain carbonate added to the non-aqueous electrolyte. Liquid secondary battery.
(2)非水電解液に添加する鎖状カーボネートが、ジメ
チルカーボネート、ジエチルカーボネートのうち少なく
とも1つである特許請求の範囲第1項記載の非水電解液
二次電池。
(2) The non-aqueous electrolyte secondary battery according to claim 1, wherein the chain carbonate added to the non-aqueous electrolyte is at least one of dimethyl carbonate and diethyl carbonate.
(3)非水電解液に添加する鎖状カーボネートのうち、
ジメチルカーボネートの添加率がプロピレンカーボネー
トに対して体積比で0.1〜0.4の割合、もしくはジ
エチルカーボネートの添加率がプロピレンカーボネート
に対して体積比で0.2〜0.7の割合である特許請求
の範囲第1項又は第2項に記載の非水電解液二次電池。
(3) Among the chain carbonates added to the non-aqueous electrolyte,
The addition rate of dimethyl carbonate is 0.1 to 0.4 in volume ratio to propylene carbonate, or the addition rate of diethyl carbonate is 0.2 to 0.7 in volume ratio to propylene carbonate. A non-aqueous electrolyte secondary battery according to claim 1 or 2.
JP63161573A 1988-06-29 1988-06-29 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2701327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63161573A JP2701327B2 (en) 1988-06-29 1988-06-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63161573A JP2701327B2 (en) 1988-06-29 1988-06-29 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0210666A true JPH0210666A (en) 1990-01-16
JP2701327B2 JP2701327B2 (en) 1998-01-21

Family

ID=15737681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63161573A Expired - Lifetime JP2701327B2 (en) 1988-06-29 1988-06-29 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2701327B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014205A1 (en) * 1992-12-04 1994-06-23 Sony Corporation Secondary cell of nonaqueous electrolyte
US5437945A (en) * 1993-03-19 1995-08-01 Sony Corporation Secondary battery having non-aqueous electrolyte
EP0696077A2 (en) 1994-07-07 1996-02-07 Mitsui Petrochemical Industries, Ltd. Non-aqueous electrolyte solutions and secondary cells comprising the same
US5639575A (en) * 1992-12-04 1997-06-17 Sony Corporation Non-aqueous liquid electrolyte secondary battery
US6291108B1 (en) 1989-12-12 2001-09-18 Sanyo Electric Co., Ltd. Non-aqueous electrolyte cell
JP2008218326A (en) * 2007-03-07 2008-09-18 Nec Corp Electric storage device
US8771881B2 (en) 2008-05-21 2014-07-08 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
WO2021108995A1 (en) * 2019-12-03 2021-06-10 宁德时代新能源科技股份有限公司 Secondary battery, electrolyte, and device containing secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) * 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) * 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291108B1 (en) 1989-12-12 2001-09-18 Sanyo Electric Co., Ltd. Non-aqueous electrolyte cell
WO1994014205A1 (en) * 1992-12-04 1994-06-23 Sony Corporation Secondary cell of nonaqueous electrolyte
US5639575A (en) * 1992-12-04 1997-06-17 Sony Corporation Non-aqueous liquid electrolyte secondary battery
US5437945A (en) * 1993-03-19 1995-08-01 Sony Corporation Secondary battery having non-aqueous electrolyte
EP0696077A2 (en) 1994-07-07 1996-02-07 Mitsui Petrochemical Industries, Ltd. Non-aqueous electrolyte solutions and secondary cells comprising the same
EP0696077A3 (en) * 1994-07-07 1996-05-08 Mitsui Petrochemical Ind Non-aqueous electrolyte solutions and secondary cells comprising the same
JP2008218326A (en) * 2007-03-07 2008-09-18 Nec Corp Electric storage device
US8771881B2 (en) 2008-05-21 2014-07-08 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
US9368834B2 (en) 2008-05-21 2016-06-14 Samsung Sdi Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
WO2021108995A1 (en) * 2019-12-03 2021-06-10 宁德时代新能源科技股份有限公司 Secondary battery, electrolyte, and device containing secondary battery
CN113207318A (en) * 2019-12-03 2021-08-03 宁德时代新能源科技股份有限公司 Secondary battery, electrolyte and device comprising the same
US11735775B2 (en) 2019-12-03 2023-08-22 Contemporary Amperex Technology Co., Limited Secondary battery, electrolyte, and apparatus comprising the secondary battery

Also Published As

Publication number Publication date
JP2701327B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
US6274271B1 (en) Non-aqueous electrolyte lithium secondary battery
JP3187929B2 (en) Lithium secondary battery
JP2001167791A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JPS63102173A (en) Lithium secondary battery
KR101017305B1 (en) Nonaqueous electrolyte battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH11260400A (en) Nonaqueous electrolyte secondary battery
JPH1027626A (en) Lithium secondary battery
JPH07153495A (en) Secondary battery
JPH0210666A (en) Nonaqueous electrolyte secondary battery
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP2003282147A (en) Lithium ion secondary battery
JPH08241731A (en) Organic electrolytic secondary battery
JPH04171674A (en) Nonaqueous-electrolyte secondary battery
JPH11273726A (en) Nonaqueous electrolyte secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPH0636799A (en) Lithium secondary battery
JPH04332483A (en) Nonaqueous electrolyte secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JP2004071340A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPH0714572A (en) Secondary battery
JPH0554913A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11