JPS61251506A - Production of diamond powder - Google Patents

Production of diamond powder

Info

Publication number
JPS61251506A
JPS61251506A JP60094179A JP9417985A JPS61251506A JP S61251506 A JPS61251506 A JP S61251506A JP 60094179 A JP60094179 A JP 60094179A JP 9417985 A JP9417985 A JP 9417985A JP S61251506 A JPS61251506 A JP S61251506A
Authority
JP
Japan
Prior art keywords
diamond
gas
wavelength
powder
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60094179A
Other languages
Japanese (ja)
Other versions
JPH0662357B2 (en
Inventor
Hiroshi Aida
比呂史 会田
Koichi Yamaguchi
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60094179A priority Critical patent/JPH0662357B2/en
Publication of JPS61251506A publication Critical patent/JPS61251506A/en
Publication of JPH0662357B2 publication Critical patent/JPH0662357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:In the synthesis of diamond by the vapor-phase method, the gas for diamond formation is irradiated with a beam of a specific wavelength selected from a certain range of wavelength to effect high-efficiency production of diamond powder using inexpensive manufacturing units. CONSTITUTION:In the gas-growth of diamond using a gas (preferably methane), the pressure and the temperature of the gas for diamond growth is set in certain ranges and the gas is irradiated with a beam of a certain wavelength ranging from 0.1 to 20mum whereby the chemical reaction is promoted by the optical energy to form a powder containing diamonds in the gas atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイヤモンドの合成法に係シ、特に気相成長法
により、ダイヤモンド粉末が効率良く製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for synthesizing diamond, and more particularly to a method for efficiently producing diamond powder by vapor phase growth.

〔従来技術〕[Prior art]

周知の通シ、ダイヤモンド粉末は超高圧・高温 −下で
合成できるが、このための装置は高価であ〕、この製造
コストの低減が望まれている。
As is well known, diamond powder can be synthesized under ultra-high pressure and high temperature, but the equipment for this is expensive, and it is desired to reduce the manufacturing cost.

近年、気相成長法によるダイアモンドの合成が盛んに行
なわれつつありJイオン化蒸着法、スパッタ法、イオン
ビーム法等のPVD法、予備加熱CVD法、プラズマC
VD法等のCVD法等による気相成長法が普及している
。この方法によれば基体上にダイヤモンド膜を形成でき
るというものであるが、未だ気相成長法によってダイヤ
モンド粉末を生成したという報告はされていない。
In recent years, the synthesis of diamonds by vapor phase epitaxy has been actively carried out.
Vapor phase growth methods such as CVD methods such as VD methods are popular. According to this method, a diamond film can be formed on a substrate, but there have been no reports of producing diamond powder by vapor phase growth.

〔発明の目的〕  。[Object of the invention].

従って本発明の目的は気相成長法によυ効率的にダイヤ
モンド粉末を生成する方法であって、低コストの製造装
置を用いて連続的にダイヤモンド粉末を合成することが
できる製法を提供するにある。
Therefore, an object of the present invention is to provide a method for efficiently producing diamond powder by vapor phase growth, and to provide a production method that can continuously synthesize diamond powder using low-cost production equipment. be.

〔問題を解決する手段〕[Means to solve the problem]

本発明によれば、気相成長法によりダイヤモンドを合成
する方法であって、ダイヤモンド生成雰囲気に0.1〜
20μ渭の範囲の波長から選ばれる一定波長の光線を照
射して光エネルギーによる化学反応を促進し、該雰囲気
中にダイヤモンドを含む粉末を生成せしめることを特徴
とするダイヤモンド粉末の製法が提供される。
According to the present invention, there is provided a method for synthesizing diamond by a vapor phase growth method, in which a diamond-forming atmosphere has a
Provided is a method for producing diamond powder, which comprises irradiating a light beam with a certain wavelength selected from a wavelength range of 20 μm to promote a chemical reaction due to light energy and producing a powder containing diamond in the atmosphere. .

一般に、光線が気体に照射されると、気体分子(又は原
子)K励起され、光のエネルギーが分子解離の活性化エ
ネルギーを越えると気体分子は解離し、イオンやフジ力
〃が生成する。本発明では、気体分子の分解、フジカル
発生または■原子発生に必要なエネルギーに近い波長の
光線を気体に選択的に吸収させて単一の反応のみを生じ
させる。
Generally, when a gas is irradiated with a light beam, gas molecules (or atoms) are excited, and when the energy of the light exceeds the activation energy of molecular dissociation, the gas molecules dissociate, producing ions and Fuji force. In the present invention, only a single reaction occurs by selectively absorbing into the gas a light beam having a wavelength close to the energy required for the decomposition of gas molecules, generation of fusicals, or generation of atoms.

即ち、気体の種類と光線の波長をうまく選択することに
よって、SP+SP結合を有する分子やイオンの発生を
抑制し、これにより原料ガスの分解、分解ガスの反応に
よるSP核の発生、次いで核の成長による粉体形成とい
う光化学反応がおこなわれる。
In other words, by carefully selecting the type of gas and the wavelength of the light beam, the generation of molecules and ions with SP+SP bonds can be suppressed, resulting in the decomposition of the raw material gas, the generation of SP nuclei through the reaction of the decomposed gas, and the subsequent growth of the nuclei. A photochemical reaction called powder formation takes place.

気相成長によってダイヤモンドを合成するには、ソノテ
ロセスにおいて原料ガスがSP 混成軌道の状態を経る
ことが重要であることが知られている。
In order to synthesize diamond by vapor phase growth, it is known that it is important for the raw material gas to undergo an SP hybrid orbital state in the sonoterothesis.

例えば原料ガスとして、メタン−水素系を用いると活性
化した水素フジ力/L/(・H)やメチルフジ力/%/
(、CHl )がSP  結合を有するメタンに作用し
てダイヤモンドが形成すると言われている。原料ガスの
活性化方法には高温フィラメントによる熱電子の予備加
熱、高周波マイクロ波等による放電を利用してプラズマ
を発生させる゛方法があるが、これらの方法による活性
化ではエネルギーが単色でなく、広い幅を有しているた
め、SP結合の他にSP結合やSP結合の状態が同時に
存在する。
For example, when a methane-hydrogen system is used as the raw material gas, the activated hydrogen Fuji force/L/(・H) and methyl Fuji force/%/
It is said that diamond is formed when (,CHl) acts on methane having an SP bond. Methods for activating source gas include preheating thermionic electrons using a high-temperature filament, and generating plasma using electrical discharge using high-frequency microwaves, etc. However, in activation using these methods, the energy is not monochromatic; Since it has a wide width, in addition to SP bonding, SP bonding and SP bonding states exist simultaneously.

従って高圧相であるダイヤモンドに比べて常圧相である
グフツアイトが容易に生成されるのでグラファイトを形
成する確認が非常に高くなっている。
Therefore, since gouftuite, which is a normal pressure phase, is more easily produced than diamond, which is a high pressure phase, it is highly likely that graphite is formed.

これにより、反応雰囲気にグラファイトの核が存在して
いるとSP結合状態の反応種が存在してもグラファイト
の核によりグフファイトが優位に結晶成長していくこと
になる。
As a result, if a graphite nucleus is present in the reaction atmosphere, goufite crystals will grow dominantly due to the graphite nucleus even if SP bonded reactive species are present.

本発明においては炭化水素系の原料ガスを選択的にメタ
ンのフジカル分解を促進する光励起プロセスを用いると
反応系にSP結合の反応種が占められ、光励起されてい
る雰囲気にはこの反応種が衝突を繰ル返してSP結合を
有する核が成長し、その結果、ダイヤモンド粒が得られ
る。ダイヤモンド粒の結晶の成長を考慮すると、反応種
の光励起された反応雰囲気にダイヤモンド粒がある程度
の時間は滞在することが必要である。
In the present invention, by using a photoexcitation process that selectively promotes the physical decomposition of methane in a hydrocarbon-based raw material gas, the reaction system is occupied by reactive species of SP bonds, and these reactive species collide with the photoexcited atmosphere. By repeating this process, nuclei having SP bonds grow, and as a result, diamond grains are obtained. In consideration of crystal growth of diamond grains, it is necessary that the diamond grains remain in a reaction atmosphere in which reactive species are photoexcited for a certain period of time.

以上はCVD法のみだけでな(PVD法においても同様
の効果があシ、例えば、イオン化蒸着法においては気体
に光線を照射してイオン化させたシ、気体に光線を照射
してプラズマを発生させ、そのプラズマをスパッタ法や
イオンブレーティング法に適用することができる。
The above is not limited to the CVD method (PVD methods also have similar effects; for example, in the ionization vapor deposition method, a gas is ionized by irradiating a light beam, and a gas is irradiated with a light beam to generate plasma. , the plasma can be applied to sputtering method or ion blating method.

本発明において照射する光線の波長は、気体の種類によ
って異なるが0.1〜20μ肩の範囲の内から選ばれる
一定の波長のものである。
The wavelength of the irradiated light beam in the present invention varies depending on the type of gas, but is a constant wavelength selected from within the range of 0.1 to 20 μm.

即ち、各種の気体にはそれぞれに好適な波長値が存在す
るので、気体の種類に応じてそれらの一定波長値の光線
を照射するのであり、例えば気体がメタン((H4)の
場合に好適な光線は、(1) 0.18〜0.23μm
、 (211,2〜1.4μ屑、13) 1.4〜2.
0趨、(413,3〜3.6μmの4種である。
In other words, each type of gas has a suitable wavelength value, so a light beam with a certain wavelength value is irradiated depending on the type of gas. For example, when the gas is methane ((H4), a suitable wavelength value is used. The light beam is (1) 0.18-0.23 μm
, (211,2~1.4μ scrap, 13) 1.4~2.
There are four types: 0, (413, 3 to 3.6 μm).

表1に各種気体とそれに対応する光(レーザー光)波長
を列記する。
Table 1 lists various gases and their corresponding light (laser light) wavelengths.

従って、本発明でいう「一定の波長」の意義は、例えば
2.1μ肩の波長というよう表一点の値の波長のみを意
味するのではなく、0.1〜′2LOμ清という本発明
要旨の全域範囲の中から選ばれると、一つのピークとな
シ得るような極めて限られた範囲の波長域、例えば0.
90〜0.97μ謂、3.0〜4.07allのごとき
狭小範囲の波長域のものをも意味するのである。
Therefore, the meaning of "certain wavelength" in the present invention does not mean only the wavelength of one point in the table, such as the wavelength of 2.1μ shoulder, but also the meaning of the present invention's gist of 0.1~'2LOμ wavelength. A very limited range of wavelengths, such as 0...
It also means a wavelength range in a narrow range such as 90 to 0.97μ, so-called 3.0 to 4.07all.

本発明では0.1μm未満の光線は除外しているが、そ
の理由は、現在はそれが得られ燻<、工業的に価値が低
いためである。しかし将来、その光源が得られ易くなれ
ば、0.1μm以下の波長をもつ光も使用できると考え
られる。
In the present invention, light rays smaller than 0.1 μm are excluded because they are currently available and have low industrial value. However, if it becomes easier to obtain such a light source in the future, it will be possible to use light with a wavelength of 0.1 μm or less.

また、20朗を越える光線を除外した弁理向は、そうし
た光線ではそのエネμギーが0.06 ev以下となシ
、効果が低くなってしまうためである。
In addition, the reason for excluding light rays exceeding 20 rays is because such rays have an energy μ of 0.06 ev or less, and are less effective.

本発明において使用する気体については、基本的には、
炭素を含む気体であって0.1〜20μmの光を吸収す
るものであれば良い。実際には炭化水素、ハロゲン化炭
素、有機金属化合物、Co、Cow、アルコール等が挙
げられるが、ハロゲン化炭素は副産物として塩酸やフッ
酸などの強酸を生ずるために装置及び排気系が複雑とな
シ、また、有機金属化合物では金属が膜中に混入して高
純度のダイヤモンド膜とはならない。Co、Cot、ア
ルコ−〜を用いた場合は膜中に酸素が混入し易く、やは
プ高純度な粉体とはならない。
The gases used in the present invention are basically as follows:
Any gas containing carbon and absorbing light of 0.1 to 20 μm may be used. Actually, examples include hydrocarbons, halogenated carbons, organometallic compounds, Co, Cow, and alcohols, but halogenated carbons produce strong acids such as hydrochloric acid and hydrofluoric acid as byproducts, making equipment and exhaust systems complicated. Furthermore, in the case of organometallic compounds, metals are mixed into the film, making it impossible to obtain a highly pure diamond film. When Co, Cot, alcohol, etc. are used, oxygen is likely to be mixed into the film, and a highly pure powder cannot be obtained.

しかし、炭化水素は光吸収データも豊富で取シ扱いやす
く好適である。就中、SP結合から成る飽和炭化水素は
ダイヤモンドへの転換効果が良く、特にメタン(CH4
)が好ましい。
However, hydrocarbons have abundant optical absorption data and are easy to handle and suitable. In particular, saturated hydrocarbons consisting of SP bonds have a good conversion effect into diamond, especially methane (CH4
) is preferred.

本発明によれば、核の生成及び成長にとって反応雰囲気
の圧力及び温度が重要である。
According to the invention, the pressure and temperature of the reaction atmosphere are important for nucleation and growth.

即ち、圧力が大きくなるのに伴ってガスの衝突頻度が高
くなるため、核の形成及び成長を促進するととくなシ、
粒径が大きくなる。この圧力は0ユ乃至100気圧の範
囲に設定するのが望ましく 、0.1気圧未満であると
粉体の合成効率が低下し、100気圧を越えると反応室
が大規模になって設備コストが大きくな夛、更に所定の
波長を有する光線を照射するためのコストも大きくなシ
、製造上不向である。好適には0.3乃至10気圧の範
囲に設定するのがよい。
In other words, as the pressure increases, the frequency of gas collisions increases, which promotes the formation and growth of nuclei.
Particle size increases. It is desirable to set this pressure in the range of 0 U to 100 atm; if it is less than 0.1 atm, the powder synthesis efficiency will decrease, and if it exceeds 100 atm, the reaction chamber will become large-scale and the equipment cost will increase. It is not suitable for manufacturing because it requires a large number of units and also requires a large cost for irradiating a light beam having a predetermined wavelength. It is preferable to set the pressure in the range of 0.3 to 10 atmospheres.

また反応ガス雰囲気の温度は200乃至1100℃の範
囲に設定するのが望ましく、そのための加熱法には外部
加熱法と光加熱法がある。前者はHotWall ′I
7”peであシ、後者は赤外線や遠赤外線の光線を用い
てガス加熱するものである。
Further, the temperature of the reaction gas atmosphere is desirably set in the range of 200 to 1100° C., and heating methods for this purpose include an external heating method and a light heating method. The former is HotWall 'I
The latter uses infrared or far-infrared rays to heat the gas.

かくして本発明の製法によればダイヤモンド生成用ガス
を用いて気相成長させるに際して、ガス雰囲気の圧力と
温度を所定の範囲内に設定すると共に0.1〜20μm
の範囲の波長から選ばれる一定波長の光線を照射すると
活性ガス中の水素が分解脱離しながらダイヤモンド生成
用の核が発生し、結晶成長を行う。
Thus, according to the manufacturing method of the present invention, when performing vapor phase growth using a diamond-forming gas, the pressure and temperature of the gas atmosphere are set within a predetermined range, and at the same time
When irradiated with a light beam of a certain wavelength selected from the range of wavelengths, hydrogen in the active gas decomposes and desorbs, generating nuclei for diamond formation, and crystal growth occurs.

そして、本発明者艦種々の実験によりダイヤモンド生成
用の核が発生するのに要する時間、即ちSP核の維持時
間は少なくとも1μsecであると考える。
Based on various experiments carried out by the present inventors, it is believed that the time required for the generation of diamond-producing nuclei, that is, the maintenance time of SP nuclei, is at least 1 μsec.

〔実施例〕〔Example〕

C例1) 第1図に示す通)、反応室+1)の壁に設け
られた透光性の窓(2)を通し、レンズ系(3)Kよシ
集光させながらレーザー光(A)及びtBlを投光して
、以下の条件によFJCVD法によってダイヤモンド粉
末を生成し友。
C Example 1) Laser light (A) is passed through the translucent window (2) provided on the wall of the reaction chamber +1) shown in Figure 1, and focused by the lens system (3) K. and tBl to generate diamond powder by the FJCVD method under the following conditions.

照射光:レーザー光(A)波長1.32μm、焦点約1
0”Kw/J レーザー光IB)波長10.6μm、焦点約IMW/J 温 度=500℃ 反応気体と供給量:メタン l0QQ/m圧 力=0.
3〜1気圧 本例により0.1〜2 laws  の粒径の粉体が生
成され、X線回折の結果ダイヤモンドのピークが確認で
きた。
Irradiation light: Laser light (A) wavelength 1.32μm, focus approximately 1
0”Kw/J Laser light IB) Wavelength: 10.6 μm, focal point: approximately IMW/J Temperature = 500°C Reaction gas and supply amount: Methane 10QQ/m Pressure = 0.
3 to 1 atm In this example, a powder with a particle size of 0.1 to 2 laws was produced, and a diamond peak was confirmed as a result of X-ray diffraction.

(例2) 第2図に示す通シ、レーザー光tc)を投光
してダイヤモンド粉末を生成した。また反応室(1)の
内部にヒーター(5)を設置してガスの加熱を行なった
(Example 2) Diamond powder was produced by projecting laser light (tc) as shown in FIG. Further, a heater (5) was installed inside the reaction chamber (1) to heat the gas.

照射光:レーザー光(CI ArFエキシマレーザ−波
長0.193 p調 温  度二 600℃ 反応気体と供給量:メタン10 QQ/m水 素10C
C/i 圧 カニ1〜100 m圧 本例により0.5〜20μmの粒径の粉体が生成され、
X線回折の結果、ダイヤモンドのピークが確認できた。
Irradiation light: Laser light (CI ArF excimer laser - wavelength 0.193 p Temperature control 2 600℃ Reaction gas and supply amount: Methane 10 QQ/m Hydrogen 10C
C/i pressure Crab 1-100 m pressure This example produces powder with a particle size of 0.5-20 μm,
As a result of X-ray diffraction, a diamond peak was confirmed.

(例3) 第3図に示す通り、照射光として重水素フン
グ(4)を用いてズ肘、1t(6)により集光させる。
(Example 3) As shown in FIG. 3, a deuterium beam (4) is used as the irradiation light, and the light is focused by the elbow and It (6).

照射光二重水素ランプ、波長160〜400 am温 
 度: 400℃ 反応気体と供給量二メタン10 QC/m水素5QQ/
wets ヘリウム10 CC/i 圧力 0.5気圧 本例により0.2〜0.8μ肩の粒径の粉体が生成され
、X線回折の結果、ダイヤモンドのピークが確認できた
Irradiation light double hydrogen lamp, wavelength 160-400 am temperature
Degree: 400℃ Reaction gas and supply amount dimethane 10 QC/m hydrogen 5QQ/
wets Helium 10 CC/i Pressure 0.5 atm According to this example, a powder having a particle size of 0.2 to 0.8 μm was produced, and a diamond peak was confirmed as a result of X-ray diffraction.

同様に低圧水銀ランプ(184,9nmと253.7 
nmの波長を含む)を用いても0.1〜0.4μm の
ダイヤモンド粉末が生成できた。
Similarly, low-pressure mercury lamps (184.9 nm and 253.7 nm)
Diamond powder of 0.1 to 0.4 μm could be produced even by using a wavelength of 0.1 to 0.4 μm.

〔発明の効果〕〔Effect of the invention〕

本発明においては0.1〜20 amの範囲の波長から
選択される気体の種類に応じて特定の波長の光線を気体
に照射することにより、鵠結合の炭素を効果的に生成さ
せながら、ダイヤモンド粉末を生成させることができた
。従って低コストの製造装置を用いて連続的にダイヤモ
ンド粉末を合成することができた。
In the present invention, by irradiating the gas with a light beam of a specific wavelength selected from the wavelength range of 0.1 to 20 am depending on the type of gas, diamond It was possible to produce powder. Therefore, it was possible to continuously synthesize diamond powder using low-cost production equipment.

更に、本発明の製法により得られたダイヤモンド粉末は
、研摩剤、平面研削板のダイヤモンドホイルの材料、ま
たダイヤモンド焼結体の原料に用いることができるため
工具材料にも好適であシ、種々の広範な分野に用いるこ
とができる。
Furthermore, the diamond powder obtained by the production method of the present invention can be used as an abrasive, a material for diamond foils for surface grinding plates, and as a raw material for diamond sintered bodies, so it is suitable for tool materials as well. It can be used in a wide range of fields.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の実施例に用いられる製造装
置の概略図である。 1−反応室  2−窓
1 to 3 are schematic diagrams of a manufacturing apparatus used in an embodiment of the present invention. 1-Reaction chamber 2-Window

Claims (1)

【特許請求の範囲】[Claims] 気相成長法によりダイヤモンドを合成する方法であつて
、ダイヤモンド生成雰囲気に0.1〜20μmの範囲の
波長から選ばれる一定波長の光線を照射して光エネルギ
ーによる化学反応を促進し、該雰囲気中にダイヤモンド
を含む粉末を生成せしめることを特徴とするダイヤモン
ド粉末の製法。
A method of synthesizing diamond by vapor phase growth, in which a diamond-forming atmosphere is irradiated with a light beam of a certain wavelength selected from a wavelength range of 0.1 to 20 μm to promote a chemical reaction due to light energy. A method for producing diamond powder, characterized by producing a powder containing diamond.
JP60094179A 1985-04-30 1985-04-30 Diamond powder manufacturing method Expired - Lifetime JPH0662357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094179A JPH0662357B2 (en) 1985-04-30 1985-04-30 Diamond powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094179A JPH0662357B2 (en) 1985-04-30 1985-04-30 Diamond powder manufacturing method

Publications (2)

Publication Number Publication Date
JPS61251506A true JPS61251506A (en) 1986-11-08
JPH0662357B2 JPH0662357B2 (en) 1994-08-17

Family

ID=14103106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094179A Expired - Lifetime JPH0662357B2 (en) 1985-04-30 1985-04-30 Diamond powder manufacturing method

Country Status (1)

Country Link
JP (1) JPH0662357B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252174A (en) * 1989-06-19 1993-10-12 Matsushita Electric Industrial Co., Ltd. Method for manufacturing substrates for depositing diamond thin films
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112697A (en) * 1983-11-18 1985-06-19 Agency Of Ind Science & Technol Method and device for synthesizing diamond by photochemical deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112697A (en) * 1983-11-18 1985-06-19 Agency Of Ind Science & Technol Method and device for synthesizing diamond by photochemical deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation
US5252174A (en) * 1989-06-19 1993-10-12 Matsushita Electric Industrial Co., Ltd. Method for manufacturing substrates for depositing diamond thin films

Also Published As

Publication number Publication date
JPH0662357B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPS63107898A (en) Method for synthesizing diamond with plasma
JPS5927754B2 (en) Diamond synthesis method
Kyuragi et al. Synchrotron radiation‐excited chemical vapor deposition of Si x N y H z film
JPS60103098A (en) Manufacture of diamond film
JPS61251506A (en) Production of diamond powder
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPS6184379A (en) Production of high-hardness boron nitride film
JPS60112697A (en) Method and device for synthesizing diamond by photochemical deposition
JPS62265198A (en) Method for synthesizing diamond
JPS6054996A (en) Synthesis of diamond
JPS62158195A (en) Synthesizing method of diamond
JPS61236691A (en) Vapor phase synthesis of diamond
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JP4200271B2 (en) Method for producing fine particles
JPS60116781A (en) Production of boron nitride film having high hardness
JPS63297299A (en) Method for vapor synthesis of diamond
JPH0459769B2 (en)
JP2995339B2 (en) How to make a thin film
JPS6034012A (en) Manufacture of solid thin film
JPS61201694A (en) Vapor phase synthesis method for diamond
JPS63282200A (en) Method of chemical vapor growth for diamond
JPH02298272A (en) Manufacture of oxide thin film and device therefor
JPH04209797A (en) Synthesis of diamond