JPH05234583A - Negative electrode for lithium secondary battery and lithium secondary battery using it - Google Patents

Negative electrode for lithium secondary battery and lithium secondary battery using it

Info

Publication number
JPH05234583A
JPH05234583A JP4037542A JP3754292A JPH05234583A JP H05234583 A JPH05234583 A JP H05234583A JP 4037542 A JP4037542 A JP 4037542A JP 3754292 A JP3754292 A JP 3754292A JP H05234583 A JPH05234583 A JP H05234583A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
lithium secondary
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4037542A
Other languages
Japanese (ja)
Inventor
Akihiro Mabuchi
昭弘 馬淵
Yoshiteru Nakagawa
喜照 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP4037542A priority Critical patent/JPH05234583A/en
Publication of JPH05234583A publication Critical patent/JPH05234583A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a cycle characteristic with co-intercalation prevented by desolvation by making a carbon member, coated with a metallic thin film including metal capable of alloying with lithium, a carrier of negative electrode active material. CONSTITUTION:One part by weight of dispersion type polytetrafluoroethylene is added to 99 parts by weight of milled graphitized carbon fiber to make a uniform paste state. This paste is pressed into a nickel mesh and dried, and then an aluminum thin film is formed on a surface by fused salt electrolysis of AlCl3. Lithium is stored in this aluminum thin film to make a negative electrode body 1, and electrolysis manganese dioxide as a positive electrode body 2, propylene carbonate, in which LiClO4 is melted to a density of 1mol/l, as an electrolyte, a propylene nonwoven fabric as a separator 3, moreover a case 4, a sealing plate 5, and insulating packing 6 are used to manufacture a lithium secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池用負
極およびそれを構成要素とするリチウム二次電池、さら
に詳しくは、エネルギー密度・放電特性・サイクル特性
に優れたリチウム二次電池用の負極およびそれを構成要
素とするリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery having the negative electrode for the lithium secondary battery, and more specifically, a lithium secondary battery having excellent energy density, discharge characteristics and cycle characteristics. The present invention relates to a negative electrode and a lithium secondary battery including the negative electrode.

【0002】[0002]

【従来の技術】負極活物質としてリチウム、正極活物質
として金属カルコゲン化物、金属酸化物を用い、電解液
として非プロトン性有機溶媒に種々の塩を溶解させたも
のを用いた、いわゆるリチウム二次電池は高エネルギー
密度型二次電池の一種として注目され、盛んに研究が行
われている。
2. Description of the Related Art A so-called lithium secondary battery using lithium as a negative electrode active material, a metal chalcogenide or a metal oxide as a positive electrode active material, and an electrolyte prepared by dissolving various salts in an aprotic organic solvent. Batteries have attracted attention as a type of high energy density secondary battery and are being actively researched.

【0003】しかしながら、従来のリチウム電池では、
負極活物質としてのリチウムは箔状の如き単体で用いら
れることが多く、充放電を繰り返すうちに、樹枝状リチ
ウムが析出して両極が短絡するため充放電のサイクル寿
命が短いという欠点を有する。
However, in the conventional lithium battery,
Lithium as a negative electrode active material is often used as a simple substance such as a foil, and has a drawback that the cycle life of charge / discharge is short because dendritic lithium is deposited and both electrodes are short-circuited during repeated charge / discharge.

【0004】そこで、アルミニウムや、鉛、カドミウム
及びインジウムを含む可融性合金を用い、充電時にリチ
ウムを合金として析出させ、放電時には合金からリチウ
ムを溶解させる方法が提案されている[米国特許第40
0249号(1977)参照]。しかし、このような方法
では、樹枝状リチウムの折出は抑止できるが、エネルギ
ー密度は低下する。
Therefore, a method has been proposed in which a fusible alloy containing aluminum, lead, cadmium and indium is used to deposit lithium as an alloy during charging and to dissolve lithium from the alloy during discharging [US Pat. No. 40.
0249 (1977)]. However, such a method can suppress the protrusion of dendritic lithium, but lowers the energy density.

【0005】さらに、放電容量を向上させることを目的
に、リチウムをカーボン材に担持させようという試みも
種々行われている。例えば、種々の繊維状、あるいは粉
末状のカーボン材を用いる試みがなされている[東芝電
池および三菱油化共願の特開昭63−114056号
(1988)、三菱瓦斯化学出願の特開昭62−2680
56号(1987)参照]。
Further, various attempts have been made to support lithium on a carbon material for the purpose of improving discharge capacity. For example, attempts have been made to use various fibrous or powdery carbon materials [Toshiba Battery and Mitsubishi Petrochemical Co-Application No. 63-114056.
(1988), Japanese Patent Application Laid-Open No. 62-2680 filed by Mitsubishi Gas Chemical Co., Ltd.
56 (1987)].

【0006】[0006]

【発明が解決しようとする課題】しかしながら、カーボ
ン材をリチウムの担持体とした負極を用いた従来のリチ
ウム二次電池では、溶媒和力の大きな有機溶媒を電解液
に使用した場合に、リチウムイオンが溶媒和された状態
でいわゆるカーボン層間にインターカレーション(コイ
ンターカレーション)し、その結果、カーボン層が損傷
を受けたり破壊するなどして、サイクル特性の急速な劣
化を引き起こすという問題生じていた。従って、この点
の改良が要望されていた。
However, in a conventional lithium secondary battery using a negative electrode in which a carbon material is a lithium carrier, a lithium ion is used when an organic solvent having a large solvation power is used as an electrolytic solution. Has been solvated, so-called intercalation between carbon layers (co-intercalation), resulting in damage or destruction of the carbon layer, causing rapid deterioration of cycle characteristics. .. Therefore, improvement of this point has been demanded.

【0007】[0007]

【課題を解決するための手段】かかる事情に鑑み、本発
明者らは、鋭意研究を重ねた結果、負極活物質担持体と
してのカーボン材の表面を特定の金属を含む金属薄膜で
コーティングすることにより、意外にも前記コインター
カレーションを防止できることを見出し、本発明を完成
するに至った。
In view of the above circumstances, the inventors of the present invention have conducted extensive studies, and as a result, coated the surface of a carbon material as a negative electrode active material carrier with a metal thin film containing a specific metal. As a result, it was surprisingly found that the co-intercalation can be prevented, and the present invention has been completed.

【0008】即ち、本発明は、リチウムと合金化可能な
金属を含む金属薄膜でコーティングしたカーボン材を負
極活物質の担持体として用いたことを特徴とするリチウ
ム二次電池用負極を提供するものである。
That is, the present invention provides a negative electrode for a lithium secondary battery, characterized in that a carbon material coated with a metal thin film containing a metal capable of alloying with lithium is used as a carrier for a negative electrode active material. Is.

【0009】まず、本発明のリチウム二次電池用負極で
使用するカーボン材は特に限定されるものではなく、従
来より負極活物質たるリチウムの担持体として用いられ
てきたいずれの種類のものも使用できる。また、その形
態としては、例えば、粉末、繊維状、フィルム状等、お
よびこれらを単一であるいは複合物として成形したもの
などが挙げられる。
First, the carbon material used in the negative electrode for a lithium secondary battery of the present invention is not particularly limited, and any kind of carbon material conventionally used as a carrier for lithium as a negative electrode active material may be used. it can. Examples of the form include powder, fiber, film, and the like, and those formed by molding these alone or as a composite.

【0010】本発明では、かかるカーボン材の表面を金
属薄膜でコーティングする。この金属薄膜はリチウムと
可融性の、換言すれば、リチウムと合金化可能な金属を
含むものであり、そのような合金化可能な金属の単体ま
たはそれらのみを成分とする合金あるいはそれらを主成
分とする合金が該当する。ことに、結晶格子中における
リチウムの易動度の観点より、アルミニウムを含む金属
薄膜が好ましい。
In the present invention, the surface of the carbon material is coated with a metal thin film. This metal thin film contains a metal that is fusible with lithium, in other words, a metal that can be alloyed with lithium, and a simple substance of such an alloyable metal, an alloy containing only these metals, or a main component thereof. The alloy used as a component is applicable. In particular, a metal thin film containing aluminum is preferable from the viewpoint of the mobility of lithium in the crystal lattice.

【0011】コーティングを行なう段階としては、粉体
や繊維状等の原料段階のカーボン材に施してもよく、あ
るいは賦形された状態やさらに電極にまで加工された状
態で行ってもよい。作業性等の観点からは、賦形後ある
いは加工後に行なうのが便利である。
The step of coating may be performed on a carbon material in a raw material stage such as powder or fibrous material, or may be performed in a shaped state or further processed into an electrode. From the viewpoint of workability, it is convenient to carry out after shaping or processing.

【0012】コーティングの方法としては、例えば、化
学メッキ法、電気化学メッキ法等の湿式法や、真空蒸着
法、陰極スパッタリング法、イオンプレーティング法等
の乾式法などが適用できる。例えば、賦形後カーボン材
あるいは加工後のカーボン材の場合には、電気化学メッ
キ法の一つである溶融塩電解法が適用できる。なお、金
属薄膜の厚さは、カーボン材の種類やコーティング法等
にもよるが、通常、0.01〜1μmの範囲の厚さが好
ましい。
As a coating method, for example, a wet method such as a chemical plating method or an electrochemical plating method, or a dry method such as a vacuum deposition method, a cathode sputtering method or an ion plating method can be applied. For example, in the case of a carbon material after shaping or a carbon material after processing, a molten salt electrolysis method which is one of electrochemical plating methods can be applied. The thickness of the metal thin film is preferably in the range of 0.01 to 1 μm, although it depends on the type of carbon material and the coating method.

【0013】コーティングを施した原料カーボン材また
は賦形後カーボン材を使用し、常法に従って電極に形成
・加工し、あるいは加工後電極にコーティングを施した
後、カーボン材にリチウムを担持させることによって本
発明のリチウム二次電池用負極を得ることができる。カ
ーボン材にリチウムを担持させる方法としては、例え
ば、カーボン電極と金属リチウムを電解液中で短絡させ
るという方法がある。
By using a coated carbon material or a shaped carbon material, an electrode is formed and processed according to a conventional method, or after the processed electrode is coated, the carbon material is loaded with lithium. The negative electrode for lithium secondary batteries of the present invention can be obtained. As a method of supporting lithium on the carbon material, for example, there is a method of short-circuiting the carbon electrode and metallic lithium in the electrolytic solution.

【0014】かくして得られる本発明のリチウム二次電
池用負極は、リチウム二次電池の構成要素として好適に
用いられ、プロピレンカーボネート、エチレンカーボネ
ート、γ−ブチロラクトン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、ジオキソラン、4−メチル
ジオキサラン、スルホラン、アセトニトリル等の電解
液、MnO2、V25等の正極と組み合わせて、常法に
より、二次電池を作成することができる。かかるリチウ
ム二次電池も本発明の範囲内のものであり、ポータブル
電子機器等の電源、その他各種メモリーやソーラーのバ
ックアップ等に好適に使用することができる。
The thus obtained negative electrode for a lithium secondary battery of the present invention is suitably used as a constituent element of a lithium secondary battery, and includes propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran and 2-
A secondary battery can be prepared by a conventional method in combination with an electrolytic solution such as methyltetrahydrofuran, dioxolane, 4-methyldioxalane, sulfolane or acetonitrile, and a positive electrode such as MnO 2 or V 2 O 5 . Such a lithium secondary battery is also within the scope of the present invention, and can be suitably used as a power source for portable electronic devices and the like, backup of various memories and solars, and the like.

【0015】本発明においては、前記したごとく、カー
ボン材の表面にリチウムと合金化可能な金属を含む金属
薄膜をコーティングすることにより、充電時に電極表面
のリチウムイオンがまず金属薄膜と反応して合金化し、
その際にリチウムイオンに溶媒和していた有機溶媒が脱
離し、その後金属薄膜内を拡散したリチウムイオンのみ
がカーボン材に吸蔵される。その結果、インターカレー
ションが防がれ、インターカレーションに基づくカーボ
ン層の損傷・破損あるいはサイクル特性の急激な劣化と
いった性能劣化が回避される。
In the present invention, as described above, by coating the surface of the carbon material with a metal thin film containing a metal capable of alloying with lithium, lithium ions on the electrode surface first react with the metal thin film during charging, and the alloy is formed. Turned into
At that time, the organic solvent solvated with lithium ions is desorbed, and only the lithium ions diffused in the metal thin film are occluded in the carbon material. As a result, intercalation is prevented, and performance deterioration such as damage / damage to the carbon layer or rapid deterioration of cycle characteristics due to intercalation is avoided.

【0016】[0016]

【実施例】以下に実施例を挙げて本発明をさらに詳しく
説明する。負極体の作成 黒鉛化炭素繊維(ドナック(株)製、SG−241)のミ
ルド(0.1mm長)99重量部、ディスパージョンタイプ
のポリテトラフルオロエチレン(ダイキン工業(株)
製、D−1)1重量部を混合し、液相で均一に撹拌した
後、乾燥し、ペースト状とした。この負極物質2〜3mg
をニッケルメッシュに圧着させ、さらに、200℃で6
時間の真空乾燥を行った。得られた電極をカソード、炭
素電極をアノードとし、650℃の恒温槽で浴電圧1.
8Vを印加するAlCl3の溶融塩電解によりカソード電
極表面にアルミニウム薄膜を生成させた。得られた負極
体を作用極として、対極及び参照極にリチウム金属を用
いて、電位が0Vになるまで負極体にリチウムを吸蔵さ
せた。この条件(電解液、電流密度等)は、後記電池特性
の測定の条件と同様にして行った。
EXAMPLES The present invention will be described in more detail with reference to the following examples. Preparation of negative electrode body 99 parts by weight of graphitized carbon fiber (SG-241 manufactured by Donac Co., Ltd.) milled (0.1 mm length), dispersion type polytetrafluoroethylene (Daikin Industries, Ltd.)
Manufactured by D-1) was mixed with 1 part by weight, and the mixture was uniformly stirred in the liquid phase and then dried to obtain a paste. 2-3 mg of this negative electrode material
Is crimped onto a nickel mesh and further at 200 ° C for 6
Vacuum dried for an hour. The obtained electrode was used as the cathode and the carbon electrode was used as the anode, and the bath voltage was 1.50 in a constant temperature bath at 650 ° C.
An aluminum thin film was formed on the surface of the cathode electrode by molten salt electrolysis of AlCl 3 applying 8V. Using the obtained negative electrode body as a working electrode, lithium metal was used for the counter electrode and the reference electrode, and lithium was stored in the negative electrode body until the potential became 0V. The conditions (electrolyte, current density, etc.) were the same as the conditions for measuring battery characteristics described later.

【0017】電池の作成 図1にその断面図を示すごとく、前記で得られた負極体
(1)の他、正極体(2)として電解二酸化マンガン、
電解液として1モル/リットルの濃度にLiClO4を溶
解させたプロピレンカーボネート、セパレータ(3)と
してポリプロピレン不織布、さらにケース(4)、封口
板(5)および絶縁パッキング(6)を用いてリチウム
二次電池を作成した。
Preparation of Battery As shown in the sectional view of FIG. 1, in addition to the negative electrode body (1) obtained above, electrolytic manganese dioxide as a positive electrode body (2),
Using a propylene carbonate in which LiClO 4 is dissolved at a concentration of 1 mol / liter as an electrolytic solution, a polypropylene nonwoven fabric as a separator (3), a case (4), a sealing plate (5) and an insulating packing (6), a lithium secondary I made a battery.

【0018】電池特性の測定 本発明の負極を用いた前記リチウム二次電池の放電特性
を測定した。測定は、通常、50mA/g(負極カーボン
基準)の定電流充放電下で行い、放電容量は、電池電圧
が2.0Vに低下するまでの容量とした。対照として、
未処理の上記黒鉛化炭素繊維を構成要素とする従来の負
極を用いたリチウム二次電池についても同条件下で測定
を行った。結果を表1に示す。
Measurement of Battery Characteristics The discharge characteristics of the lithium secondary battery using the negative electrode of the present invention were measured. The measurement was usually performed under a constant current charge / discharge of 50 mA / g (negative electrode carbon standard), and the discharge capacity was the capacity until the battery voltage dropped to 2.0V. As a control
A lithium secondary battery using a conventional negative electrode having the untreated graphitized carbon fiber as a constituent element was also measured under the same conditions. The results are shown in Table 1.

【表1】 表1から明らかなごとく、金属コーティングを施さない
従来の負極を用いたリチウム二次電池と比較して、本発
明の負極を用いたリチウム二次電池は、コインターカレ
ーションに基づくとみられるサイクル特性の劣化が見ら
れず、従来にない優れたサイクル特性を有することが判
明した。
[Table 1] As is clear from Table 1, the lithium secondary battery using the negative electrode of the present invention has a cycle characteristic which is considered to be based on co-intercalation, as compared with the lithium secondary battery using the conventional negative electrode without metal coating. It was found that no deterioration was observed and that it had excellent cycle characteristics that were unprecedented.

【0019】[0019]

【発明の効果】本発明により、脱溶媒和によりコインタ
ーカレーションが防止でき、サイクル特性に優れた高性
能なリチウム二次電池およびそのための負極が提供され
る。
EFFECTS OF THE INVENTION The present invention provides a high-performance lithium secondary battery which can prevent co-intercalation by desolvation and has excellent cycle characteristics, and a negative electrode therefor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例で作成した本発明の負極を用いたリチ
ウム二次電池の断面図である。
FIG. 1 is a cross-sectional view of a lithium secondary battery using the negative electrode of the present invention prepared in an example.

【符号の説明】[Explanation of symbols]

1:負極、2:正極、3:セパレータ、4:ケース、
5:封口板、6:絶縁パッキング
1: negative electrode, 2: positive electrode, 3: separator, 4: case,
5: Sealing plate, 6: Insulation packing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムと合金化可能な金属を含む金属
薄膜でコーティングしたカーボン材を負極活物質の担持
体として用いたことを特徴とするリチウム二次電池用負
極。
1. A negative electrode for a lithium secondary battery, wherein a carbon material coated with a metal thin film containing a metal capable of alloying with lithium is used as a carrier for a negative electrode active material.
【請求項2】 リチウムと合金化可能な該金属がアルミ
ニウムであることを特徴とする請求項1記載のリチウム
二次電池用負極。
2. The negative electrode for a lithium secondary battery according to claim 1, wherein the metal capable of alloying with lithium is aluminum.
【請求項3】 請求項1記載の負極を構成要素としたこ
とを特徴とするリチウム二次電池。
3. A lithium secondary battery comprising the negative electrode according to claim 1 as a constituent element.
JP4037542A 1992-02-25 1992-02-25 Negative electrode for lithium secondary battery and lithium secondary battery using it Pending JPH05234583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4037542A JPH05234583A (en) 1992-02-25 1992-02-25 Negative electrode for lithium secondary battery and lithium secondary battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4037542A JPH05234583A (en) 1992-02-25 1992-02-25 Negative electrode for lithium secondary battery and lithium secondary battery using it

Publications (1)

Publication Number Publication Date
JPH05234583A true JPH05234583A (en) 1993-09-10

Family

ID=12500413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4037542A Pending JPH05234583A (en) 1992-02-25 1992-02-25 Negative electrode for lithium secondary battery and lithium secondary battery using it

Country Status (1)

Country Link
JP (1) JPH05234583A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082567A1 (en) * 2001-04-09 2002-10-17 Sony Corporation Negative electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the negative electrode
KR100378013B1 (en) * 1999-09-28 2003-03-29 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
JP2004192829A (en) * 2002-12-06 2004-07-08 Nec Corp Secondary battery
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
US7163768B2 (en) 2002-08-29 2007-01-16 Nec Corporation Electrolyte solution for secondary battery and secondary battery using the same
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US7662519B2 (en) 2003-09-16 2010-02-16 Nec Corporation Non-aqueous electrolyte secondary battery
US8227116B2 (en) 2003-12-15 2012-07-24 Nec Corporation Secondary battery
US8357471B2 (en) 2003-12-15 2013-01-22 Nec Corporation Secondary battery using an electrolyte solution
CN112563604A (en) * 2020-12-09 2021-03-26 中南大学 Method for regenerating anode material of waste lithium ion battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378013B1 (en) * 1999-09-28 2003-03-29 삼성에스디아이 주식회사 A anode material for lithium secondary battery, an electrode for lithium secondary battery, a lithium secondary battery and the method of preparing anode material for lithium secondary battery
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
US9450245B2 (en) 2001-04-09 2016-09-20 Sony Corporation Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material
US9972831B2 (en) 2001-04-09 2018-05-15 Murata Manufacturing Co., Ltd Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material
WO2002082567A1 (en) * 2001-04-09 2002-10-17 Sony Corporation Negative electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using the negative electrode
US7163768B2 (en) 2002-08-29 2007-01-16 Nec Corporation Electrolyte solution for secondary battery and secondary battery using the same
JP2004192829A (en) * 2002-12-06 2004-07-08 Nec Corp Secondary battery
JP4677706B2 (en) * 2002-12-06 2011-04-27 日本電気株式会社 Secondary battery
US7662519B2 (en) 2003-09-16 2010-02-16 Nec Corporation Non-aqueous electrolyte secondary battery
US8227116B2 (en) 2003-12-15 2012-07-24 Nec Corporation Secondary battery
US8445144B2 (en) 2003-12-15 2013-05-21 Nec Corporation Additive for an electrolyte solution for an electrochemical device
US9012071B2 (en) 2003-12-15 2015-04-21 Nec Corporation Electrolyte solution for a secondary battery
US8357471B2 (en) 2003-12-15 2013-01-22 Nec Corporation Secondary battery using an electrolyte solution
US8455142B2 (en) 2008-04-07 2013-06-04 Nec Energy Devices, Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
CN112563604A (en) * 2020-12-09 2021-03-26 中南大学 Method for regenerating anode material of waste lithium ion battery

Similar Documents

Publication Publication Date Title
US10553899B2 (en) Battery including a polyether-based organic solid electrolyte
Zhao et al. In situ formation of highly controllable and stable Na 3 PS 4 as a protective layer for Na metal anode
JP2949180B2 (en) Negative electrode for lithium secondary battery
US11699783B2 (en) Protective layers for metal electrode batteries
US20210013555A1 (en) Lithium replenishing rechargeable batteries
JPH11135148A (en) Organic electrolyte and lithium secondary battery using the same
WO2019230322A1 (en) Negative electrode for lithium ion secondary battery
JPH0636800A (en) Lithium secondary battery
JPH05234583A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
KR100404733B1 (en) Current collector coated with metal, electrodes comprising it, and lithium batteries comprising the electrodes
JPH06310126A (en) Nonaquous electrolytic secondary battery
KR101858933B1 (en) Heterogeneous metal nanowire electrode and preparing method thereof
JPH0456079A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof
JPH04248276A (en) Lithium secondary battery
WO2021179220A1 (en) Anode pole piece, battery using same, and electronic device
KR102356639B1 (en) Non-aqueous electrolyte solutions for rechargeable battery, non-aqueous electrolyte rechargeable battery having the same
JPH07282846A (en) Nonaqueous electrolytic battery
EP4037031B1 (en) Secondary battery
JP3680835B2 (en) Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte
US20220376249A1 (en) Secondary battery
JP4379267B2 (en) Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte
JP3108238B2 (en) Non-aqueous electrolyte battery
JPS61294756A (en) Organic electrolyte battery
Sörgel Electrodeposited Dendrite-Free, Nano-Columnar 3D Lithium Anodes and Their Application in Lithium Sulfur Batteries with 3D Sulfur Cathodes.
JPH10255854A (en) Charging-discharging method of nonaqueous electrolyte secondary battery