JPS61276904A - Production of fine silver particle - Google Patents

Production of fine silver particle

Info

Publication number
JPS61276904A
JPS61276904A JP11799785A JP11799785A JPS61276904A JP S61276904 A JPS61276904 A JP S61276904A JP 11799785 A JP11799785 A JP 11799785A JP 11799785 A JP11799785 A JP 11799785A JP S61276904 A JPS61276904 A JP S61276904A
Authority
JP
Japan
Prior art keywords
soln
particle size
silver nitrate
silver
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11799785A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP11799785A priority Critical patent/JPS61276904A/en
Publication of JPS61276904A publication Critical patent/JPS61276904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce fine silver particles having a narrow particle size distribution when an ammoniac silver nitrate complex soln. is reduced in a hydrophobic reaction vessel to produce silver particles, by adding an anionic surfactant to the reactive soln. CONSTITUTION:An aqueous glucose soln. is poured into a reaction vessel whose inside is kept hydrophobic by oil coating or other method, and 'Surflon S-112(R)' as an anionic surfactant is added to the soln. and stirred. An aqueous ammonia soln. is added to an aqueous silver nitrate soln. to prepare an ammoniac silver nitrate complex soln., and this soln. is slowly added to the soln. in the reaction vessel to reduce the silver nitrate complex with the glucose as a reducing agent. Singly dispersed fine silver particles having a narrow particle size distribution are obtd. without causing flocculation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細な銀粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fine silver particles.

(従来技術とその問題点) 従来、銀微粒子の製造方法としては疎水性反応槽内で還
元剤としてフトウ糖を用いてアンモニア性硝酸銀錯体溶
液をjW元する方法が用いられてきた。
(Prior Art and its Problems) Conventionally, as a method for producing fine silver particles, a method has been used in which an ammoniacal silver nitrate complex solution is converted to jW using futose as a reducing agent in a hydrophobic reaction tank.

ところが、この方法は析出した微粒子同志か引き寄せ合
って凝集し粒度分布の幅の広い銀粒子しか1すられない
という欠点を有していた。
However, this method has the disadvantage that the precipitated fine particles attract each other and aggregate, resulting in only one silver particle having a wide particle size distribution.

(発明の目的) 本発明心、を上記の欠点を解消せんがためになされたも
のであり、分散した粒度分布の幅の狭い微IIな銀粒子
の製造方法を提供・U゛んとするものである。
(Objective of the Invention) The present invention has been made to solve the above-mentioned drawbacks, and it is an object of the present invention to provide a method for producing fine silver particles having a narrow dispersed particle size distribution. It is.

(問題点を解決するための手段) 本発明は疎水性反応槽内て還元剤を用いて、アンモニア
性硝酸銀114′体溶液を還元して銀微粒子を製造する
方法において、反応溶液中にアニオン系界面活性剤を添
加することによって重分1&した銀微粒子を得ることを
特徴とするものである。
(Means for Solving the Problems) The present invention provides a method for producing silver fine particles by reducing an ammoniacal silver nitrate 114' solution using a reducing agent in a hydrophobic reaction tank. This method is characterized in that fine silver particles with a polymerization ratio of 1> are obtained by adding a surfactant.

而して本発明の製造方法において反応槽内面を疎水性に
保つ理由は、親水性の場合、析出反応か容器の壁で起き
るため、凝集した粒度分布の幅の広い銀粒子しか得られ
ないが、反応槽内面を疎水性に保つことGこよって析出
反応を水溶液中で均一に起こすことができるようになる
からである。
In the production method of the present invention, the reason why the inner surface of the reaction tank is kept hydrophobic is that in the case of hydrophilicity, a precipitation reaction occurs on the wall of the container, so only aggregated silver particles with a wide particle size distribution are obtained. However, by keeping the inner surface of the reaction tank hydrophobic, the precipitation reaction can occur uniformly in the aqueous solution.

また、反応溶液中にアニオン系界面活性剤を添加する理
由し才、アンモニア性硝酸銀銘体熔液を還元することに
よって、水?容液中に析出した銀微粒子が凝集しないで
単分散状態を保つよ・うにするたlす) めである。
In addition, the reason for adding an anionic surfactant into the reaction solution is that by reducing the ammoniacal silver nitrate solution, water can be removed. This is to ensure that the fine silver particles precipitated in the solution do not aggregate and maintain a monodisperse state.

本発明において反応槽内面を疎水性に保つ方法としては
、オイルコーティング、界面活性剤コーティング、テフ
ロンコーティング等であり、反応溶液中に添加するアニ
オン系界面活性剤としてはサーフロンS−111、サー
フロンS−112、サーフロンS−113等である。
In the present invention, methods for keeping the inner surface of the reaction tank hydrophobic include oil coating, surfactant coating, Teflon coating, etc. Examples of anionic surfactants added to the reaction solution include Surflon S-111 and Surflon S. -112, Surflon S-113, etc.

ここで、本発明の実施例について説明する。Examples of the present invention will now be described.

(実施例1) ブドウ糖50 gを50°Cの水300mffに溶解し
、この溶液にアニオン系界面活性剤サーフロンS−11
2を0.5 m e添加してテフロンコーティングした
ビーカー中で攪拌しておく。また、別のビーカーで硝酸
銀10gを20mρの水に熔解し、これに28%アンモ
ニア水8’ m Rを加えてアンモニア性硝酸銀錯体)
容液とし、これを先のブドウ1ljj→−・す゛−フロ
ンS−112溶液中に徐々に添加する。
(Example 1) 50 g of glucose was dissolved in 300 mff of water at 50°C, and the anionic surfactant Surflon S-11 was added to this solution.
Add 0.5 m e of 2 and stir in a Teflon-coated beaker. In addition, in a separate beaker, 10 g of silver nitrate was dissolved in 20 mρ of water, and 8' mR of 28% ammonia water was added to this to form an ammoniacal silver nitrate complex).
This is made into a liquid and gradually added to the above-mentioned Grape 1ljj→-・Su゛-Flon S-112 solution.

得られた銀微粒子はデカンテーションにより充分に水で
洗浄して、粒度分布III定及び電子顕微鏡観察を行な
った。
The obtained fine silver particles were thoroughly washed with water by decantation, and the particle size distribution III was determined and observed using an electron microscope.

その結果、この銀微粒子ば平均粒径0.85!zmで%
j3度分布は図のように幅の狭いもので、形状しよほぼ
球形で81′L分散したものであった。
As a result, the average particle size of these silver particles was 0.85! % in zm
As shown in the figure, the j3 degree distribution was narrow, almost spherical in shape, and distributed over 81'L.

(実施例2) ブドウ!J7i 100 gを50°Cの水500mI
fに溶解し、この溶液にアニオン系界面活性剤、サーフ
ロンS−111を1.2mβ添加してシリコーンオイル
コーティングしたヒーツ−の中で攪拌しておく。また、
別のビーカー中で硝酸125gを50mnの水に溶解し
、これに28%アンモニア水20mβを加えてアンモニ
ア性硝酸銀錯体溶液とし、これを先のブドウ抛+ザーフ
ロンS−111溶液中に徐々に添加する。得られた銀微
粒子はデカンテーションにより充分に水で洗浄して、粒
度分布測定及び電子顕微鏡観察を行った。
(Example 2) Grapes! 100 g of J7i in 500 mI of water at 50°C
To this solution was added 1.2 mβ of an anionic surfactant, Surflon S-111, and the mixture was stirred in a silicone oil-coated heat. Also,
Dissolve 125 g of nitric acid in 50 mn of water in a separate beaker, add 20 mβ of 28% ammonia water to make an ammoniacal silver nitrate complex solution, and gradually add this to the above-mentioned Buko + Zarfron S-111 solution. . The obtained silver particles were thoroughly washed with water by decantation, and subjected to particle size distribution measurement and electron microscopy observation.

その結果、この銀微粒子は平均粒径1.7 It mで
、粒度分布は図のように幅の広い凝集したものであった
As a result, the silver fine particles had an average particle size of 1.7 m, and the particle size distribution was agglomerated with a wide width as shown in the figure.

(従来例) ブドウ糖70gを50°Cの水400mρに溶解し、こ
のン容ン&をテフロンコーティングしたビーカー中で攪
拌しておく。また別のビーカー中で硝酸↑艮15gを3
0mρの水に?容解し、これに28%アンモニア水13
mffを加えてアンモニア性硝酸1艮↑IYイ木ン容ン
夜とし、これを先のフ゛ドウ1店?容液中に徐々に添加
する。得られた銀粒子はデカンテーションにより充分に
水で洗浄して、粒度分布測定及び電子顕微鏡観察を行っ
た。
(Conventional example) 70 g of glucose was dissolved in 400 mρ of water at 50°C, and the solution was stirred in a Teflon-coated beaker. In another beaker, add 15 g of nitric acid ↑
In water of 0 mρ? Dissolve and add 28% ammonia water 13
Add mff to 1 ammonia nitric acid ↑ IY wood tonne and add this to the previous feed 1 store? Add gradually to the solution. The obtained silver particles were thoroughly washed with water by decantation, and subjected to particle size distribution measurement and electron microscopic observation.

その結果、この銀粒子は平均粒径5.2μmで粒度分布
は図のように幅の広い凝集したものであった。
As a result, the silver particles were agglomerated with an average particle size of 5.2 μm and a wide particle size distribution as shown in the figure.

(発明の効果) ′ 上記の説明で明らかなように本発明の製造方法は疎水性
反応槽内で還元剤を使用して、アンモニア性硝酸銀錯体
溶液を還元して銀微粒子を製造する方法に於いて、反応
溶液中にアニオン系界面活性剤を添加することにより、
従来法では得られなかった単分散した粒度分布の狭い微
細な銀粒子を製造できるので、従来の製造法にとって代
わることのできる画期的なものと言える。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention is a method for producing silver fine particles by reducing an ammoniacal silver nitrate complex solution using a reducing agent in a hydrophobic reaction tank. By adding an anionic surfactant to the reaction solution,
Since it is possible to produce fine, monodisperse silver particles with a narrow particle size distribution that could not be obtained using conventional methods, it can be said to be an epoch-making method that can replace conventional production methods.

【図面の簡単な説明】[Brief explanation of drawings]

図は光透過式粒度分布測定装置を用いて各銀微粒子の粒
度分布を測定した結果を横軸に粒径、31イ軸に累積パ
ーセントを取って示したものである。
The figure shows the results of measuring the particle size distribution of each fine silver particle using a light transmission type particle size distribution measuring device, with the horizontal axis representing the particle size and the i-axis representing the cumulative percentage.

Claims (1)

【特許請求の範囲】[Claims] 疎水性反応槽内で還元剤を用いてアンモニア性硝酸銀錯
体溶液を還元して銀微粒子を製造する方法に於いて、反
応溶液中にアニオン系界面活性剤を添加することによっ
て単分散した銀微粒子を得ることを特徴とする銀微粒子
の製造方法。
In a method for producing silver fine particles by reducing an ammoniacal silver nitrate complex solution using a reducing agent in a hydrophobic reaction tank, monodispersed silver fine particles are produced by adding an anionic surfactant to the reaction solution. A method for producing fine silver particles, characterized in that:
JP11799785A 1985-05-31 1985-05-31 Production of fine silver particle Pending JPS61276904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11799785A JPS61276904A (en) 1985-05-31 1985-05-31 Production of fine silver particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11799785A JPS61276904A (en) 1985-05-31 1985-05-31 Production of fine silver particle

Publications (1)

Publication Number Publication Date
JPS61276904A true JPS61276904A (en) 1986-12-06

Family

ID=14725482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11799785A Pending JPS61276904A (en) 1985-05-31 1985-05-31 Production of fine silver particle

Country Status (1)

Country Link
JP (1) JPS61276904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660058B1 (en) * 2000-08-22 2003-12-09 Nanopros, Inc. Preparation of silver and silver alloyed nanoparticles in surfactant solutions
WO2019088506A1 (en) * 2017-10-30 2019-05-09 엘에스니꼬동제련 주식회사 Surface-treated silver powder and preparation method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660058B1 (en) * 2000-08-22 2003-12-09 Nanopros, Inc. Preparation of silver and silver alloyed nanoparticles in surfactant solutions
WO2019088506A1 (en) * 2017-10-30 2019-05-09 엘에스니꼬동제련 주식회사 Surface-treated silver powder and preparation method therefor

Similar Documents

Publication Publication Date Title
Shankar et al. Synthesis of gold nanospheres and nanotriangles by the Turkevich approach
Pal et al. Hierarchical Au–CuO nanocomposite from redox transformation reaction for surface enhanced Raman scattering and clock reaction
Li et al. Synthesis and stability evaluation of size-controlled gold nanoparticles via nonionic fluorosurfactant-assisted hydrogen peroxide reduction
CN100388393C (en) Method for producing naon-magnetic liquid
JPS63307206A (en) Production of fine silver particles
JPS61276904A (en) Production of fine silver particle
JPS61276905A (en) Production of fine silver particle
JPS61243105A (en) Production of pulverous silver particles
JPH0920903A (en) Production of monodisperse gold grain powder
JPS61276906A (en) Production of fine silver particle
JPS63186803A (en) Production of fine copper particles
CN108405871A (en) It is a kind of that the method for sub-micron metal ball particle and its application in lubricating oil are prepared based on laser ablation method
CN102020975B (en) Preparation method of magnesium aluminum alloy surface chemically mechanical polishing solution
JPS63186805A (en) Production of fine copper particles
JPS63293107A (en) Production of gold particle
JPS61223110A (en) Production of ultrafine silver particle
JPS6277408A (en) Production of fine copper particles
JPH0211707A (en) Production of silver fine particle
JPS6277406A (en) Production of fine copper particle
US1429876A (en) Colloidal solution and method of preparing same
JPS63186812A (en) Production of fine copper particles
JPS63186808A (en) Production of fine copper particles
JPS6277407A (en) Production of fine copper particles
JPS6227508A (en) Production of fine copper particle
JPH01290706A (en) Production of fine copper powder