JPS61201865A - Control equipment of engine - Google Patents

Control equipment of engine

Info

Publication number
JPS61201865A
JPS61201865A JP4331585A JP4331585A JPS61201865A JP S61201865 A JPS61201865 A JP S61201865A JP 4331585 A JP4331585 A JP 4331585A JP 4331585 A JP4331585 A JP 4331585A JP S61201865 A JPS61201865 A JP S61201865A
Authority
JP
Japan
Prior art keywords
engine
air
fuel ratio
surge tank
lean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4331585A
Other languages
Japanese (ja)
Other versions
JPH0363666B2 (en
Inventor
Katsuhiko Sakamoto
勝彦 坂本
Yutaka Oizumi
豊 大泉
Hirobumi Nishimura
博文 西村
Hideo Shiraishi
白石 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP4331585A priority Critical patent/JPS61201865A/en
Publication of JPS61201865A publication Critical patent/JPS61201865A/en
Publication of JPH0363666B2 publication Critical patent/JPH0363666B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve combustion performance of an engine at transition time and thereby prevent deterioration of operative performance by installing an idling engine speed controlling mechanism which judges the over-lean or over- rich state in the transitional period and controls by-pass valve in the idling speed control mechanism and ignition time in accordance with the judgement results. CONSTITUTION:CPU 23 judges the lean-rich state of air-fuel ratio at the transitional period based on negative pressure corresponding signals and averaged signals corresponding to surge tank pressure. The engine is put under such transitional period control as to change the opening of the by-pass valve 15 of an idling speed control mechanism 13 in the direction of closure and correct ignition time to be on the spark advance side in the lean state and effect control in the opposite direction in the rich condition. Therefore, the slippage of air-fuel ratio at the transitional period is diminished, and combustion start-up performance is improved due to optimum ignition time. For this reason, defects in operative performance such as decline in rotational speed and engine stoppage at the time of deceleration and hesitation and stumble at the time of acceleration can be successfully prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンの制御装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an engine control device.

〔従来技術〕[Prior art]

最近、車両用エンジンにおいては、燃料制御精度向上の
観点等から、燃料供給装置として従来の気化器に代えて
燃料噴射装置が用いられる傾向にあり、その1例として
、従来、例えば特開昭59−120727号公報に示さ
れるものがある。即ち、これは、サージタンク上流の吸
気量センサで吸入空気量を検出し、コントロールユニッ
トでこの吸入空気量に応じて燃料噴射量を演算し、これ
に応じた燃料噴射パルスをサージタンク下流の燃料噴射
弁に加えて燃料を噴射供給させるようにしたものである
Recently, in vehicle engines, there has been a tendency to use fuel injection devices as fuel supply devices in place of conventional carburetors from the viewpoint of improving fuel control accuracy. There is one shown in Japanese Patent No.-120727. In other words, the intake air amount is detected by the intake air amount sensor upstream of the surge tank, the control unit calculates the fuel injection amount according to this intake air amount, and the corresponding fuel injection pulse is sent to the fuel downstream of the surge tank. In addition to the injection valve, fuel is injected and supplied.

しかるに上記従来公報記載の装置では、エンジンの過渡
時、例えば減速時には回転の落ち込みやエンストが発生
することがあり、又加速時には加速のもたつき(ヘジテ
ーシヨン)や息つき(スタンプル)が発生することがあ
った。
However, with the device described in the above-mentioned conventional publication, a drop in rotation or stalling may occur during engine transients, such as deceleration, and hesitation or stumpling may occur during acceleration. Ta.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、エンジンの過渡時に
おける運転性の悪化を防止できるエンジンの制御装置を
提供せんとするものである。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an engine control device that can prevent deterioration in drivability during engine transients.

C発明の構成〕 そして本件発明者は、過渡時における運転性の悪化を防
止すべく、その発生メカニズムについて鋭意研究した結
果、次のことがその原因になっていることを見出した。
C. Structure of the Invention] In order to prevent the deterioration of drivability during transient periods, the inventor of the present invention conducted extensive research into the mechanism of its occurrence, and found that the following causes it.

例えばエンジンの減速時においては、スロットル弁が閉
じられると、エンジン回転数はその慣性のためにゆっく
りと低下しく第4図の特性曲線a参照)、吸気量センサ
て噴出される吸入空気量はスロットル弁を通過する吸入
空気量(第4図の特性曲sb参照)にほぼ等しれる吸入
主気貢はサージタンク内の圧力(第4図特性曲線C参照
)に比例し、サージタンクの容積が大きいと、その圧力
変化はコントロールユニットで燃料供給量の制御に使用
される吸気空気量相当圧力(第4図の特性曲線d参照)
の変化に比して遅れ、その結果混合気の空燃比は減速時
前半(第4図のA部参照)ではリーン側に、減速時後半
(第4図のB部参照)ではリッチ側にずれ、燃焼性が悪
化して上述のように回転の落ち込み、エンストが発生す
るものである。また加速時の場合にはこれと逆の現象に
て混合気の空燃比変動が生ずるものと考えられる。
For example, when the engine is decelerating, when the throttle valve is closed, the engine speed slowly decreases due to its inertia (see characteristic curve a in Figure 4), and the intake air amount blown out by the intake air amount sensor is determined by the throttle valve. The main suction air force, which is approximately equal to the amount of intake air passing through the valve (see characteristic curve sb in Figure 4), is proportional to the pressure in the surge tank (see characteristic curve C in Figure 4), and the volume of the surge tank is If it is large, the pressure change will be equivalent to the intake air amount pressure used by the control unit to control the fuel supply amount (see characteristic curve d in Figure 4).
As a result, the air-fuel ratio of the mixture shifts to the lean side during the first half of deceleration (see section A in Figure 4), and to the rich side during the second half of deceleration (see section B in Figure 4). , the combustibility deteriorates, causing a drop in rotation and engine stalling as described above. Furthermore, during acceleration, it is thought that the air-fuel ratio of the air-fuel mixture changes due to the opposite phenomenon.

また最近、車両エンジンにおいては、スロットル弁をバ
イパスするバイパス通路と、このバイパス通路に流れる
空気量を制御するバイパス弁とを設け、このバイパス弁
の開度を制御してアイドル回転数を制御するようにした
ものが提案されている。
Recently, vehicle engines have been equipped with a bypass passage that bypasses the throttle valve and a bypass valve that controls the amount of air flowing through this bypass passage, and the idle speed is controlled by controlling the opening degree of this bypass valve. It has been proposed that

そして上述の燃料噴射装置を備えたエンジンにおいても
、上記のようなアイドル回転数制御機構を設け、エンジ
ンの過渡時においてバイパス通路に流れる空気量を制御
するようにすれば、サージタンク内の圧力変化の遅れを
低減でき、空燃比変動を小さくできるものと期待される
。しがもこの場合、これと同時にエンジンの燃焼状態を
支配する点火時期を補正するようにすれば、空燃比変動
時における着火性を向上でき、上記燃焼性の悪化に起因
する運転性悪化の問題をより確実に解消できるものと期
待される。
Even in an engine equipped with the fuel injection device described above, if an idle speed control mechanism as described above is provided to control the amount of air flowing into the bypass passage during engine transients, pressure changes in the surge tank can be prevented. It is expected that this will reduce the delay in air-fuel ratio fluctuations and reduce air-fuel ratio fluctuations. However, in this case, if the ignition timing that governs the combustion state of the engine is corrected at the same time, the ignition performance during air-fuel ratio fluctuations can be improved, and the problem of deterioration of drivability due to the deterioration of combustibility described above can be improved. It is expected that the problem can be resolved more reliably.

そこでこの発明は、サージタンク上流の吸気量センサの
出力により、サージタンク下流の燃料噴射弁からの燃料
供給量を制御するようにしたエンジンにおいて、アイド
ル回転数制御機構を設け、過渡時におけるオーバリーン
、オーバリッチ状態を判別し、その判別結果に応じてア
イドル回転数制御機構のバイパス弁と点火時期とを制御
するよろにしたものである。
Therefore, the present invention provides an idle rotation speed control mechanism in an engine that controls the amount of fuel supplied from a fuel injection valve downstream of the surge tank based on the output of an intake air amount sensor upstream of the surge tank. The overrich state is determined and the bypass valve of the idle speed control mechanism and the ignition timing are controlled according to the determination result.

即ち、この発明は、第1図の機能ブロック図に示される
ように、サージタンク25上流に吸気量センサ27を、
サージタンク25下流に燃料噴射弁28を設け、燃料制
御手段29で吸気量センサ27の出力を受けて燃料噴射
弁28からの燃料供給量を制御し、又サージタンク25
上流の吸気通路26に設けられたスロットル弁30をバ
イパスするバイパス通路31と、このバイパス通路31
に流れる空気量を制御するパイ、バス弁32とを設け、
アイドル回転数制御手段33でバイパス弁32の開度を
制御してアイドル運転時のアイドル回転数を制御し、一
方判別手段34でスロットル弁30変化時におけるエン
ジンに吸入される空燃比のリーンもしくはリッチ状態を
判別し、過渡時制御手段35が判別手段34の出力を受
け空燃比のリーン状態ではアイドル回転数制御手段33
を制御してバイパス弁32を閉作動させるとともにエン
ジンの点火時期を進角側に補正し、空燃比のリッチ状態
ではアイドル回転数制御手段33を制御してバイパス弁
32を開作動させるとともにエンジンの点火時期を遅角
側に補正するようにしたものである。
That is, as shown in the functional block diagram of FIG. 1, this invention includes an intake air amount sensor 27 upstream of the surge tank 25,
A fuel injection valve 28 is provided downstream of the surge tank 25, and a fuel control means 29 receives the output of the intake air amount sensor 27 to control the amount of fuel supplied from the fuel injection valve 28.
A bypass passage 31 that bypasses the throttle valve 30 provided in the upstream intake passage 26;
A pipe and a bus valve 32 are provided to control the amount of air flowing into the
The idle speed control means 33 controls the opening degree of the bypass valve 32 to control the idle speed during idling operation, while the discrimination means 34 determines whether the air-fuel ratio taken into the engine is lean or rich when the throttle valve 30 changes. The transient control means 35 receives the output of the determination means 34 and controls the idle speed control means 33 when the air-fuel ratio is lean.
is controlled to close the bypass valve 32 and correct the engine's ignition timing to the advanced side, and when the air-fuel ratio is rich, the idle speed control means 33 is controlled to open the bypass valve 32 and the engine's ignition timing is adjusted to the advanced side. The ignition timing is corrected to the retarded side.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図及び第3図は本発明の一実施例によるエンジンの
制御装置を示す。第2図において、1はエンジンで、該
エンジンIには吸気ポート2と連通して吸気管3が接続
され、該吸気ボート2と吸気管3とは吸気通路4を構成
している。この吸気通路4の下流側は隔壁5によって高
負荷吸気通路6とスワール生成用低負荷吸気通路7とに
画成され、上記高負荷吸気通路6にはスワール制御弁8
が配設されている。
FIGS. 2 and 3 show an engine control device according to an embodiment of the present invention. In FIG. 2, reference numeral 1 denotes an engine, and an intake pipe 3 is connected to the engine I in communication with an intake port 2, and the intake boat 2 and the intake pipe 3 constitute an intake passage 4. The downstream side of the intake passage 4 is defined by a partition wall 5 into a high-load intake passage 6 and a low-load intake passage 7 for generating swirl, and the high-load intake passage 6 has a swirl control valve 8.
is installed.

また上記吸気通路4のスワール制御弁8の下流側には燃
料噴射弁9が配設され、一方、吸気通路4のスワール制
御弁8の上流側にはサージタンクlOが形成され、その
上流側にはスロットル弁1)が配設され、吸気通路4の
上流端はエアクリーナ12に至っている。
Further, a fuel injection valve 9 is disposed downstream of the swirl control valve 8 in the intake passage 4, while a surge tank IO is formed upstream of the swirl control valve 8 in the intake passage 4; A throttle valve 1) is provided, and the upstream end of the intake passage 4 reaches an air cleaner 12.

さらに上記吸気通路4にはアイドル回転数制御機構13
が設けられている。この制御機構13において、吸気通
路4にはスロットル弁1)をバイパスしてバイパス通路
14が分岐形成され、該バイパス通路14の途中には該
通路14に流れる空気量を制御するバイパス弁15が配
設されている。
Furthermore, an idle rotation speed control mechanism 13 is provided in the intake passage 4.
is provided. In this control mechanism 13, a bypass passage 14 is branched into the intake passage 4 by bypassing the throttle valve 1), and a bypass valve 15 for controlling the amount of air flowing into the passage 14 is arranged in the middle of the bypass passage 14. It is set up.

また図中、16は電子進角装置16aを有するディスト
リビュータ、17はサージタンク10上流である吸気通
路4の上流端近傍に設けられ、吸入空気量を検出するベ
ーンタイプの吸気量センサ、18は吸入空気の温度を検
出する吸気温センサ、19はスロットル弁1)の開度を
検出するスロットルセンサ、20はエンジンの回転角を
検出するクランク角センサ、21はインターフェイス2
2゜CPU23及びメモリ24からなるエンジンコント
ロールユニットで、上記メモリ24には第3図に示すC
PU23の演算処理のプログラム等が格納されている。
Further, in the figure, 16 is a distributor having an electronic advance device 16a, 17 is a vane-type intake air amount sensor that is provided near the upstream end of the intake passage 4 upstream of the surge tank 10 and detects the amount of intake air, and 18 is an intake air amount sensor. 19 is a throttle sensor that detects the opening of the throttle valve 1); 20 is a crank angle sensor that detects the rotation angle of the engine; 21 is an interface 2
2. An engine control unit consisting of a CPU 23 and a memory 24, and the memory 24 has a C as shown in FIG.
Programs for arithmetic processing of the PU 23, etc. are stored.

また上記CPU23は、エンジン回転数と吸入空気量と
から負圧相当信号を求め、これとエンジン回転数とに応
じた燃料噴射パルスを演算作成しこれを燃料噴射弁9に
加えて燃料を噴射供給させるという燃料供給量の制御を
行ない、又アイドル運転時にはアイドル回転数が所定回
転数になるようにアイドル回転数制御機構13のバイパ
ス弁15の開度をフィードバック制御するというアイド
ル回転数制御を行なうとともに、通常運転時はバイパス
弁15の開度を中間位置に制御する。またCPU23は
、エンジン回転数と上記負圧相当信号とからエンジンの
点火時期を演算しこれをディストリビュータ16の電子
進角装置16aに加えてエンジンの点火時期制御を行な
い、又低負荷時にはスワール制御弁8を閉じて低負荷吸
気通路7のみから吸気を供給させて燃焼室内にスワール
を生成させ、高負荷時はスワール制御弁8を開作動させ
て低負荷及び高負荷の両吸気通路7.6から吸気を供給
させるというスワール制御弁8の制御を行なう。
Further, the CPU 23 obtains a negative pressure equivalent signal from the engine speed and the intake air amount, calculates and creates a fuel injection pulse according to this and the engine speed, and adds it to the fuel injection valve 9 to inject and supply fuel. In addition, during idling operation, the idle speed control is performed by feedback controlling the opening degree of the bypass valve 15 of the idle speed control mechanism 13 so that the idle speed becomes a predetermined speed. During normal operation, the opening degree of the bypass valve 15 is controlled to an intermediate position. Further, the CPU 23 calculates the ignition timing of the engine from the engine speed and the negative pressure equivalent signal, and adds this to the electronic advance device 16a of the distributor 16 to control the ignition timing of the engine, and also controls the swirl control valve at low load. 8 is closed to supply intake air only from the low-load intake passage 7 to generate a swirl in the combustion chamber, and when the load is high, the swirl control valve 8 is opened and air is supplied from both the low-load and high-load intake passages 7.6. The swirl control valve 8 is controlled to supply intake air.

そしてCPU23は、上記負圧相当信号とこれを平均化
処理して求めたサージタンク圧力相当信号とからエンジ
ンの過渡時における空燃比のリーン、リッチ状態を判別
し、空燃比のリーン状態ではアイドル回転数制御機構1
3のバイパス弁15の開度を閉方向に制御するとともに
エンジンの点火時期を進角側に補正し、空燃比のリッチ
状態では上記バイパス弁15の開度を開方向に制御する
とともにエンジンの点火時期を遅角側に補正するという
過渡時制御を行なう。
Then, the CPU 23 determines whether the air-fuel ratio is lean or rich during engine transients from the negative pressure equivalent signal and the surge tank pressure equivalent signal obtained by averaging the signals, and when the air-fuel ratio is lean, the idle speed is Number control mechanism 1
The opening degree of the bypass valve 15 of No. 3 is controlled in the closing direction, and the ignition timing of the engine is corrected to the advanced side, and when the air-fuel ratio is rich, the opening degree of the bypass valve 15 is controlled in the opening direction, and the engine ignition timing is corrected. Transient control is performed to correct the timing to the retarded side.

なお以上のような構成において、上記CPU23が第1
図に示す燃料制御手段29.アイドル回転数制御手段3
31判別手段34及び過渡時制御手段35の機能を実現
するものとなっている。
Note that in the above configuration, the CPU 23 is the first
Fuel control means 29 shown in the figure. Idle speed control means 3
The functions of the 31 discrimination means 34 and the transient control means 35 are realized.

次に第3図のフローチャートを用いて動作について説明
する。
Next, the operation will be explained using the flowchart shown in FIG.

エンジンが作動すると、CPU23はまず入力データで
ある吸気量センサ17.吸気温センサ■8、スロットル
センサ19及びクランク角センサ20の出力を読み込み
(ステップ40)、クランク角センサ20の出力からエ
ンジン回転数Neを演算しくステップ41)、この回転
数Neでもって吸入空気量Qaを割算して負圧相当信号
TPを求め(ステップ42)、エンジン回転数Neと負
圧相当信号TPとからエンジンの点火時期θ1を演算す
るとともにさらに必要に応じてこれに水温補正を加える
(ステップ43)。次にCPU23は、エンジンがアイ
ドル時か否かを判定しくステップ44)、アイドル時の
場合は目標アイドル回転数と実際回転数との差に応じた
バイパス弁15の補正開度GFBを求めるとともにこれ
とバイパス弁15の基本開度GBとからバイパス弁15
の目標開度G1を演算しくステップ45)、一方アイド
ル時でない場合はバイパス弁15の中立開度G(50%
)を目標開度G1としくステップ46)、又上記求めた
負圧相当信号TP、前回の負圧相当信号TP、サージタ
ンク10及びその下流側の容積から負圧相当信号TPの
平均化処理演算を行なってサージタンク10内の圧力相
当信号TPNを求め(ステップ47)、このサージタン
ク圧力相当信号TPNと上記負圧相当信号TPとが等し
いか否かを判定しくステップ48)、等しくない場合は
サージタンク圧力相当信号TPNと負圧相当信号TPと
の差に応じて補正信号θ2.G2を求めて(ステップ4
9)、これでもって点火時期θl及びバイパス弁15の
目標開度G1を補正しくステップ50)、所定のタイミ
ングになるとこして求めた点火時期θ1をディストリビ
ュータ16の電子進角装置16aに、目標開度G1をア
イドル回転数制御機構13のバイパス弁15に加え(ス
テップ51)、これによりエンジンは上記点火時期θl
でもって点火され、又エンジンにはスロットル弁1)の
開度によって決まる吸入空気量に加えてアイドル回転数
制御機構13のバイパス弁15の開度によって決まる空
気が吸入されることとなる。
When the engine starts, the CPU 23 first receives input data from the intake air amount sensor 17. Read the outputs of the intake temperature sensor 8, throttle sensor 19, and crank angle sensor 20 (step 40), calculate the engine speed Ne from the output of the crank angle sensor 20 (step 41), and use this rotation speed Ne to determine the intake air amount. The negative pressure equivalent signal TP is obtained by dividing Qa (step 42), and the engine ignition timing θ1 is calculated from the engine rotation speed Ne and the negative pressure equivalent signal TP, and further water temperature correction is added to this as necessary. (Step 43). Next, the CPU 23 determines whether or not the engine is idling (step 44). If the engine is idling, the CPU 23 determines the corrected opening GFB of the bypass valve 15 according to the difference between the target idle speed and the actual speed. and the basic opening degree GB of the bypass valve 15, the bypass valve 15 is
Calculate the target opening G1 of the bypass valve 15 (Step 45), and if it is not idling, calculate the neutral opening G1 of the bypass valve 15 (50%
) as the target opening degree G1 (step 46), and averaging processing calculation of the negative pressure equivalent signal TP obtained above, the previous negative pressure equivalent signal TP, and the volume of the surge tank 10 and its downstream side. to determine the pressure equivalent signal TPN in the surge tank 10 (step 47), and determine whether this surge tank pressure equivalent signal TPN and the negative pressure equivalent signal TP are equal (step 48), and if they are not equal, A correction signal θ2. is generated according to the difference between the surge tank pressure equivalent signal TPN and the negative pressure equivalent signal TP. Finding G2 (Step 4
9) With this, the ignition timing θl and the target opening G1 of the bypass valve 15 are correctly corrected.Step 50) When the predetermined timing is reached, the ignition timing θ1 obtained through this is sent to the electronic advance device 16a of the distributor 16 to set the target opening. degree G1 is applied to the bypass valve 15 of the idle speed control mechanism 13 (step 51), whereby the engine is controlled at the ignition timing θl.
As a result, the engine is ignited, and in addition to the intake air amount determined by the opening degree of the throttle valve 1), air determined by the opening degree of the bypass valve 15 of the idle speed control mechanism 13 is sucked into the engine.

ここで点火時期θ1及びバイパス弁15の目標開度G1
の補正信号θ2及びG2は、負圧相当信号TPがサージ
タンク圧力相当信号TPNより小さい場合、即ち空燃比
がリーン側にずれる場合はバイパス弁15の開度を閉方
向に、点火時期を進角側に補正する値に、又負圧相当信
号TPがサージタンク圧力相当信号TPN以上の場合、
即ち空燃比がリッチ側にずれる場合はバイパス弁15の
開度を開方向に、点火時期を遅角側に補正する値に設定
されている。
Here, the ignition timing θ1 and the target opening G1 of the bypass valve 15
When the negative pressure equivalent signal TP is smaller than the surge tank pressure equivalent signal TPN, that is, when the air-fuel ratio deviates to the lean side, the correction signals θ2 and G2 change the opening degree of the bypass valve 15 to the closing direction and advance the ignition timing. If the negative pressure equivalent signal TP is higher than the surge tank pressure equivalent signal TPN,
That is, when the air-fuel ratio deviates to the rich side, the opening degree of the bypass valve 15 is set to a value that corrects it to the opening direction and the ignition timing to the retarded side.

またCPU23は、上記負圧相当信号TPとエンジン回
転数Neとから燃料噴射量を演算し、所定のタイミング
になるとこの燃料噴射量に応じた燃料噴射パルスを燃料
噴射弁9に加えて燃料を噴、  射供給させ、又スロッ
トルセンサ19の出力からエンジンの負荷状態を検出し
、低負荷時はスワール制御弁8に閉信号を加えてスワー
ル制御弁8を閉作動させ、低負荷吸気通路7のみから吸
入空気を速い流速でもって供給させて燃焼室内に強いス
ワールを生成させ、一方高負荷時はスワール制御弁8に
開信号を加えてスワール制御弁8を開作動させ、低負荷
及び高負荷の両吸気通路7.6からの多量の吸入空気を
円滑に供給させることとなる。
Further, the CPU 23 calculates the fuel injection amount from the negative pressure equivalent signal TP and the engine speed Ne, and at a predetermined timing, applies a fuel injection pulse corresponding to the fuel injection amount to the fuel injection valve 9 to inject the fuel. , the engine load condition is detected from the output of the throttle sensor 19, and when the load is low, a close signal is applied to the swirl control valve 8 to close the swirl control valve 8, and air is supplied only from the low-load intake passage 7. Intake air is supplied at a high flow rate to generate a strong swirl inside the combustion chamber, and when the load is high, an open signal is applied to the swirl control valve 8 to open the swirl control valve 8. A large amount of intake air is smoothly supplied from the intake passage 7.6.

以上のような本実施例の装置では、負圧相当信号とサー
ジタンク圧力相当信号とがら空燃比のリーンもしくはり
フチ状態を判別してバイパス弁を開閉作動させるととも
に点火時期を遅角進角させるようにしたので、エンジン
の過渡時においてサージタンクの圧力変化に遅れが生ず
るのを抑制して空燃比のずれを軽減でき、しかも変動空
燃比に応じた最適な点火時期でもって点火して着燃性を
向上して燃焼性を大幅に改善でき、その結果減速時にお
ける回転の落ち込み、エンスト、あるいは加速時におけ
るヘジテーション、スタンプル等の運転性の悪化を防止
できる。
The device of this embodiment as described above determines whether the air-fuel ratio is lean or on the edge based on the negative pressure equivalent signal and the surge tank pressure equivalent signal, opens and closes the bypass valve, and retards and advances the ignition timing. As a result, it is possible to suppress the delay in pressure change in the surge tank during engine transients and reduce deviations in the air-fuel ratio.Furthermore, ignition is achieved with the optimal ignition timing according to the fluctuating air-fuel ratio, improving ignition performance. As a result, deterioration in drivability such as drop in rotation during deceleration, engine stalling, hesitation and stumpling during acceleration can be prevented.

なお本発明は上記実施例に限定されるものではなく、種
々の変形・変更が可能であり、例えばCPU23の演算
処理のフローチャートは同様の機能を達成するものであ
れば第3図と異なるものであってもよい、またサージタ
ンク圧力相当信号は吸入空気量とエンジン回転数とから
求めた負圧相当信号を平均化処理して求めるのではなく
、直接サージタンク内の圧力を検出して求めるようεこ
してもよい。またアイドル回転数の制御は回転数のフィ
ードバック制御のみではなく、さらにこれに加えてター
ラ負荷、電気負荷等の他の条件による制御を行なうよう
にしてもよい。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications and changes are possible. For example, the flowchart of the arithmetic processing of the CPU 23 may be different from that shown in FIG. 3 as long as it achieves the same function. Also, the surge tank pressure equivalent signal should not be obtained by averaging the negative pressure equivalent signal obtained from the intake air amount and engine speed, but by directly detecting the pressure in the surge tank. ε You can strain it. Further, the control of the idle rotation speed is not limited to feedback control of the rotation speed, and in addition to this, control may be performed based on other conditions such as the Tara load and the electric load.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、サージタンク上流の吸気
量−センサの出力により、サージタンク下流の燃料噴射
弁からの燃料供給量を制御するようにしたエンジンにお
いて、アイドル回転数制御機構を設け、過渡時における
オーバリーン、オーバリッチ状態を判別し、その判別結
果に応じてアイドル回転数制御機構のバイパス弁と点火
時期とを制御するようにしたので、エンジンの過渡時に
おける燃焼性を向上して運転性を改善できる効果がある
As described above, according to the present invention, an idle rotation speed control mechanism is provided in an engine in which the amount of fuel supplied from the fuel injection valve downstream of the surge tank is controlled by the output of the intake air amount sensor upstream of the surge tank. The over-lean and over-rich conditions are determined during transient times, and the bypass valve and ignition timing of the idle speed control mechanism are controlled according to the determination results, thereby improving the combustibility of the engine during transient times. It has the effect of improving drivability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す機能ブロック図、第2図は
本発明の一実施例によるエンジンの制御装置の概略構成
図、第3図は上記装置におけるCPU23の演算処理の
フローチャートを示す図、第4図は本発明の詳細な説明
するためのエンジン回転数、スロットル弁通過吸入空気
量及び吸気相当圧力とチャンバ内圧力の変化を示す図で
ある。 25・・・サージタンク、26・・・吸気通路、27・
・・吸気量センサ、28・・・燃料噴射弁、29−・・
燃料制御手段、30・・・スロットル弁、31・・・バ
イパス通路、32・・・バイパス弁、33・・・アイド
ル回転数制御手段、34・・・判別手段、35・・・過
渡時制御手段、l・・・エンジン、4・・・吸気通路、
9・・・燃料噴射弁、1)・・・スロットル弁、14・
・・バイパス通路、15・・・バイパス弁、17・・・
吸気量センサ、23・・・CPU0 特 許 出 願 人  マツダ株式会社代理人   弁
理士  早 瀬 憲 −第1図 第3図
FIG. 1 is a functional block diagram showing the configuration of the present invention, FIG. 2 is a schematic configuration diagram of an engine control device according to an embodiment of the present invention, and FIG. 3 is a diagram showing a flowchart of arithmetic processing of the CPU 23 in the above device. , FIG. 4 is a diagram showing changes in engine speed, intake air amount passing through a throttle valve, intake equivalent pressure, and chamber internal pressure for detailed explanation of the present invention. 25... surge tank, 26... intake passage, 27...
...Intake air amount sensor, 28...Fuel injection valve, 29-...
Fuel control means, 30... Throttle valve, 31... Bypass passage, 32... Bypass valve, 33... Idle speed control means, 34... Discrimination means, 35... Transient control means , l...engine, 4...intake passage,
9... Fuel injection valve, 1)... Throttle valve, 14...
...Bypass passage, 15...Bypass valve, 17...
Intake air flow sensor, 23...CPU0 Patent applicant: Mazda Motor Corporation representative Patent attorney Ken Hayase - Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)サージタンク上流に設けられた吸気量センサと、
該吸気量センサの出力を受けサージタンク下流に設けら
れた燃料噴射弁からの燃料供給量を制御する燃料制御手
段と、サージタンク上流の吸気通路に設けられたスロツ
トル弁をバイパスするバイパス通路と、該バイパス通路
に設けられたバイパス弁と、該バイパス弁の開度を制御
してアイドル運転時のアイドル回転数を制御するアイド
ル回転数制御手段と、スロツトル弁変化時におけるエン
ジンに吸入される空燃比のリーンもしくはリツチ状態を
判別する判別手段と、該判別手段の出力を受け空燃比の
リーン状態では上記アイドル回転数制御手段を制御して
上記バイパス弁を閉作動させるとともにエンジンの点火
時期を進角側に補正する一方空燃比のリツチ状態では上
記エンジン回転数制御手段を制御して上記バイパス弁を
開作動させるとともにエンジンの点火時期を遅角側に補
正する過渡時制御手段とを備えたことを特徴とするエン
ジンの制御装置。
(1) An intake air amount sensor installed upstream of the surge tank,
a fuel control means that receives the output of the intake air amount sensor and controls the amount of fuel supplied from a fuel injection valve provided downstream of the surge tank; a bypass passage that bypasses a throttle valve provided in the intake passage upstream of the surge tank; A bypass valve provided in the bypass passage, an idle rotation speed control means that controls the opening degree of the bypass valve to control the idle rotation speed during idle operation, and an air-fuel ratio taken into the engine when the throttle valve changes. determining means for determining whether the air-fuel ratio is lean or rich; and receiving the output of the determining means, when the air-fuel ratio is lean, the idle speed control means is controlled to close the bypass valve and advance the ignition timing of the engine. On the other hand, in a rich state of the air-fuel ratio, the engine rotation speed control means is controlled to open the bypass valve, and the ignition timing of the engine is corrected to the retard side. Characteristic engine control device.
JP4331585A 1985-03-05 1985-03-05 Control equipment of engine Granted JPS61201865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4331585A JPS61201865A (en) 1985-03-05 1985-03-05 Control equipment of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4331585A JPS61201865A (en) 1985-03-05 1985-03-05 Control equipment of engine

Publications (2)

Publication Number Publication Date
JPS61201865A true JPS61201865A (en) 1986-09-06
JPH0363666B2 JPH0363666B2 (en) 1991-10-02

Family

ID=12660370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4331585A Granted JPS61201865A (en) 1985-03-05 1985-03-05 Control equipment of engine

Country Status (1)

Country Link
JP (1) JPS61201865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385260A (en) * 1986-09-25 1988-04-15 Nippon Denso Co Ltd Ignition timing controller for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797044A (en) * 1980-12-06 1982-06-16 Toyota Motor Corp Controller for intake air volume of internal combustion engine during fuel out-off
JPS5828596A (en) * 1981-08-13 1983-02-19 Toyota Motor Corp Electronic engine controller
JPS5963330A (en) * 1982-10-04 1984-04-11 Toyota Motor Corp Method of controlling electrically controlled internal- combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797044A (en) * 1980-12-06 1982-06-16 Toyota Motor Corp Controller for intake air volume of internal combustion engine during fuel out-off
JPS5828596A (en) * 1981-08-13 1983-02-19 Toyota Motor Corp Electronic engine controller
JPS5963330A (en) * 1982-10-04 1984-04-11 Toyota Motor Corp Method of controlling electrically controlled internal- combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385260A (en) * 1986-09-25 1988-04-15 Nippon Denso Co Ltd Ignition timing controller for internal combustion engine

Also Published As

Publication number Publication date
JPH0363666B2 (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JP3780577B2 (en) Engine ignition timing control device
JP3677876B2 (en) Engine ignition timing control device
US6966299B2 (en) Start control device and start control method for internal combustion engine
JPH0465227B2 (en)
JPS61201865A (en) Control equipment of engine
JPH04191433A (en) Combustion control device for engine
JPH0313421B2 (en)
JP2932183B2 (en) Engine fuel supply
JP4357388B2 (en) Control method for internal combustion engine
JPS6189936A (en) Control apparatus of engine
JPH0742876B2 (en) Electronic control unit for internal combustion engine
JPH0586934A (en) Transient fuel quantity corrector for engine
JP2530640B2 (en) Control device for fuel injection engine
JP2600718B2 (en) Fuel injection amount control method for internal combustion engine
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0454057B2 (en)
JP2712188B2 (en) Engine knock control device
JPS58195057A (en) Assist air control method for internal-combustion engine
JPH01310146A (en) Ignition timing controller of internal combustion engine
JPH01305151A (en) Ignition timing control device for internal combustion engine
JP5206221B2 (en) Method and system for controlling the fuel supply of an internal combustion engine
JPH0755302Y2 (en) Engine intake air amount control device
JPH01271659A (en) Device for controlling idling speed of engine
JPH10274084A (en) Control device for engine
JPS62168939A (en) Control device for internal combustion engine with supercharger