JPH0363666B2 - - Google Patents

Info

Publication number
JPH0363666B2
JPH0363666B2 JP60043315A JP4331585A JPH0363666B2 JP H0363666 B2 JPH0363666 B2 JP H0363666B2 JP 60043315 A JP60043315 A JP 60043315A JP 4331585 A JP4331585 A JP 4331585A JP H0363666 B2 JPH0363666 B2 JP H0363666B2
Authority
JP
Japan
Prior art keywords
engine
valve
air
fuel
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60043315A
Other languages
Japanese (ja)
Other versions
JPS61201865A (en
Inventor
Katsuhiko Sakamoto
Yutaka Ooizumi
Hirobumi Nishimura
Hideo Shiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP4331585A priority Critical patent/JPS61201865A/en
Publication of JPS61201865A publication Critical patent/JPS61201865A/en
Publication of JPH0363666B2 publication Critical patent/JPH0363666B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エンジンの制御装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an engine control device.

〔従来技術〕[Prior art]

最近、車両用エンジンにおいては、燃料制御精
度向上の観点等から、燃料供給装置として従来の
気化器に代えて燃料噴射装置が用いられる傾向に
あり、その1例として、従来、例えば実開昭59−
120727号公報に示されるものがある。即ち、これ
は、サージタンク上流の吸気量センサで吸入空気
量を検出し、コントロールユニツトでこの吸入空
気量に応じて燃料噴射量を演算し、これに応じた
燃料噴射パルスをサージタンク下流の燃料噴射弁
に加えて燃料を噴射供給させるようにしたもので
ある。
Recently, in vehicle engines, there has been a tendency to use fuel injection devices instead of conventional carburetors as fuel supply devices from the viewpoint of improving fuel control accuracy. −
There is one shown in Publication No. 120727. That is, the intake air amount is detected by the intake air amount sensor upstream of the surge tank, the control unit calculates the fuel injection amount according to this intake air amount, and the corresponding fuel injection pulse is sent to the fuel downstream of the surge tank. In addition to the injection valve, fuel is injected and supplied.

しかるに上記従来公報記載の装置では、エンジ
ンの過渡時、例えば減速時には回転の落ち込みや
エンストが発生することがあり、又加速時には加
速のもたつき(ヘジテーシヨン)や息つき(スタ
ンブル)が発生することがあつた。
However, with the device described in the above-mentioned conventional publication, a drop in rotation or stalling may occur during engine transients, such as deceleration, and hesitation or stumble may occur during acceleration. Ta.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる問題点に鑑み、エンジンの
過渡時における運転性の悪化を防止できるエンジ
ンの制御装置を提供せんとするものである。
SUMMARY OF THE INVENTION In view of these problems, it is an object of the present invention to provide an engine control device that can prevent deterioration in drivability during engine transients.

〔発明の構成〕[Structure of the invention]

そして本発明は、過渡時における運転性の悪化
を防止すべく、その発生メカニズムについて鋭意
研究した結果、次のことがその原因になつている
ことを見出した。例えばエンジンの減速時におい
ては、スロツトル弁が閉じられると、エンジン回
転数はその慣性のためにゆつくりと低下し(第4
図の特性曲線a参照)、吸気量センサで検出され
る吸入空気量はスロツトル弁を通過する吸入空気
量(第4図の特性曲線b参照)にほぼ等しいと考
えられる。一方、エンジンに実際に吸入される吸
入空気量はサージタンク内の圧力(第4図の特性
曲線c参照)に比例し、サージタンクの容積が大
きいと、その圧力変化はコントロールユニツトで
燃料供給量の制御に使用される吸気空気量相当圧
力(第4図の特性曲線d参照)の変化に比して遅
れ、その結果混合気の空燃比は減速時前半(第4
図のA部参照)ではリーン側に、減速時後半(第
4図のB部参照)ではリツチ側にずれ、燃焼性が
悪化して上述のように回転の落ち込み、エンスト
が発生するものである。また加速時の場合にはこ
れと逆の現象にて混合気の空燃比変動が生ずるも
のと考えられる。
In order to prevent the deterioration of drivability during a transient period, the present invention conducted intensive research on the mechanism of its occurrence, and as a result, discovered that the following causes the deterioration. For example, when the engine is decelerating, when the throttle valve is closed, the engine speed slowly decreases due to its inertia (the fourth
It is considered that the amount of intake air detected by the intake air amount sensor is approximately equal to the amount of intake air passing through the throttle valve (see characteristic curve b in FIG. 4). On the other hand, the amount of intake air actually taken into the engine is proportional to the pressure inside the surge tank (see characteristic curve c in Figure 4). As a result, the air-fuel ratio of the mixture lags behind the change in the intake air amount equivalent pressure (see characteristic curve d in Figure 4) used to control the air-fuel ratio during deceleration.
In the latter half of deceleration (see part B in Figure 4), the engine shifts to the lean side, and in the second half of deceleration (see part B in Figure 4), it shifts to the rich side, resulting in poor combustibility, resulting in a drop in rotation and engine stalling as described above. . Furthermore, during acceleration, it is thought that the air-fuel ratio of the air-fuel mixture changes due to the opposite phenomenon.

また最近、車両エンジンにおいては、スロツト
ル弁をバイパスするバイパス通路と、このバイパ
ス通路に流れる空気量を制御するバイパス弁とを
設け、このバイパス弁の開度を制御してアイドル
回転数を制御するようにしたものが提案されてい
る。
Recently, vehicle engines have been equipped with a bypass passage that bypasses the throttle valve and a bypass valve that controls the amount of air flowing into this bypass passage, and the idle speed is controlled by controlling the opening degree of this bypass valve. It has been proposed that

そして上述の燃料噴射装置を備えたエンジンに
おいても、上記のようなアイドル回転数制御機構
を設け、エンジンの過渡時においてバイパス通路
に流れる空気量を制御するようにすれば、サージ
タンク内の圧力変化の遅れを低減でき、空燃比変
動を小さくできるものと期待される。しかもこの
場合、これと同時にエンジンの燃焼状態を支配す
る点火時期を補正するようにすれば、空燃比変動
時における着火性を向上でき、上記燃焼性の悪化
に起因する運転性悪化の問題をより確実に解消で
きるものと期待される。
Even in an engine equipped with the fuel injection device described above, if an idle speed control mechanism as described above is provided to control the amount of air flowing into the bypass passage during engine transients, pressure changes in the surge tank can be prevented. It is expected that this will reduce the delay in air-fuel ratio fluctuations and reduce air-fuel ratio fluctuations. Moreover, in this case, by simultaneously correcting the ignition timing that governs the combustion state of the engine, it is possible to improve ignition performance when the air-fuel ratio fluctuates, and to further reduce the problem of deterioration of drivability caused by the deterioration of combustibility. It is hoped that the problem can be resolved.

そこでこの発明は、サージタンク上流の吸気量
センサの出力により、サージタンク下流の燃料噴
射弁からの燃料供給量を制御するようにしたエン
ジンにおいて、アイドル回転数制御機構を設け、
過渡時におけるオーバリーン,オーバリツチ状態
を判別し、その判別結果に応じてアイドル回転数
制御機構のバイパス弁と点火時期とを制御するよ
うにしたものである。
Therefore, the present invention provides an idle rotation speed control mechanism in an engine that controls the amount of fuel supplied from a fuel injection valve downstream of the surge tank based on the output of an intake air amount sensor upstream of the surge tank.
The over-lean and over-rich conditions are determined during a transient period, and the bypass valve of the idle speed control mechanism and the ignition timing are controlled according to the determination result.

即ち、この発明は、第1図の機能ブロツク図に
示されるように、サージタンク25上流に吸気量
センサ27を、サージタンク25下流に燃料噴射
弁28を設け、燃料制御手段29で吸気量センサ
27の出力を受けて燃料噴射弁28からの燃料供
給量を制御し、又サージタンク25上流の吸気通
路26に設けられたスロツトル弁30をバイパス
するバイパス通路31と、このバイパス通路31
に流れる空気量を制御するバイパス弁32とを設
け、アイドル回転数制御手段33でバイパス弁3
2の開度を制御してアイドル運転時のアイドル回
転数を制御し、一方判別手段34でスロツトル弁
30変化時におけるエンジンに吸入される空燃比
のリーンもしくはリツチ状態を判別し、過渡時制
御手段35が判別手段34の出力を受け空燃比の
リーン状態ではアイドル回転数制御手段33を制
御してバイパス弁32を閉作動させるとともにエ
ンジンの点火時期を進角側に補正し、空燃比のリ
ツチ状態ではアイドル回転数制御手段33を制御
してバイパス弁32を開作動させるとともにエン
ジンの点火時期を遅角側に補正するようにしたも
のである。
That is, in the present invention, as shown in the functional block diagram of FIG. a bypass passage 31 that controls the amount of fuel supplied from the fuel injection valve 28 in response to the output of the fuel injection valve 27 and bypasses the throttle valve 30 provided in the intake passage 26 upstream of the surge tank 25;
A bypass valve 32 is provided to control the amount of air flowing into the bypass valve 3.
2 to control the idling speed during idling operation, while the determining means 34 determines whether the air-fuel ratio taken into the engine is lean or rich when the throttle valve 30 changes, and the transient control means 35 receives the output of the determining means 34, and when the air-fuel ratio is in a lean state, controls the idle speed control means 33 to close the bypass valve 32 and correct the ignition timing of the engine to the advanced side, so that the air-fuel ratio is in a rich state. In this example, the idle speed control means 33 is controlled to open the bypass valve 32 and the ignition timing of the engine is corrected to the retarded side.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図及び第3図は本発明の一実施例によるエ
ンジンの制御装置を示す。第2図において、1は
エンジンで、該エンジン1には吸気ポート2と連
通して吸気管3が接続され、該吸気ポート2と吸
気管3とは吸気通路4を構成している。この吸気
通路4の下流側は隔壁5によつて高負荷吸気通路
6とスワール生成用低負荷吸気通路7とに画成さ
れ、上記高負荷吸気通路6にはスワール制御弁8
が配設されている。
FIGS. 2 and 3 show an engine control device according to an embodiment of the present invention. In FIG. 2, reference numeral 1 denotes an engine, and an intake pipe 3 is connected to the engine 1 in communication with an intake port 2, and the intake port 2 and the intake pipe 3 constitute an intake passage 4. The downstream side of this intake passage 4 is defined by a partition 5 into a high-load intake passage 6 and a low-load intake passage 7 for generating swirl, and the high-load intake passage 6 has a swirl control valve 8.
is installed.

また上記吸気通路4のスワール制御弁8の下流
側には燃料噴射弁9が配設され、一方、吸気通路
4のスワール制御弁8の上流側にはサージタンク
10が形成され、その上流側にはスロツトル弁1
1が配設され、吸気通路4の上流端はエアクリー
ナ12に至つている。
Further, a fuel injection valve 9 is disposed downstream of the swirl control valve 8 in the intake passage 4, while a surge tank 10 is formed upstream of the swirl control valve 8 in the intake passage 4; is throttle valve 1
1 is disposed, and the upstream end of the intake passage 4 reaches an air cleaner 12.

さらに上記吸気通路4にはアイドル回転数制御
機構13が設けられている。この制御機構13に
おいて、吸気通路4にはスロツトル弁11をバイ
パスしてバイパス通路14が分岐形成され、該バ
イパス通路14の途中には該通路14に流れる空
気量を制御するバイパス弁15が配設されてい
る。
Further, the intake passage 4 is provided with an idle rotation speed control mechanism 13. In this control mechanism 13, a bypass passage 14 is branched into the intake passage 4 by bypassing the throttle valve 11, and a bypass valve 15 for controlling the amount of air flowing into the passage 14 is disposed in the middle of the bypass passage 14. has been done.

また図中、16は電子進角装置16aを有する
デイストリビユータ、17はサージタンク10上
流である吸気通路4の上流端近傍に設けられ、吸
入空気量を検出するベーンタイプの吸気量セン
サ、18は吸入空気の温度を検出する吸気温セン
サ、19はスロツトル弁11の開度を検出するス
ロツトルセンサ、20はエンジンの回転角を検出
するクランク角センサ、21はインターフエイス
22,CPU23及びメモリ24からなるエンジ
ンコントロールユニツトで、上記メモリ24には
第3図に示すCPU23の演算処理のプログラム
等が格納されている。
Further, in the figure, 16 is a distributor having an electronic advance angle device 16a, 17 is a vane type intake air amount sensor that is provided near the upstream end of the intake passage 4 upstream of the surge tank 10 and detects the amount of intake air, 18 19 is a throttle sensor that detects the opening degree of the throttle valve 11; 20 is a crank angle sensor that detects the rotation angle of the engine; 21 is an interface 22, a CPU 23, and a memory 24; The memory 24 stores programs for arithmetic processing of the CPU 23 shown in FIG. 3.

また上記CPU23は、エンジン回転数と吸入
空気量とから負圧相当信号を求め、これとエンジ
ン回転数とに応じた燃料噴射パルスを演算作成し
これを燃料噴射弁9を加えて燃料を噴射供給させ
るという燃料供給量の制御を行ない、又アイドル
運転時にはアイドル回転数が所定回転数になるよ
うにアイドル回転数制御機構13のバイパス弁1
5の開度をフイードバツク制御するというアイド
ル回転数制御を行なうとともに、通常運転時はバ
イパス弁15の開度を中間位置に制御する。また
CPU23は、エンジン回転数と上記負圧相当信
号とからエンジンの点火時期を演算しこれをデイ
ストリビユータ16の電子進角装置16aに加え
てエンジンの点火時期制御を行ない、又低負荷時
にはスワール制御弁8を閉じて低負荷吸気通路7
のみから吸気を供給させて燃焼室内にスワールを
生成させ、高負荷時はスワール制御弁8を開作動
させて低負荷及び高負荷の両吸気通路7,6から
吸気を供給させるというスワール制御弁8の制御
を行なう。
Further, the CPU 23 obtains a negative pressure equivalent signal from the engine speed and the intake air amount, calculates and creates a fuel injection pulse according to this and the engine speed, and adds this to the fuel injection valve 9 to inject and supply fuel. The bypass valve 1 of the idle rotation speed control mechanism 13 controls the fuel supply amount by controlling the fuel supply amount so that the idle rotation speed becomes a predetermined rotation speed during idling operation.
Idle rotation speed control is performed by feedback controlling the opening degree of the bypass valve 15, and the opening degree of the bypass valve 15 is controlled to an intermediate position during normal operation. Also
The CPU 23 calculates the ignition timing of the engine from the engine speed and the negative pressure equivalent signal, and adds this to the electronic advance device 16a of the distributor 16 to control the ignition timing of the engine, and also controls the swirl at low load. Close the valve 8 and open the low-load intake passage 7
The swirl control valve 8 generates a swirl in the combustion chamber by supplying intake air from only the intake passages 7 and 6 at low load and high load by opening the swirl control valve 8 when the load is high. control.

そしてCPU23は、上記負圧相当信号とこれ
を平均化処理して求めたサージタンク圧力相当信
号とからエンジンの過渡時における空燃比のリー
ン,リツチ状態を判別し、空燃比のリーン状態で
はアイドル回転数制御機構13のバイパス弁15
の開度を閉方向に制御するとともにエンジンの点
火時期を進角側に補正し、空燃比のリツチ状態で
は上記バイパス弁15の開度を開方向に制御する
とともにエンジンの点火時期を遅角側に補正する
という過渡時制御を行なう。
Then, the CPU 23 determines whether the air-fuel ratio is lean or rich during engine transients from the negative pressure equivalent signal and the surge tank pressure equivalent signal obtained by averaging the signals, and when the air-fuel ratio is lean, the idle speed is Bypass valve 15 of number control mechanism 13
The opening of the bypass valve 15 is controlled in the closing direction, and the ignition timing of the engine is corrected to the advanced side, and when the air-fuel ratio is rich, the opening of the bypass valve 15 is controlled in the opening direction, and the ignition timing of the engine is corrected to the retarded side. Transient control is performed to compensate for the

なお以上のような構成において、上記CPU2
3が第1図に示す燃料制御手段29,アイドル回
転数制御手段33,判別手段34及び過渡時制御
手段35の機能を実現するものとなつている。
In addition, in the above configuration, the CPU 2
3 realizes the functions of the fuel control means 29, the idle speed control means 33, the discrimination means 34, and the transient control means 35 shown in FIG.

次に第3図のフローチヤートを用いて動作につ
いて説明する。
Next, the operation will be explained using the flowchart shown in FIG.

エンジンが作動すると、CPU23はまず入力
データである吸気量センサ17,吸気温センサ1
8,スロツトルセンサ19及びクランク角センサ
20の出力を読み込み(ステツプ40)、クランク
角センサ20の出力からエンジン回転数Neを演
算し(ステツプ41)、この回転数Neでもつて吸入
空気量Qaを割算して負圧相当信号TPを求め(ス
テツプ42)、エンジン回転数Neと負圧相当信号
TPとからエンジンの点火時期θ1を演算すると
ともにさらに必要に応じてこれに水温補正を加え
る(ステツプ43)。次にCPU23は、エンジンが
アイドル時か否かを判定し(ステツプ44)、アイ
ドル時の場合は目標アイドル回転数と実際回転数
との差に応じたバイパス弁15の補正開度GFB
を求めるとともにこれとバイパス弁15の基本開
度GBとからバイパス弁15の目標開度G1を演
算し(ステツプ45)、一方アイドル時でない場合
はバイパス弁15の中立開度G(50%)を目標開
度G1とし(ステツプ46)、又上記求めた負圧相
当信号TP,前回の負圧相当信号TP,サージタン
ク10及びその下流側の容積から負圧相当信号
TPの平均化処理演算を行なつてサージタンク1
0内の圧力相当信号TPNを求め(ステツプ47)、
このサージタンク圧力相当信号TPNと上記負圧
相当信号TPとが等しいか否かを判定し(ステツ
プ48)、負圧相当信号が大きい場合(TP>TPN)
には燃料噴射量に対して空気量が大きくオーバー
リーンと判定し、反対に負圧相当信号が小さい場
合(TP<TPN)には燃料噴射量に対して空気量
が小さくオーバーリツチと判定し、サージタンク
圧力相当信号TPNと負圧相当信号TPとの差に応
じて補正信号θ2,G2を求めて(ステツプ49)、
これでもつて点火時期θ1及びバイパス弁15の
目標開度G1を補正し(ステツプ50)、所定のタ
イミングになるとこう して求めた点火時期θ1をデイストリビユータ1
6の電子進角装置16aに、目標開度G1をアイ
ドル回転数制御機構13のバイパス弁15に加え
(ステツプ51)、これによりエンジンは上記点火時
期θ1でもつて点火され、又エンジンにはスロツ
トル弁11の開度によつて決まる吸入空気量に加
えてアイドル回転数制御機構13のバイパス弁1
5の開度によつて決まる空気が吸入されることと
なる。
When the engine starts, the CPU 23 first receives input data such as the intake air amount sensor 17 and the intake air temperature sensor 1.
8. Read the outputs of the throttle sensor 19 and crank angle sensor 20 (step 40), calculate the engine rotation speed Ne from the output of the crank angle sensor 20 (step 41), and calculate the intake air amount Qa using this rotation speed Ne. The negative pressure equivalent signal TP is obtained by dividing (step 42), and the engine speed Ne and the negative pressure equivalent signal are
The ignition timing θ1 of the engine is calculated from the TP, and if necessary, water temperature correction is added thereto (step 43). Next, the CPU 23 determines whether or not the engine is idling (step 44), and if the engine is idling, the corrected opening GFB of the bypass valve 15 is determined according to the difference between the target idle speed and the actual speed.
is determined, and from this and the basic opening degree GB of the bypass valve 15, the target opening degree G1 of the bypass valve 15 is calculated (step 45).On the other hand, if the idle state is not reached, the neutral opening degree G (50%) of the bypass valve 15 is calculated. Set the target opening G1 (step 46), and obtain the negative pressure equivalent signal TP obtained above, the previous negative pressure equivalent signal TP, and the negative pressure equivalent signal from the volume of the surge tank 10 and its downstream side.
After performing TP averaging processing calculation, surge tank 1
Find the pressure equivalent signal TPN within 0 (step 47),
It is determined whether this surge tank pressure equivalent signal TPN and the negative pressure equivalent signal TP are equal (step 48), and if the negative pressure equivalent signal is large (TP>TPN).
If the air amount is large compared to the fuel injection amount and it is judged as overlean, on the other hand, if the negative pressure equivalent signal is small (TP<TPN), the air amount is small compared to the fuel injection amount and judged as overrich. Calculate correction signals θ2 and G2 according to the difference between the surge tank pressure equivalent signal TPN and the negative pressure equivalent signal TP (step 49),
With this, the ignition timing θ1 and the target opening G1 of the bypass valve 15 are corrected (step 50), and at the predetermined timing, the ignition timing θ1 obtained in this way is displayed on the distributor 1.
The target opening degree G1 is applied to the electronic advance device 16a of No. 6 to the bypass valve 15 of the idle speed control mechanism 13 (step 51), and as a result, the engine is ignited at the ignition timing θ1. In addition to the intake air amount determined by the opening degree of 11, the bypass valve 1 of the idle speed control mechanism 13
Air determined by the opening degree of No. 5 will be inhaled.

ここで点火時期θ1及びバイパス弁15の目標
開度G1の補正信号θ2及びG2は、負圧相当信
号TPがサージタンク圧力相当信号TPNより小さ
い場合、即ち空燃比がリーン側にずれる場合はバ
イパス弁15の開度を閉方向に、点火時期を進角
側に補正する値に、又負圧相当信号TPがサージ
タンク圧力相当信号TPN以上の場合、即ち空燃
比がリツチ側にずれる場合はバイパス弁15の開
度を開方向に、点火時期を遅角側に補正する値に
設定されている。
Here, the correction signals θ2 and G2 for the ignition timing θ1 and the target opening G1 of the bypass valve 15 are determined by the bypass valve when the negative pressure equivalent signal TP is smaller than the surge tank pressure equivalent signal TPN, that is, when the air-fuel ratio shifts to the lean side. 15 to the closing direction, and the ignition timing to the advance side, and when the negative pressure equivalent signal TP is greater than the surge tank pressure equivalent signal TPN, that is, when the air-fuel ratio shifts to the rich side, the bypass valve 15 is set to a value that corrects the opening degree in the opening direction and the ignition timing to the retarded side.

またCPU23は、上記負圧相当信号TPとエン
ジン回転数Neとから燃料噴射量を演算し、所定
のタイミングになるとこの燃料噴射量に応じた燃
料噴射パルスを燃料噴射弁9に加えて燃料を噴射
供給させ、又スロツトルセンサ19の出力からエ
ンジンの負荷状態を検出し、低負荷時はスワール
制御弁8に閉信号を加えてスワール制御弁8を閉
作動させ、低負荷吸気通路7のみから吸入空気を
速い流速でもつて供給させて燃焼室内に強いスワ
ールを生成させ、一方負荷時はスワール制御弁8
に開信号を加えてスワール制御弁8を開作動さ
せ、低負荷及び高負荷の両吸気通路7,6からの
多量の吸入空気を円滑に供給させることとなる。
The CPU 23 also calculates the fuel injection amount from the negative pressure equivalent signal TP and the engine speed Ne, and at a predetermined timing, applies a fuel injection pulse corresponding to the fuel injection amount to the fuel injection valve 9 to inject the fuel. In addition, the engine load condition is detected from the output of the throttle sensor 19, and when the load is low, a close signal is applied to the swirl control valve 8 to close the swirl control valve 8, and the intake air is drawn only from the low-load intake passage 7. Air is supplied at a high flow rate to generate a strong swirl inside the combustion chamber, while under load, the swirl control valve 8
An open signal is applied to the swirl control valve 8 to open the swirl control valve 8, thereby smoothly supplying a large amount of intake air from both the low-load and high-load intake passages 7 and 6.

以上のような本実施例の装置では、負圧相当信
号とサージタンク圧力相当信号とから空燃比のリ
ーンもしくはリツチ状態を判別してバイパス弁を
開閉作動させるとともに点火時期を遅角進角させ
るようにしたので、エンジンの過渡時においてサ
ージタンクの圧力変化に遅れを生ずるのを抑制し
て空燃比のずれを軽減でき、しかも変動空燃比に
応じた最適な点火時期でもつて点火して着燃性を
向上して燃焼性を大幅に改善でき、その結果減速
時における回転の落ち込み,エンスト,あるいは
加速時におけるヘジテーシヨン,スタンブル等の
運転性の悪化を防止できる。
The device of this embodiment as described above determines whether the air-fuel ratio is lean or rich from the negative pressure equivalent signal and the surge tank pressure equivalent signal, opens and closes the bypass valve, and retards and advances the ignition timing. As a result, it is possible to suppress the delay in pressure changes in the surge tank during engine transients and reduce deviations in the air-fuel ratio.Furthermore, it is possible to ignite at the optimal ignition timing according to the fluctuating air-fuel ratio, improving ignition performance. As a result, deterioration in drivability such as drop in rotation during deceleration, engine stalling, hesitation and stumble during acceleration can be prevented.

なお本発明は上記実施例に限定されるものでは
なく、種々の変形・変更が可能であり、例えば
CPU23の演算処理のフローチヤートは同様の
機能を達成するものであれば第3図と異なるもの
であつてもよい。またサージタンク圧力相当信号
は吸入空気量とエンジン回転数とから求めた負圧
相当信号を平均化処理して求めるのではなく、直
接サージタンク内の圧力を検出して求めるように
してもよい。またアイドル回転数の制御は回転数
のフイードバツク制御のみではなく、さらにこれ
に加えてクーラ負荷,電気負荷等の他の条件によ
る制御を行なうようにしてもよい。
Note that the present invention is not limited to the above embodiments, and various modifications and changes are possible, for example,
The flowchart of the arithmetic processing of the CPU 23 may be different from that shown in FIG. 3 as long as it achieves the same function. Further, the signal corresponding to the surge tank pressure may be obtained by directly detecting the pressure in the surge tank, instead of being obtained by averaging the negative pressure corresponding signal obtained from the intake air amount and the engine rotational speed. Further, the control of the idle rotational speed is not limited to feedback control of the rotational speed, but may also be controlled based on other conditions such as cooler load, electrical load, etc.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、サージタンク上
流の吸気量センサの出力により、サージタンク下
流の燃料噴射弁からの燃料供給量を制御するよう
にしたエンジンにおいて、アイドル回転数制御機
構を設け、過渡時におけるオーバリーン,オーバ
リツチ状態を判別し、その判別結果に応じてアイ
ドル回転数制御機構のバイパス弁と点火時期とを
制御するようにしたので、エンジンの過渡時にお
ける燃焼性を向上して運転性を改善できる効果が
ある。
As described above, according to the present invention, in an engine in which the amount of fuel supplied from the fuel injection valve downstream of the surge tank is controlled by the output of the intake air amount sensor upstream of the surge tank, an idle rotation speed control mechanism is provided, The over-lean and over-rich conditions during transient times are determined, and the bypass valve of the idle speed control mechanism and ignition timing are controlled according to the determination results, improving combustibility during engine transient times and improving driveability. It has the effect of improving

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示す機能ブロツク図、
第2図は本発明の一実施例によるエンジンの制御
装置の概略構成図、第3図は上記装置における
CPU23の演算処理のフローチヤートを示す図、
第4図は本発明の構成を説明するためのエンジン
回転数,スロツトル弁通過吸入空気量及び吸気相
当圧力とチヤンバ内圧力の変化を示す図である。 25……サージタンク、26……吸気通路、2
7……吸気量センサ、28……燃料噴射弁、29
……燃料制御手段、30……スロツトル弁、31
……バイパス通路、32……バイパス弁、33…
…アイドル回転数制御手段、34……判別手段、
35……過渡時制御手段、1……エンジン、4…
…吸気通路、9……燃料噴射弁、11……スロツ
トル弁、14……バイパス通路、15……バイパ
ス弁、17……吸気量センサ、23……CPU。
FIG. 1 is a functional block diagram showing the configuration of the present invention.
FIG. 2 is a schematic configuration diagram of an engine control device according to an embodiment of the present invention, and FIG.
A diagram showing a flowchart of arithmetic processing of the CPU 23,
FIG. 4 is a diagram showing changes in engine speed, intake air amount passing through the throttle valve, intake equivalent pressure, and chamber internal pressure for explaining the configuration of the present invention. 25...Surge tank, 26...Intake passage, 2
7...Intake air amount sensor, 28...Fuel injection valve, 29
... Fuel control means, 30 ... Throttle valve, 31
...Bypass passage, 32...Bypass valve, 33...
...Idle rotation speed control means, 34...Discrimination means,
35...transient control means, 1...engine, 4...
...Intake passage, 9...Fuel injection valve, 11...Throttle valve, 14...Bypass passage, 15...Bypass valve, 17...Intake air amount sensor, 23...CPU.

Claims (1)

【特許請求の範囲】[Claims] 1 サージタンク上流に設けられた吸気量センサ
と、該吸気量センサの出力を受けサージタンク下
流に設けられた燃料噴射弁からの燃料供給量を制
御する燃料制御手段と、サージタンク上流の吸気
通路に設けられたスロツトル弁をバイパスするバ
イパス通路と、該バイパス通路に設けられたバイ
パス弁と、該バイパス弁の開度を制御してアイド
ル運転時のアイドル回転数を制御するアイドル回
転数制御手段と、スロツトル弁変化時におけるエ
ンジンに吸入される空燃比のリーンもしくはリツ
チ状態を判別する判別手段と、該判別手段の出力
を受け空燃比のリーン状態では上記アイドル回転
数制御手段を制御して上記バイパス弁を閉作動さ
せるとともにエンジンの点火時期を進角側に補正
する一方空燃比のリツチ状態では上記エンジン回
転数制御手段を制御して上記バイパス弁を開作動
させるとともにエンジンの点火時期を遅角側に補
正する過渡時制御手段とを備えたことを特徴とす
るエンジンの制御装置。
1. An intake air amount sensor provided upstream of the surge tank, a fuel control means that receives the output of the intake air amount sensor and controls the amount of fuel supplied from a fuel injection valve provided downstream of the surge tank, and an intake passage upstream of the surge tank. a bypass passage that bypasses a throttle valve provided in the bypass passage; a bypass valve provided in the bypass passage; and an idle rotation speed control means that controls the opening degree of the bypass valve to control the idle rotation speed during idle operation. , a determining means for determining whether the air-fuel ratio taken into the engine is lean or rich when the throttle valve changes; and in response to the output of the determining means, the idle speed control means is controlled to control the idle speed control means when the air-fuel ratio is in the lean state; The valve is closed and the engine's ignition timing is corrected to the advanced side, while when the air-fuel ratio is rich, the engine speed control means is controlled to open the bypass valve and the engine's ignition timing is retarded. 1. A control device for an engine, comprising: a transient control means for correcting.
JP4331585A 1985-03-05 1985-03-05 Control equipment of engine Granted JPS61201865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4331585A JPS61201865A (en) 1985-03-05 1985-03-05 Control equipment of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4331585A JPS61201865A (en) 1985-03-05 1985-03-05 Control equipment of engine

Publications (2)

Publication Number Publication Date
JPS61201865A JPS61201865A (en) 1986-09-06
JPH0363666B2 true JPH0363666B2 (en) 1991-10-02

Family

ID=12660370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4331585A Granted JPS61201865A (en) 1985-03-05 1985-03-05 Control equipment of engine

Country Status (1)

Country Link
JP (1) JPS61201865A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765557B2 (en) * 1986-09-25 1995-07-19 日本電装株式会社 Control device for internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797044A (en) * 1980-12-06 1982-06-16 Toyota Motor Corp Controller for intake air volume of internal combustion engine during fuel out-off
JPS5828596A (en) * 1981-08-13 1983-02-19 Toyota Motor Corp Electronic engine controller
JPS5963330A (en) * 1982-10-04 1984-04-11 Toyota Motor Corp Method of controlling electrically controlled internal- combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797044A (en) * 1980-12-06 1982-06-16 Toyota Motor Corp Controller for intake air volume of internal combustion engine during fuel out-off
JPS5828596A (en) * 1981-08-13 1983-02-19 Toyota Motor Corp Electronic engine controller
JPS5963330A (en) * 1982-10-04 1984-04-11 Toyota Motor Corp Method of controlling electrically controlled internal- combustion engine

Also Published As

Publication number Publication date
JPS61201865A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US6966299B2 (en) Start control device and start control method for internal combustion engine
JPS6356416B2 (en)
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JP3985419B2 (en) Control device for internal combustion engine
JPH0363666B2 (en)
JPS58144633A (en) Method for electronically controlling fuel injection in internal-combustion engine
JP2515300B2 (en) Ignition timing control device for internal combustion engine
JPH03488B2 (en)
JP2932183B2 (en) Engine fuel supply
JPH057546B2 (en)
JP2651202B2 (en) Engine fuel injection device
JPS61101634A (en) Air-fuel ratio controlling method for internal-combustion engine
JP2712556B2 (en) Fuel injection amount control device for internal combustion engine
JPS58195057A (en) Assist air control method for internal-combustion engine
JPS62265446A (en) Idling revolution-number controller for internal combustion engine
JPH01271659A (en) Device for controlling idling speed of engine
JP5206221B2 (en) Method and system for controlling the fuel supply of an internal combustion engine
JP2600718B2 (en) Fuel injection amount control method for internal combustion engine
JPH01237342A (en) Rotational speed controller of internal combustion engine
JPH059621B2 (en)
JPH10274084A (en) Control device for engine
JPH04191450A (en) Fuel characteristic detecting method for engine
JPS61201850A (en) Control device of engine
JPS6287636A (en) Air-fuel ratio controller for internal combustion engine
JPH0531647B2 (en)