JPH01290706A - Production of fine copper powder - Google Patents

Production of fine copper powder

Info

Publication number
JPH01290706A
JPH01290706A JP12036188A JP12036188A JPH01290706A JP H01290706 A JPH01290706 A JP H01290706A JP 12036188 A JP12036188 A JP 12036188A JP 12036188 A JP12036188 A JP 12036188A JP H01290706 A JPH01290706 A JP H01290706A
Authority
JP
Japan
Prior art keywords
powder
copper
copper oxide
hydrazine
polyhydric alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12036188A
Other languages
Japanese (ja)
Other versions
JPH0784605B2 (en
Inventor
Masayoshi Yoshitake
正義 吉武
Toyohiko Sugito
杉戸 豊彦
Shigeru Kito
木藤 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP12036188A priority Critical patent/JPH0784605B2/en
Publication of JPH01290706A publication Critical patent/JPH01290706A/en
Publication of JPH0784605B2 publication Critical patent/JPH0784605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

PURPOSE:To obtain monodispersed spheroidal fine copper powder having a narrow grain size distribution by coating the surface of copper oxide powder with polyhydric alcohol, then reducing this powder with hydrazine. CONSTITUTION:The copper oxide powder and the polyhydric alcohol such as ethylene glycol are charged into a mixer or grinding machine and are subjected to a mixing or grinding operation, by which the surface of the copper oxide powder is coated with the polyhydric alcohol. While the coated copper oxide powder is agitated in the state of dispersing the same into water, the hydrazine or aq. hydrazine soln. is added thereto to reduce the copper oxide powder. The settled fine copper powder is taken out and is cleaned by an org. solvent. The powder is then dried. The monodispersed spheroidal fine copper powder having a uniform grain size of about <=10mum is thereby obtd. This fine copper powder is suitable for a copper paint which forms a dense thick film conductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子回路の厚膜導体を成形するための銅塗料
として、特に有用な粒子が単分散した球状の銅微粉末の
製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing fine spherical copper powder in which particles are monodispersed, which is particularly useful as a copper paint for forming thick film conductors of electronic circuits. It is something.

〔従来の技術〕[Conventional technology]

銅塗料は、電子回路の厚膜導体を形成するのに現在使用
されている銀あるいはパラジウム塗料の代替品として、
最近注目され始めている。この銅塗料には通常0.2μ
n+−10μmの銅微粉末が用いられているが、塗料を
焼付けたとき緻密な銅の導体膜を得るためには粒子が単
分散した凝集のない、不純物の少ない球状銅微粉末が望
まれている。また、緻密な銅の導体膜を得るため、最密
光てんとなるように、2種〜3種の粒度分布中の狭い粉
末を混合して用いることも行われ、これに用いる銅粉は
、球状であるとともに粒径の揃った単分散した粉末であ
ることが要求される。
Copper paints can be used as an alternative to the silver or palladium paints currently used to form thick film conductors in electronic circuits.
Recently, it has started to attract attention. This copper paint usually has 0.2μ
Fine copper powder of n+-10 μm is used, but in order to obtain a dense copper conductor film when the paint is baked, a spherical fine copper powder with monodisperse particles, no agglomeration, and less impurities is desired. There is. In addition, in order to obtain a dense copper conductor film, two to three kinds of narrow powders with a narrow particle size distribution are mixed and used in order to obtain the densest optical fiber, and the copper powder used for this is It is required to be a monodispersed powder that is spherical and has a uniform particle size.

従来、銅微粉末の製造方法としては種々提案されている
が、0.2μ個〜10μmの粒径の銅粉末を製造できる
方法としては、 ■炭酸銅を含む銅含有溶液とヒドラジンあるいはヒドラ
ジン化合物と混合し、これを加熱することにより銅粉末
を還元析出せしめる方法。(特開昭57−155302
号) ■酸化銅を保護コロイドを含む水性媒体中でヒドラジン
及び/又はヒドラジン化合物で還元する方法。 (特公
昭61−55562号) ■還元剤としてヒドラジンを用いて硫酸銅水溶液を還元
して銅微粒子を製造する方法において、反応溶液中に界
面活性剤を添加することによって単分散した銅微粒子を
得る方法。 (特開昭62−27508号、特開昭62
−40302号、特開昭62−77407号、特開昭6
2−77408号) 等がある。しかしながら、これら従来の方法では(a)
粒径が揃っている、b)単分散している、(C)不純物
が少ない、(d)球状である、の条件を全て満足する銅
粉末は得られない。
Conventionally, various methods for producing fine copper powder have been proposed, but the method that can produce copper powder with a particle size of 0.2 μm to 10 μm is as follows: 1. Using a copper-containing solution containing copper carbonate and hydrazine or a hydrazine compound. A method of reducing and precipitating copper powder by mixing and heating the mixture. (Unexamined Japanese Patent Publication No. 57-155302
No.) ■A method of reducing copper oxide with hydrazine and/or a hydrazine compound in an aqueous medium containing a protective colloid. (Japanese Patent Publication No. 61-55562) ■In the method of producing copper fine particles by reducing an aqueous copper sulfate solution using hydrazine as a reducing agent, monodispersed copper fine particles are obtained by adding a surfactant to the reaction solution. Method. (JP-A-62-27508, JP-A-62
-40302, JP-A-62-77407, JP-A-6
2-77408) etc. However, these conventional methods (a)
It is not possible to obtain copper powder that satisfies all of the following conditions: uniform particle size, b) monodispersion, (C) low impurities, and (d) spherical shape.

即ち、前記■の炭酸銅をヒドラジンで還元する方法では
、析出中に銅粉がa集するため形状が不規則となる。ま
た、■の酸化銅を保護コロイドを含む水性媒体中で還元
する方法では、保護コロイドにより銅粉の凝集についで
ある程度防止されるものの満足できるものではない。本
発明者等の実験では、平均粒径1.5μmの粉末をこの
方法で製造した場合、0.7μm〜8μmの範囲の粒径
を有する粉末が得られる。さらにこの方法で問題となる
のは保護コロイド、即ちアラビアゴム等の水溶性高分子
化合物が銅粉中に残留すると、厚膜導体の焼成時に銅粉
同志の結合を妨害することがあり好ましくないことであ
る。また■の硫酸銅水溶液を界面活性剤の存在下にヒド
ラジンで還元する方法では水溶液から銅を析出させるた
めの、析出時の粒径にばらつきを生じ、例えば平均粒径
が2.5μmのもので0.5μ111〜8μmまでの粒
径の粉末が混入している。
That is, in the method (2) in which copper carbonate is reduced with hydrazine, the copper powder aggregates during precipitation, resulting in irregular shapes. Further, in the method (2) in which copper oxide is reduced in an aqueous medium containing a protective colloid, the agglomeration of copper powder is prevented to some extent by the protective colloid, but it is not satisfactory. In experiments conducted by the present inventors, when a powder with an average particle size of 1.5 μm is produced by this method, a powder with a particle size in the range of 0.7 μm to 8 μm is obtained. Another problem with this method is that if protective colloids, i.e., water-soluble polymeric compounds such as gum arabic, remain in the copper powder, they may interfere with the bonding between the copper powders during firing of the thick film conductor, which is undesirable. It is. In addition, in the method (2) in which an aqueous copper sulfate solution is reduced with hydrazine in the presence of a surfactant, the particle size at the time of precipitation varies because copper is precipitated from an aqueous solution. Powder with a particle size of 0.5 μm to 8 μm is mixed.

〔本発明が解決しよ\うとする問題点〕本発明は、まず
製造コストの有利性から水溶液中で銅化合物を還元する
製造方法であって、反応時間によって粒形が影響させる
ことなく短時間でも単分散した球状銅微粉末が得られ、
さらに粒度分布中が狭く、かつ粒度もある程度自由に変
えられる銅微粉末の製造方法を種々研究した結果、酸化
銅をあらかじめ多価アルコールで表面処理してヒドラジ
ンを含む水溶液で還元すれば解決することを見出し本発
明を完成したものである。
[Problems to be solved by the present invention] Firstly, the present invention is a production method in which a copper compound is reduced in an aqueous solution from the viewpoint of manufacturing cost advantages, and the production method can be carried out in a short time without affecting the particle shape due to the reaction time. However, monodispersed spherical fine copper powder can be obtained,
Furthermore, as a result of researching various methods for producing fine copper powder that has a narrow particle size distribution and can be freely changed to some extent, it was found that the solution could be solved by surface-treating copper oxide with a polyhydric alcohol in advance and reducing it with an aqueous solution containing hydrazine. This discovery has led to the completion of the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、酸化銅粉末の表面を多価アルコールで
被覆した後、該酸化銅粉末をヒドラジンにより還元する
ことを特徴とする銅微粉末の製造方法である。
That is, the present invention is a method for producing fine copper powder, which comprises coating the surface of copper oxide powder with polyhydric alcohol and then reducing the copper oxide powder with hydrazine.

〔作用〕[Effect]

本発明の出発原料の銅化合物は酸化銅であることが必要
であり、酸化銅としては酸化第一銅、酸化第二銅のいず
れも使用でき、はとんど同じ結果を与える。
The starting copper compound of the present invention must be copper oxide, and as the copper oxide, either cuprous oxide or cupric oxide can be used, and both give almost the same results.

酸化銅以外の硫酸銅、硝酸銅、酢酸銅なとの銅塩を出発
原料とすると、球状でない銅微粉末が多く析出しよくな
い。また、水酸化銅、炭酸銅を出発原料とすると銅塩を
用いたものより球状化するが、酸化銅を用いた場合より
も不規則状粉を多く含み粒度分布中も広いものとなりよ
くない。
If a copper salt other than copper oxide, such as copper sulfate, copper nitrate, or copper acetate, is used as a starting material, a large amount of non-spherical fine copper powder will precipitate, which is not good. In addition, when copper hydroxide or copper carbonate is used as a starting material, it becomes more spherical than when using a copper salt, but it contains more irregular powder than when copper oxide is used, and the particle size distribution is also broader, which is not good.

粒度分布中の狭い球状銅微粉末を製造するためには出発
原料として酸化銅を用いる必要があるが、さらに酸化銅
を用いると銅微粉末の粒度(平均粒径とも言う)もある
程度自由に変えることができる。すなわち酸化銅の粉末
の粒度と析出する銅微粉末の粒度はある程度相関性があ
り、酸化銅の粉末粒度が大きいと銅微粉末も大きくなり
、酸化銅の粉末粒度を小さ(すると銅微粉末も小さくな
る。
In order to produce fine spherical copper powder with a narrow particle size distribution, it is necessary to use copper oxide as a starting material, but when copper oxide is used, the particle size (also called average particle size) of the fine copper powder can be changed to a certain degree. be able to. In other words, there is a certain correlation between the particle size of the copper oxide powder and the particle size of the precipitated copper fine powder; if the copper oxide powder particle size is large, the copper fine powder will also be large, and if the copper oxide powder particle size is made smaller (then the copper fine powder will also be smaller). becomes smaller.

さらに、酸化銅は他の銅化合物に比べ化合物中の銅含有
量が大であり、銅粉を析出する原料としては安価である
特徴も有する。
Furthermore, copper oxide has a higher copper content than other copper compounds, and is also characterized by being inexpensive as a raw material for depositing copper powder.

本発明では、酸化銅粉末の表面を多価アルコールで被覆
する工程を経るが、この工程を経ることにより、酸化銅
の粉末粒度を大きくしても粗大凝葉物がなく、また小さ
い酸化銅の粉末を用いても微細なコロイド状とならず、
粒度の揃った銅微粉末が得られる。
In the present invention, the surface of the copper oxide powder is coated with polyhydric alcohol. By going through this step, there are no coarse aggregates even if the particle size of the copper oxide powder is increased, and small copper oxide Even if powder is used, it will not become a fine colloid,
Fine copper powder with uniform particle size can be obtained.

多価アルコールとしては、エチレングリコール、ジエチ
レングリコール、トリエチレングリコール、ポリエチレ
ングリコール、グリセリンなどが適する。多価アルコー
ルの添加量は酸化銅に対して重量で0.5ivtXから
効果があり、20wtχまでが適量であり、これ以上の
添加は効果も少な(経済的で吐い。
Suitable polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, and glycerin. The amount of polyhydric alcohol added is effective from 0.5 ivtX by weight to copper oxide, and up to 20 wtχ is an appropriate amount, and adding more than this is less effective (economical and vomiting).

なお、1価のアルコールでは単分散した球状銅微粉末を
得ることができない。
Note that monodispersed spherical fine copper powder cannot be obtained using monohydric alcohol.

酸化銅を多価アルコールで被覆する方法は、酸化銅に多
価アルコールを加え、撹拌混合あるいは粉砕すればよい
Coating copper oxide with polyhydric alcohol can be accomplished by adding polyhydric alcohol to copper oxide and stirring or pulverizing the mixture.

撹拌混合の場合の混合機としては、通常のミキサー、ニ
ーダなどが使用できる。粉砕しながら行う場合は、ボー
ルミル、アトライター、振動ミルなどボールを粉砕媒体
とする、粉砕機を用いると効率よ(粉砕、被覆処理をす
ることができる。
As a mixer for stirring and mixing, an ordinary mixer, kneader, etc. can be used. When performing the process while pulverizing, it is more efficient to use a pulverizer such as a ball mill, attritor, or vibrating mill that uses balls as the pulverizing medium (pulverization and coating can be performed).

本発明において粉砕しながら酸化銅表面に多価アルコー
ルの被覆を形成することは、粒度の小さい銅微粉末を製
造する場合に重要である。
In the present invention, forming a coating of polyhydric alcohol on the surface of copper oxide while grinding is important when producing fine copper powder with small particle size.

酸化銅の粉末が小さくなると均一に多価アルコールの被
覆を形成することが難しくなり、本発明の効果が十分得
られない場合がある。特に、小さい酸化銅の粉末を用い
て小さい銅微粉末を得ようとする場合は、大きい酸化銅
に多価アルコールを加え、粉砕しながら均一に被覆処理
した小さい酸化銅の粉末にしたものを用いる方が粒度の
揃った均一な球状銅微粉末が容易に得られるよい方法で
ある。
When the copper oxide powder becomes small, it becomes difficult to uniformly form a polyhydric alcohol coating, and the effects of the present invention may not be sufficiently obtained. In particular, when trying to obtain small copper oxide powder using small copper oxide powder, use polyhydric alcohol added to large copper oxide powder, which is coated uniformly while being pulverized to form small copper oxide powder. This is a better method because it can easily produce uniform spherical copper fine powder with uniform particle size.

本発明に用いる還元剤はヒドラジン及びヒドラジン水化
物が適し、塩酸ヒドラジン、硫酸ヒドラジンなどのヒド
ラジン化合物も使用できるが、洗浄に問題があり、好ま
しくない。
As the reducing agent used in the present invention, hydrazine and hydrazine hydrate are suitable, and hydrazine compounds such as hydrazine hydrochloride and hydrazine sulfate can also be used, but these are not preferred because they cause problems in cleaning.

ヒドラジン以外の還元剤としてホルムアルデヒド、ブド
ウ糖、次亜リン酸、水素化ホウ素ナトリウムなどがある
が、還元力が弱く酸化銅を金属銅に還元出来なかったり
、例え還元析出しても粒度分布の広い不規則形状の銅粉
しか得られない。
Reducing agents other than hydrazine include formaldehyde, glucose, hypophosphorous acid, and sodium borohydride, but they have weak reducing power and cannot reduce copper oxide to metallic copper, and even if they are reduced and precipitated, they have a wide particle size distribution. Only regular shaped copper powder can be obtained.

還元剤としてのヒドラジンの量は水溶液の量とも関係す
るが、基本的には酸化銅の量によって決定される。酸化
銅に対するヒドラジン量は重量で10wtχから還元反
応が認められるが50wt%以上加えた方が早く反応が
進み短時間に反応が終了する。
Although the amount of hydrazine as a reducing agent is related to the amount of the aqueous solution, it is basically determined by the amount of copper oxide. A reduction reaction is observed when the amount of hydrazine relative to copper oxide is 10 wt.chi., but the reaction proceeds more quickly and is completed in a shorter time when added at 50 wt% or more.

なお、ヒドラジン量は多く加えるほど早く反応が進むが
200w t%以上加えても同じとなり経済的でない。
It should be noted that the reaction proceeds faster as the amount of hydrazine is increased, but adding more than 200 wt % results in the same reaction, which is not economical.

多価アルコールで被覆処理した酸化銅を分散、懸濁させ
る水溶液の量は酸化銅がうまく撹拌できる量であればよ
く、酸化銅容積の約50倍程度が好ましいが、撹拌操作
を行わない場合には、特に限定されるものではない。
The amount of aqueous solution for dispersing and suspending copper oxide coated with polyhydric alcohol may be sufficient as long as the copper oxide can be stirred well, and is preferably about 50 times the volume of copper oxide, but if stirring is not performed, is not particularly limited.

還元反応が開始する温度は約40°Cからであるが反応
が終了するまで長時間必要なため60°C以上に加温し
た方がよい。なお、70°C以上に加温すると反応熱に
より自然に約100’Cまで昇温するので、70°C以
上になると加温しなくてもよい。
The temperature at which the reduction reaction starts is about 40°C, but since it takes a long time to complete the reaction, it is better to heat it to 60°C or higher. Note that when heated to 70°C or higher, the temperature naturally rises to about 100'C due to the heat of reaction, so heating is not necessary when the temperature reaches 70°C or higher.

短時間に銅微粉末を得るためにはヒドラジン量を多くし
、70°Cまで加温する方法がよく、これによって得ら
れる銅微粉末が不規則形状になることはない。
In order to obtain fine copper powder in a short time, it is best to increase the amount of hydrazine and heat it to 70°C, so that the fine copper powder obtained will not have an irregular shape.

なお、本発明を実施するために使用する反応槽は、撹拌
装置のついたものが好ましく、反応容器は不純物溶出防
止のためガラス製が好ましいが、ステンレス類あるいは
テフロンなどでコーティングした容器でもよい。
The reaction vessel used to carry out the present invention is preferably equipped with a stirring device, and the reaction vessel is preferably made of glass to prevent elution of impurities, but it may also be a vessel coated with stainless steel or Teflon.

本発明の方法における銅微粉末の還元過程を説明すれば
、多価アルコールで被覆処理した酸化銅を水溶液に分散
、懸濁し、撹拌しながらヒドラジンを添加し、還元反応
温度まで徐々に加温すると黒色あるいは赤褐色の懸濁液
がしだいに赤色となり、銅色に変化する。これを放置す
ると下部に銅微粉末が沈降し、上部は無色透明の液とな
る。沈降した銅微粉末を取り出し、アルコールあるいは
アセトンなどの有機溶剤で洗浄し、通常の方法で乾燥す
ると粒度の揃った10μm以下の単分散した球状銅微粉
末が得られる。
To explain the reduction process of fine copper powder in the method of the present invention, copper oxide coated with polyhydric alcohol is dispersed and suspended in an aqueous solution, hydrazine is added while stirring, and the mixture is gradually heated to the reduction reaction temperature. The black or reddish-brown suspension gradually turns red and then copper. If this is left to stand, fine copper powder will settle at the bottom, and the top will turn into a colorless and transparent liquid. The precipitated fine copper powder is taken out, washed with an organic solvent such as alcohol or acetone, and dried by a conventional method to obtain a monodispersed fine spherical copper powder with a uniform particle size of 10 μm or less.

多価アルコールで被覆処理した酸化銅を用いると反応速
度を早くしても単分散した球状銅微粉末が得られること
については充分解明されていないが、次のように考えら
れる。
It has not been fully elucidated that monodispersed spherical fine copper powder can be obtained by using copper oxide coated with polyhydric alcohol even if the reaction rate is increased, but it is thought to be as follows.

酸化銅粉末の表面に被覆された多価アルコールは、酸化
銅との間で銅化合物を形成し、これを水に分散させても
直ちに多価アルコールが水に溶解分散しないものと推定
される。従って、ヒドラジンにより還元され析出する銅
は近接する多価アルコールにより、他の析出銅との接触
が妨害され、単分散した球状銅微粉末が得られるものと
考えられる。
It is presumed that the polyhydric alcohol coated on the surface of the copper oxide powder forms a copper compound with the copper oxide, and even if this is dispersed in water, the polyhydric alcohol does not immediately dissolve and disperse in water. Therefore, it is thought that the contact of the copper that is reduced and precipitated by hydrazine with other precipitated copper is prevented by the adjacent polyhydric alcohol, and that a monodisperse spherical copper fine powder is obtained.

このことは多価アルコールを水溶液中に銅粉量と同量加
えても凝集した不規則形状の銅粉しか得られないことか
らも推測される。
This can be inferred from the fact that even if the same amount of polyhydric alcohol as the amount of copper powder is added to an aqueous solution, only aggregated and irregularly shaped copper powder is obtained.

単分散した球状銅微粉末を得るためには、銅イオン濃度
を少なくしてゆっくり析出させる方法しかなかったが、
多価アルコール中では、高い銅イオン濃度であっても、
銅イオンの移動が遅いため銅の核が一定間隔でしか析出
しないため、その後の銅の還元析出においてくっつき合
わず、反応速度が早(でも単分散した、球状銅微粉末が
得られるのであろう。
The only way to obtain monodispersed spherical copper fine powder was to reduce the copper ion concentration and allow it to precipitate slowly.
In polyhydric alcohols, even at high copper ion concentrations,
Because the movement of copper ions is slow, the copper nuclei are only deposited at regular intervals, so they do not stick together during the subsequent reduction and precipitation of copper, resulting in a fast reaction rate (but monodispersed, spherical fine copper powder is probably obtained). .

〔実施例〕〔Example〕

以下に、本発明の実施例を示す。 Examples of the present invention are shown below.

実施例(1) 平均粒径10uII+の酸化第二銅50gにエチレング
リコールを5g加え、ミキサーで10分間撹拌混合し、
しかる後に全量を500ccの水溶液に分散、懸濁し、
次いで撹拌しながらヒドラジン1水和物を50g添加し
、15分後に70°Cになるように徐々に加温した。
Example (1) Add 5 g of ethylene glycol to 50 g of cupric oxide with an average particle size of 10 uII+, stir and mix with a mixer for 10 minutes,
After that, the entire amount was dispersed and suspended in 500 cc of aqueous solution,
Next, 50 g of hydrazine monohydrate was added while stirring, and the mixture was gradually heated to 70°C after 15 minutes.

懸濁液が70’C近(になると危、激な反応が生じ、1
0分後に液温か90°Cに昇温すると同時に反応が終了
し、銅微粉末が析出した。
If the suspension gets close to 70'C, a dangerous and violent reaction will occur;
After 0 minutes, the temperature of the liquid was increased to 90° C., and the reaction was terminated at the same time, and fine copper powder was precipitated.

アスピレータでろ過少、アセトンで洗浄し、その後20
°Cで自然乾燥した。
Filter with an aspirator, wash with acetone, then 20 minutes
Air dried at °C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μm〜2μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果、0.13χと非常に少ないものであった。
39 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a monodisperse spherical powder with a uniform size of 1 μm to 2 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was found to be very small at 0.13χ.

実施例(2) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理する多価アルコールのみジエチレングリコールに
変えた以外は実施例(1)と同様にして銅微粉末を得た
Example (2) Fine copper powder was prepared in the same manner as in Example (1) except that the same cupric oxide as in Example (1) was used and only the polyhydric alcohol for surface treatment of the cupric oxide was changed to diethylene glycol. Obtained.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μ111〜2μmの揃った凝集のない
単分散した球状粉末であり、酸素量も0.14χと非常
に少ないものであった。
39g of fine copper powder was obtained, and when the particle size and shape of the powder was observed using an electron microscope, it was a monodisperse spherical powder with a uniform size of 1μ111 to 2μm without agglomeration, and the amount of oxygen was very small at 0.14χ. Met.

実施例(3) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理する多価アルコールのみトリエチレングリコール
に変えた以外は実施例(1)と同様にして銅微粉末を得
た。
Example (3) Using the same cupric oxide as in Example (1), a copper powder was prepared in the same manner as in Example (1) except that the polyhydric alcohol for surface treatment of the cupric oxide was changed to triethylene glycol. A powder was obtained.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μm〜2μmの揃った凝集のない単分
散した球状粉末であり、酸素量も0.15χと非常に少
ないものであった。
39g of fine copper powder was obtained, and when the particle size and shape of the powder was observed using an electron microscope, it was a monodisperse spherical powder with a uniform size of 1 μm to 2 μm without agglomeration, and the amount of oxygen was very small at 0.15χ. Met.

実施例(4) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理する多価アルコールのみポリエチレングリコール
#300に変えた以外は実施例(1)と同様にして銅微
粉末を得た。
Example (4) Copper was prepared in the same manner as in Example (1), except that the same cupric oxide as in Example (1) was used, and only the polyhydric alcohol for surface treatment of the cupric oxide was changed to polyethylene glycol #300. A fine powder was obtained.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると1μm〜2μmの揃った凝集のない単分
散した球状粉末であり、酸素量も0.13χと非常に少
ないものであった。
39g of fine copper powder was obtained, and when the particle size and shape of the powder was observed using an electron microscope, it was a monodisperse spherical powder with a uniform size of 1 μm to 2 μm without agglomeration, and the amount of oxygen was very small at 0.13χ. Met.

実施例(5) 実施例(1)と同じ酸化第二銅を用い、酸化第二銅を表
面処理する多価アルコールのみグリセリンに変えた以外
は実施例(1)と同様にして銅微粉末を得た。
Example (5) Fine copper powder was prepared in the same manner as in Example (1) except that the same cupric oxide as in Example (1) was used, and only the polyhydric alcohol for surface treatment of the cupric oxide was changed to glycerin. Obtained.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見るとll1m〜2μmの揃った凝集のない単
分散した球状粉末であり、酸素量も0.15χと非常に
少ないものであった。
39 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed using an electron microscope, it was a monodisperse spherical powder with a uniform size of 1 m to 2 μm and no agglomeration, and the amount of oxygen was very small at 0.15 χ. Met.

実施例(6) 実施例(1)と同じ平均粒径10μmの酸化第二銅10
0gを用い、エチレングリコールを0.5g加え、5m
mφのステンレスポールを粉砕媒体としたアトライタ−
で30分間粉砕した。粉砕後の酸化第二銅の平均粒径は
5μmであった。
Example (6) Cupric oxide 10 with the same average particle size of 10 μm as Example (1)
Using 0g, add 0.5g of ethylene glycol, and add 5m
Attritor with mφ stainless steel pole as grinding medium
The mixture was ground for 30 minutes. The average particle size of cupric oxide after pulverization was 5 μm.

このように粉砕しながら表面処理した平均粒径5μmの
酸化第二銅50gを500ccの水溶液に分散、懸濁し
、次いで撹拌しながらビトラジン1永和物を50g添加
し、15分後に70°Cになるように徐々に加温した。
Disperse and suspend 50 g of cupric oxide with an average particle size of 5 μm, which has been surface-treated while being crushed in this way, in 500 cc of an aqueous solution, then add 50 g of vitrazine 1 permanent while stirring, and after 15 minutes the temperature reaches 70°C. It was gradually warmed up.

懸濁液が70°C近くになると急激な反応が生じ、10
分後に液温が92°Cに昇温すると同時に反応が終了し
、銅微粉末が析出した。アスピレータでろ過少、アセト
ンで洗浄し、その後20°Cで自然乾燥した。
When the suspension temperature approaches 70°C, a rapid reaction occurs and the temperature of 10
After a few minutes, the liquid temperature rose to 92°C, and at the same time the reaction was terminated and fine copper powder was precipitated. It was filtered with an aspirator, washed with acetone, and then air-dried at 20°C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると0.5μm〜1μmの揃った凝集のない
単分散した球状粉末であった。不純物として酸素量を測
定した結果0.19χと非常に少ないものであった。
39 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a monodisperse spherical powder with a uniform size of 0.5 μm to 1 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was found to be very small at 0.19χ.

実施例(7) 実施例(1)と同じ平均粒径10μmの酸化第二銅10
0gを用い、エチレングリコールを5g加え、51φの
ステンレスポールを粉砕媒体としたアトライターで18
0分間粉砕した。粉砕後の酸化第二銅の平均粒径は0.
5μmであった。
Example (7) Cupric oxide 10 with the same average particle size of 10 μm as Example (1)
Using 0g, add 5g of ethylene glycol, and use an attritor with a 51φ stainless steel pole as the grinding medium.
Milled for 0 minutes. The average particle size of cupric oxide after pulverization is 0.
It was 5 μm.

このように粉砕しながら表面処理した平均粒径0.5μ
−の酸化第二銅50gを500ccの水溶液に分散、懸
濁し、次いで撹拌しながらビトラジン1永和物を50g
添加し、15分後に70°Cになるように徐々に加温し
た。懸濁液が70°C近くになると急激な反応が生じ、
10分後に液温が95°Cに昇温すると同時に反応が終
了し、銅微粉末が析出した。アスピレータでろ過少、ア
セトンで洗浄し、その後20°Cで自然乾燥した。
The average particle size is 0.5μ, which has been surface-treated while being crushed in this way.
- Disperse and suspend 50 g of cupric oxide in 500 cc of aqueous solution, and then add 50 g of vitrazine 1 permanent while stirring.
After 15 minutes, the mixture was gradually heated to 70°C. When the suspension temperature approaches 70°C, a rapid reaction occurs,
After 10 minutes, the reaction was terminated at the same time as the liquid temperature rose to 95°C, and fine copper powder was precipitated. It was filtered with an aspirator, washed with acetone, and then air-dried at 20°C.

39gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると0.3μm〜0.6μmの揃った凝集の
ない単分散した球状粉末であった。不純物として酸素量
を測定した結果0.19χと非常に少ないものであった
39 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a uniform, non-agglomerated, monodispersed spherical powder of 0.3 μm to 0.6 μm. As a result of measuring the amount of oxygen as an impurity, it was found to be very small at 0.19χ.

実施例(8) 平均粒径10μmの酸化第一銅50gに、エチレングリ
コールを5g加え、ミキサーでlO分間撹拌混合し、し
かる後に全量を500ccの水溶液に分散、懸濁し、次
いで撹拌しながらビトラジン1水和物を50g添加し、
15分後に70°Cになるように徐々に加温した。懸濁
液が70°C近くになると急激な反応が生じ、10分後
に液温が90°Cに昇温すると同時に反応が終了し、銅
微粉末が析出した。アスピレータでろ過少、アセトンで
洗浄し、その後20°Cで自然乾燥した。
Example (8) Add 5 g of ethylene glycol to 50 g of cuprous oxide having an average particle size of 10 μm, stir and mix with a mixer for 10 minutes, then disperse and suspend the entire amount in 500 cc of an aqueous solution, and then add Vitrazine 1 while stirring. Add 50g of hydrate,
After 15 minutes, the temperature was gradually increased to 70°C. A rapid reaction occurred when the temperature of the suspension reached approximately 70°C, and at the same time as the temperature of the suspension rose to 90°C after 10 minutes, the reaction was terminated and fine copper powder was precipitated. It was filtered with an aspirator, washed with acetone, and then air-dried at 20°C.

44gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると2μm〜3μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果0.11χと非常に少ないものであった。
44 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a monodisperse spherical powder with a uniform size of 2 μm to 3 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was found to be very small at 0.11χ.

実施例(9) 平均粒径10μmの酸化第一銅50gに、グリセリンを
5g加え、ミキサーで10分間撹拌混合し、しかる後に
全量を500ccの水溶液に分散、懸濁し、次いで撹拌
しながらビトラジン1永和物を25g添加し、15分後
に60°Cになるように徐々に加温した。
Example (9) Add 5 g of glycerin to 50 g of cuprous oxide having an average particle size of 10 μm, stir and mix with a mixer for 10 minutes, then disperse and suspend the entire amount in 500 cc of an aqueous solution, and add Vitrazine 1 Eiwa while stirring. After 15 minutes, the mixture was gradually heated to 60°C.

懸濁液が40°C以上になると徐々に反応が開始し、6
0’Cになると明らかに銅の析出が認められ、30分後
に反応が終了し、銅微粉末が析出した。アスピレータで
ろ過少、アセトンで洗浄し、その後20°Cで自然乾燥
した。
When the temperature of the suspension reaches 40°C or higher, the reaction starts gradually, and 6
When the temperature reached 0'C, precipitation of copper was clearly observed, and 30 minutes later, the reaction was completed and fine copper powder was precipitated. It was filtered with an aspirator, washed with acetone, and then air-dried at 20°C.

44gの銅微粉末が得られ、電子顕微鏡にて粉末の粒度
、粒形を見ると4μm〜5μmの揃った凝集のない単分
散した球状粉末であった。不純物として酸素量を測定し
た結果0.10χと非常に少ないものであった。
44 g of fine copper powder was obtained, and when the particle size and shape of the powder was observed under an electron microscope, it was a monodisperse spherical powder with a uniform size of 4 μm to 5 μm and no agglomeration. As a result of measuring the amount of oxygen as an impurity, it was found to be very small at 0.10χ.

〔発明の効果] このように本発明によれば、粒度分布巾の狭い、単分散
した球状銅微粉末を短時間にしかも安価に製造すること
ができる。
[Effects of the Invention] As described above, according to the present invention, monodispersed spherical fine copper powder having a narrow particle size distribution can be produced in a short time and at low cost.

本発明によって得られる球状銅微粉末は、より緻密な厚
膜導体を形成する銅塗料に特に適し、また高純度である
ことから、各種触媒用としても有用なものである。
The spherical fine copper powder obtained by the present invention is particularly suitable for copper paints that form denser thick film conductors, and is highly pure, so it is also useful for various catalysts.

Claims (4)

【特許請求の範囲】[Claims] (1)酸化銅粉末の表面を多価アルコールで被覆した後
、該酸化銅粉末をヒドラジンにより還元することを特徴
とする銅微粉末の製造方法。
(1) A method for producing fine copper powder, which comprises coating the surface of copper oxide powder with polyhydric alcohol and then reducing the copper oxide powder with hydrazine.
(2)酸化銅粉末と多価アルコールを混合機又は粉砕機
に装入し、混合又は粉砕操作を行うことにより酸化銅粉
末の表面を多価アルコールで被覆することを特徴とする
特許請求の範囲第1項に記載の銅微粉末の製造方法。
(2) A claim characterized in that the surface of the copper oxide powder is coated with the polyhydric alcohol by charging the copper oxide powder and the polyhydric alcohol into a mixer or a pulverizer and performing a mixing or pulverizing operation. The method for producing fine copper powder according to item 1.
(3)多価アルコールで被覆された酸化銅粉末を水中に
分散した状態で、撹拌しながらヒドラジン又はヒドラジ
ン水溶液を添加することにより該酸化銅粉末を還元する
ことを特徴とする特許請求の範囲第1項もしくは第2項
に記載の銅微粉末の製造方法。
(3) The copper oxide powder coated with a polyhydric alcohol is reduced by adding hydrazine or an aqueous hydrazine solution while stirring the copper oxide powder dispersed in water. A method for producing fine copper powder according to item 1 or 2.
(4)多価アルコールで被覆された酸化銅粉末を水中に
分散した状態で、撹拌しながらヒドラジン又はヒドラジ
ン水溶液を添加し、次いでこの混合懸濁液を加熱するこ
とにより該酸化銅粉末を還元することを特徴とする特許
請求の範囲第3項に記載の銅微粉末の製造方法。
(4) Add hydrazine or an aqueous hydrazine solution while stirring the polyhydric alcohol-coated copper oxide powder dispersed in water, and then reduce the copper oxide powder by heating this mixed suspension. A method for producing fine copper powder according to claim 3, characterized in that:
JP12036188A 1988-05-17 1988-05-17 Method for producing fine copper powder Expired - Fee Related JPH0784605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12036188A JPH0784605B2 (en) 1988-05-17 1988-05-17 Method for producing fine copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12036188A JPH0784605B2 (en) 1988-05-17 1988-05-17 Method for producing fine copper powder

Publications (2)

Publication Number Publication Date
JPH01290706A true JPH01290706A (en) 1989-11-22
JPH0784605B2 JPH0784605B2 (en) 1995-09-13

Family

ID=14784295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12036188A Expired - Fee Related JPH0784605B2 (en) 1988-05-17 1988-05-17 Method for producing fine copper powder

Country Status (1)

Country Link
JP (1) JPH0784605B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534283B2 (en) 2005-03-22 2009-05-19 Dowa Electronics Materials., Ltd. Method of producing copper powder and copper powder
US7828872B2 (en) * 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
US7909908B2 (en) 2005-02-18 2011-03-22 Dowa Electronics Materials Co., Ltd. Method of improving the weatherability of copper powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109604627A (en) * 2019-01-26 2019-04-12 北京工业大学 A kind of device and method of ethanol reduction copper oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828872B2 (en) * 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
US7909908B2 (en) 2005-02-18 2011-03-22 Dowa Electronics Materials Co., Ltd. Method of improving the weatherability of copper powder
US7534283B2 (en) 2005-03-22 2009-05-19 Dowa Electronics Materials., Ltd. Method of producing copper powder and copper powder

Also Published As

Publication number Publication date
JPH0784605B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
Esumi et al. Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly (amidoamine) dendrimers
KR100809982B1 (en) Method for manufacturing copper nanoparticles using microwave
JP5393451B2 (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
JP5827341B2 (en) Reactor for silver powder production and continuous production method
CN106270545A (en) A kind of high-tap density noble metal raw powder&#39;s production technology
JP3429985B2 (en) Method for producing silver powder composed of hexagonal plate-like crystal silver particles
US5188660A (en) Process for making finely divided particles of silver metals
JPS59116303A (en) Manufacture of fine copper powder
JPH01290706A (en) Production of fine copper powder
JP2004068072A (en) Manufacturing method of silver particulate colloid dispersion solution
JPH0920903A (en) Production of monodisperse gold grain powder
JP3973236B2 (en) Method for producing monodisperse noble metal powder
JPH0830204B2 (en) Method for producing fine metal powder
JPH11189812A (en) Manufacture of granular silver powder
CN113527910B (en) Preparation method of monodisperse nano calcium fluoride transparent liquid phase dispersion
JPS63186803A (en) Production of fine copper particles
JP2020169395A (en) Silver nanoparticle colloid, silver nanoparticle, method for producing silver nanoparticle colloid, and method for producing silver nanoparticle
JPH0234708A (en) Manufacture of copper fine powder
JPH01259108A (en) Manufacture of copper super fine powder
JPS63186805A (en) Production of fine copper particles
CN109988122B (en) Method for preparing zinc thiazole with micro particle size
JPH032302A (en) Manufacture of high purity copper fine powder
JPS63266003A (en) Flaked platinum powder and production thereof
JP3122148B2 (en) Method for producing palladium powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees