JPS61173459A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS61173459A
JPS61173459A JP60015051A JP1505185A JPS61173459A JP S61173459 A JPS61173459 A JP S61173459A JP 60015051 A JP60015051 A JP 60015051A JP 1505185 A JP1505185 A JP 1505185A JP S61173459 A JPS61173459 A JP S61173459A
Authority
JP
Japan
Prior art keywords
fiber
activated carbon
capacity
battery
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60015051A
Other languages
Japanese (ja)
Other versions
JPH0530290B2 (en
Inventor
Eiji Tanaka
栄治 田中
Tetsuya Tsushima
津島 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP60015051A priority Critical patent/JPS61173459A/en
Publication of JPS61173459A publication Critical patent/JPS61173459A/en
Publication of JPH0530290B2 publication Critical patent/JPH0530290B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an organic electrolyte battery having high capacity, low decrease in capacity at low temperature, and good discharge performance by using hollow activated carbon fibers as a polarizing electrode. CONSTITUTION:Two sheet-shaped hollow activated carbon fibers 2, 4 serving as electrodes are immersed in an organic electrolyte solution and charged by applying voltage. The electromotive force generated during discharge by dissolution of impurities doped in the electrode is utilized as a battery. The hollow activated carbon fiber is obtained in such a way that rayon, acrylic fiber, phenol family fiber, vinylon, or pitch carbon fiber is used as a raw material, and infusible treatment is applied to the surface of the fiber by using an infusibilizing agent and fusible part in the core of fiber is removed by dry distillation, then the fiber is activated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機電解質電池に係り、更に詳しくは高容量カ
一つ低温容量ならびに放電特性に優れた性質を有する有
機電解質電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an organic electrolyte battery, and more particularly to an organic electrolyte battery having high capacity, low-temperature capacity, and excellent discharge characteristics.

〔従来の技術〕[Conventional technology]

近年、小型バックアップ用電源としてポリアセチレンや
粉末活性炭、活性t#織繊維分極性電極素材として用い
た高容量有機電解質電池が開発されつつある。しかしな
がらポリアセチレンは極めて不安定な物質であり、その
工業的製法も未だ確立されていない。更にポリアセチレ
ンを電極として用いても、電池として具備すべき性能で
ある電圧の平担性が得られない。さらにポリアセチレン
でΦ は、空気による劣化も大きく、かつ充電容量も大くする
ことができないという欠点があり、実用化には程遠い状
況である。
In recent years, high-capacity organic electrolyte batteries using polyacetylene, powdered activated carbon, and activated T# woven fibers as polarizable electrode materials have been developed as small-sized backup power sources. However, polyacetylene is an extremely unstable substance, and an industrial method for producing it has not yet been established. Furthermore, even if polyacetylene is used as an electrode, voltage flatness, which is the performance that a battery should have, cannot be obtained. Furthermore, polyacetylene with Φ has the drawbacks of being severely degraded by air and the charging capacity cannot be increased, so it is far from being put to practical use.

これらの欠点を改良したものとして粉末活性炭や活性炭
繊維を用いた有機電解質電池(キャパシターともいわれ
ている。)が知られている。
Organic electrolyte batteries (also called capacitors) using powdered activated carbon or activated carbon fibers are known as improvements to these drawbacks.

例えば、特開昭55−99714号公報は活性炭繊維を
電極とした電気二重層キャパシターに関するもので、活
性炭を使用した場合より単位体積当りの充電容量が大き
いこと内部抵抗が増大せず、効率が低下しない旨述べら
れている。また特開昭58−35881号公報には、比
表面積が1.000〜10.000 ’/yの特殊な構
造を有する炭素繊維を電極として使用した電池が開示さ
れており、大きな起電力と電圧平担性を有する旨述べら
れている。
For example, Japanese Patent Application Laid-Open No. 55-99714 relates to an electric double layer capacitor using activated carbon fiber as an electrode, which has a larger charging capacity per unit volume than when activated carbon is used, does not increase internal resistance, and reduces efficiency. It is stated that it will not. Furthermore, Japanese Patent Application Laid-Open No. 58-35881 discloses a battery using carbon fibers having a special structure with a specific surface area of 1.000 to 10.000'/y as an electrode, which has a large electromotive force and voltage. It is stated that it has flatness.

一方、粉末活性炭を用いる場合には、これを導電性フィ
ルム(金属、導電性プラスチック)上に塗布成型して用
いるが、この場合作業性も悪く、高比表面積の活性炭を
用いても粒子同志の接触が悪く内部抵抗が増し、実用上
の容量を低下させるという欠点が有った。。
On the other hand, when powdered activated carbon is used, it is coated and molded onto a conductive film (metal, conductive plastic), but in this case workability is poor, and even if activated carbon with a high specific surface area is used, the particles do not stick together. This had the disadvantage of poor contact, increased internal resistance, and decreased practical capacity. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

活性炭繊維を用いる場合には接触抵抗の増大という問題
点は粉末炭に比べ改善されるが、常温での容量も小く、
実用上特に問題となる低温(0’C以下)での容量が小
さい点が実用上大きな問題点として残されている。これ
を解決するためには、賦活を進めて高度に賦活した活性
炭繊維を用いる必要が有った。
When activated carbon fibers are used, the problem of increased contact resistance is improved compared to powdered carbon, but the capacity at room temperature is also small.
The small capacity at low temperatures (below 0'C), which is a particular problem in practice, remains a major problem in practice. In order to solve this problem, it was necessary to use highly activated activated carbon fibers.

しかし、このように賦活を進めると、活性炭繊維の強度
が低下して繊維が折れ、内部抵抗が増大し易く、放電時
の電圧平担性も不良となる。またこの場合は賦活収率も
低下するためコストアップとなる。
However, when activation is advanced in this manner, the strength of the activated carbon fibers decreases, the fibers tend to break, internal resistance increases, and voltage flatness during discharge becomes poor. Furthermore, in this case, the activation yield also decreases, resulting in an increase in cost.

本発明は、かかる問題点を解決せんとして成されたもの
であり、高容量かつ低温での容量低下が少なく、放電特
性の良い有機電解質電池を提供することにある。
The present invention has been made to solve these problems, and it is an object of the present invention to provide an organic electrolyte battery with high capacity, less capacity loss at low temperatures, and good discharge characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは分極性電極として種々の比表面積及び形状
を有する炭素系素材について検討した結果、中空状活性
炭繊維が従来知られていた素材とくらべて著しく大きな
容量を有することを見出した。更に中空状活性炭繊維を
用いた場合は賦活をそれ程進めなくても、換言すれば賦
活による収率をそれ程低下させなくても相当大きな容量
を賦与できる。更に従来特に間頌となっていた低温時の
容量低下が少なく、また放電時の電圧平担性も良好とす
ることができ本発明に到達した。すなわち、中空状活性
炭繊維を分極性電極とする有機電解質電池である。以下
本発明について詳しく説明する。
The present inventors investigated carbon-based materials having various specific surface areas and shapes as polarizable electrodes, and found that hollow activated carbon fibers have a significantly larger capacity than conventionally known materials. Furthermore, when hollow activated carbon fibers are used, a considerably large capacity can be imparted without proceeding with activation to a great extent, or in other words, without significantly reducing the yield due to activation. Furthermore, the capacity drop at low temperatures, which has been a problem in the past, is small, and the voltage flatness during discharge is also good, and the present invention has been achieved. That is, it is an organic electrolyte battery that uses hollow activated carbon fibers as polarizable electrodes. The present invention will be explained in detail below.

ここで有機電解質電池とは、電解質として水を全く含ま
ない有機溶媒に無機または有機塩類を溶解した溶液を使
用した電池をいう。本発明にかかる電池は電極として2
枚のシート状の中空状活性炭繊維を有機電解質溶液に浸
漬したものに外部から電圧をかけて充電した後、放電過
程で電極にドープされた不純物が溶液に溶は出す際発生
する起電力を電池として利用するものである。
Here, the organic electrolyte battery refers to a battery that uses a solution of inorganic or organic salts dissolved in an organic solvent that does not contain any water as an electrolyte. The battery according to the present invention has two electrodes as electrodes.
After a sheet-like hollow activated carbon fiber is immersed in an organic electrolyte solution and charged by applying an external voltage, the electromotive force generated when impurities doped in the electrode are dissolved into the solution during the discharge process is used as a battery. It is used as a.

その他、中空状活性炭繊維ンこ対する対電極として、金
属単体電極を用い、金属イオンを含む電解質溶液に浸し
た際金属がイオンとして溶は出し、且つ金属イオンが中
空状活性炭繊aにドープされる過程で発生する起電力を
電池として利用する構成とすることもできる。
In addition, a single metal electrode is used as a counter electrode for the hollow activated carbon fibers, and when immersed in an electrolyte solution containing metal ions, the metal is dissolved as ions, and the metal ions are doped into the hollow activated carbon fibers a. It is also possible to use a configuration in which the electromotive force generated during the process is used as a battery.

この際、電解質としては難還元性陽イオンと難酸化性陰
イオン力1らなる安定な無機又は有機塩類で、カミつ溶
媒に対する溶解度の大きいものが好ましい。実際にはに
PF、、KCNS、 LiC加a、(CHg )s N
Br 。
In this case, the electrolyte is preferably a stable inorganic or organic salt consisting of a hard-to-reducible cation and a hard-to-oxidize anion and has a high solubility in a solid solvent. Actually, PF, KCNS, LiC a, (CHg)s N
Br.

KBF4、LiCt1AtCt!、LiBF4、NaP
F6、テトラブチルアンモニウムバークロレート、テト
ラエチルアンモニウムバークロレートなどが使用可能で
あるが、これに限定されるものではない。
KBF4, LiCt1AtCt! , LiBF4, NaP
F6, tetrabutylammonium verchlorate, tetraethylammonium verchlorate, and the like can be used, but are not limited thereto.

又、本発明の電池に用いる溶媒としては、比導電率がl
O〜10  Ωa程度で、かつ粘度が小さく電解質の溶
解度が大きく、電気分解されにくい難酸化還元性のもの
が好ましい。実際にはプロピレンカーボネート、エチレ
ンカーボネート、T−ブチロラクトン、ジメチルスルフ
オキシド、アセト;トリル、フォルムアミド、ジメチル
フォルムアミド、ニトロエタンなどが使用可能であるが
、これに限定されるものではない。又これらとエーテル
化合物などの混合溶媒として使用しても良い。
Further, the solvent used in the battery of the present invention has a specific conductivity of 1
It is preferable to use a material having a resistance of about 0 to 10 Ωa, low viscosity, high electrolyte solubility, and oxidation-reduction resistance that is difficult to be electrolyzed. Practically, propylene carbonate, ethylene carbonate, T-butyrolactone, dimethyl sulfoxide, acetate, tolyl, formamide, dimethyl formamide, nitroethane, etc. can be used, but the present invention is not limited thereto. It may also be used as a mixed solvent of these and ether compounds.

本発明に用いる中空状活性炭繊維としては、いかなる原
料力1ら得られたものでもよく、一般的にはレーヨン、
アクリル、フェノール系1ItIli!、ビニロン、ピ
ッチなどを原料として作られた中空状活性*a碓が好ま
しい。
The hollow activated carbon fibers used in the present invention may be obtained from any raw material, and are generally rayon,
Acrylic, phenolic 1ItIli! Hollow active *a ususa made from raw materials such as , vinylon, pitch, etc. are preferred.

中空状活性炭繊維の型法としては、以下に述べる方法が
有る。原料としては、セルロース系am。
As a molding method for hollow activated carbon fibers, there are the following methods. The raw material is cellulose am.

フェノール系pJ1.Ja1 アクリル系繊維、ポリビ
ニルアルコール系繊維、ピッチ系a維など炭素繊維や活
性炭繊維の前駆体R維であれば、いかなるm維でも原料
として使用可能である。
Phenolic pJ1. Ja1 Any m-fiber can be used as a raw material as long as it is a precursor R fiber of carbon fiber or activated carbon fiber such as acrylic fiber, polyvinyl alcohol-based fiber, or pitch-based a-fiber.

本発明に使用する中空状活性t#lli維は、上述の原
料を用い、不融化剤をm碓表面にのみ作用させ、表面部
分を不融化処理した後、乾留により繊維中芯部の可融部
分を除去したのち賦活することにより得られる。
The hollow activated T#lli fibers used in the present invention are produced by using the above-mentioned raw materials, applying an infusible agent only to the surface of the m-Usua, and after treating the surface portion to infusibility, the core of the fiber is fused by carbonization. It is obtained by removing the part and then activating it.

不融化剤としては、セルロース系繊維、ホlJt’ニル
アルコール系繊維、アクリル系繊維、ピッチ系繊維には
酸素、無水硫酸、塩酸、硫酸塩、リン酸塩などをガス状
、液状、粉末状で使用可能である。又、フェノール系繊
維にはホルマリン、アンモニアを使用する。
As an infusibility agent, oxygen, sulfuric anhydride, hydrochloric acid, sulfate, phosphate, etc. can be used in gas, liquid, or powder form for cellulose fibers, alcohol fibers, acrylic fibers, and pitch fibers. Available for use. For phenolic fibers, formalin and ammonia are used.

これらの不融化剤を繊維中心部までしみこまないように
処理し、不活性ガス中600℃〜900℃で乾留し、中
芯部の可融部分を揮散させ、その後800℃〜1200
℃で賦活ガス中で賦活することにより目的とする中空状
活性炭繊維が得られる。
These infusible agents are treated to prevent them from penetrating into the center of the fibers, carbonized at 600°C to 900°C in an inert gas to volatilize the fusible part of the core, and then heated at 800°C to 1200°C.
The desired hollow activated carbon fibers can be obtained by activation in an activation gas at °C.

本発明に使用する中空状活性炭繊維とは、内部の空隙容
積が全容積の20%以上、好ましくは、50〜80%で
あるものを言う。
The hollow activated carbon fiber used in the present invention is one in which the internal void volume is 20% or more of the total volume, preferably 50 to 80%.

中空内部の直径が繊維直径の80%以下、10%以上で
ある場合に特に高性能である。
Particularly high performance is achieved when the diameter of the hollow interior is 80% or less and 10% or more of the fiber diameter.

又、内部の空隙は外表面につながっていても、又は単独
孔であっても、連続孔であっても良いが単独孔として存
在する方が、強度、性能の点で好ましい。
Further, the internal voids may be connected to the outer surface, or may be single pores or continuous pores, but it is preferable from the viewpoint of strength and performance that the internal voids exist as single pores.

又、不融化剤を使用せずに異なった原料のコア部とスキ
ン部を有するa維を紡糸したのち、コア部のみを抽出除
去した中空状繊維を炭化賦活することによっても得られ
る。
It can also be obtained by spinning a-fibers having a core part and a skin part made of different raw materials without using an infusibility agent, and then extracting and removing only the core part, and then carbonizing the hollow fiber.

中空状活性炭繊維を分極性電極として使用する際の形態
としては、紙、布状、フェルト状、ファイバー成型物な
どいかなる形態でも使用可能であるが、密度の高い方が
高性能な電池が得られる。
Hollow activated carbon fibers can be used in any form as polarizable electrodes, such as paper, cloth, felt, and fiber moldings, but higher density allows for higher performance batteries. .

集電極との接触効率のよい形態が好ましい。又、これら
の電極に8r+02 、At1Tiなどの導電性化合物
な溶射、蒸着などの方法で塗布しても良い。
A form with good contact efficiency with the collecting electrode is preferable. Further, conductive compounds such as 8r+02 and At1Ti may be coated on these electrodes by thermal spraying, vapor deposition, or other methods.

第1図は電極に使用する中空状活性Km維の走査型電子
類*m写真を示す。
FIG. 1 shows a scanning electron photograph of a hollow activated Km fiber used in an electrode.

第2図および第3図に本発明にかかる電池の一般的な構
造を示す。
FIGS. 2 and 3 show the general structure of a battery according to the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の中空状活性炭繊維を用いた有機電解質電池は、
中空状でない通常の活性炭繊維を用いた有機電解質電池
に比べて性能上次のような利点を有しているものである
The organic electrolyte battery using the hollow activated carbon fiber of the present invention is
It has the following advantages in performance compared to organic electrolyte batteries that use normal non-hollow activated carbon fibers.

(1)活性炭繊維重量当りの容量が飛躍的に増大する。(1) The capacity per weight of activated carbon fiber increases dramatically.

そのため電池の小型化が可能である。Therefore, it is possible to downsize the battery.

(2)常温(25℃)と低温(−10’C)での容量比
がほぼ100%であり、低温での容量低下が殆んど認め
られない。
(2) The capacity ratio at normal temperature (25°C) and low temperature (-10'C) is almost 100%, and almost no capacity decrease is observed at low temperature.

(3)賦活収率が大きくても高容量であり、コストが安
くなる。又、比重が大きいので電気抵抗が小さく電池の
内部抵抗を低くすることができる。
(3) Even if the activation yield is high, the capacity is high and the cost is low. Furthermore, since it has a high specific gravity, it has a low electrical resistance and can lower the internal resistance of the battery.

従来技術の欄で述べたように電極に活性炭!!R,f!
を使用した非水系電池は低温容量が小さい点が、実用上
大きな問題点とされていたが、実施例3と比較例4の容
量をくらべると明らかなように中空状活性炭繊維を使用
すると容量が大巾に増加する他低温特性が著しく改善さ
れ、また電圧平担性も良好となる。
As mentioned in the prior art section, activated carbon is used as an electrode! ! R, f!
The small low-temperature capacity of nonaqueous batteries using hollow activated carbon fibers was considered to be a major practical problem, but when comparing the capacities of Example 3 and Comparative Example 4, it is clear that the capacity increases when hollow activated carbon fibers are used. In addition to the large increase, the low-temperature characteristics are significantly improved, and the voltage flatness is also improved.

このような中空状活性rm維の効果の原因はゼオライト
などに見られる包蔵効果により、内部の中空部に吸蔵さ
れた電解質が高活性を発揮しているためではないかと考
えられる。
The reason for this effect of the hollow active RM fibers is thought to be that the electrolyte occluded in the internal hollow area exhibits high activity due to the encapsulation effect seen in zeolites and the like.

〔実施例〕〔Example〕

以下において5J!施例を掲げ、本発明を更に具体的に
説明するが、本発明はこれにより限定されるものではな
い。
5J below! The present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1゜ セルロース系繊維(ポリノジック)からなる布にリン酸
アンモニウムを5重量%および硫酸アンモニウムを5重
量% 60℃の温浴中で添着したのち、200℃で30
分間空気中で処理し、さらtこ300℃〜450℃まで
不活性ガス中で10℃/分で昇温処理したのち、100
0℃LPG燃焼ガス中で15分間賦活し、比表面f 1
500扉/2の中空状活性炭a#、を得た。
Example 1 5% by weight of ammonium phosphate and 5% by weight of ammonium sulfate were impregnated onto a cloth made of cellulose fibers (polynosic) in a hot bath at 60°C, and then heated at 200°C for 30 minutes.
After treatment in air for 10 minutes, and then heating at 10℃/min in an inert gas from 300℃ to 450℃, 100℃
Activated for 15 minutes in 0℃ LPG combustion gas, specific surface f 1
500 doors/2 hollow activated carbon a# was obtained.

この中空状活性t#R碓を陽極および陰極として用い、
溶媒としてブロビレンカーボ*−)、を解質としてテト
ラブチルアンモニウムバークロレートを用い、2vでg
Hr定電圧充電を行った後、固定負荷l暉で放電し、放
電時の電池容量(、FlwH)を≠養毒≠〒25℃およ
び一20℃で季会呻測定した。
Using this hollow active t#R Usui as an anode and a cathode,
Using brobylene carbo*-) as the solvent and tetrabutylammonium verchlorate as the solute, g at 2v.
After constant voltage charging, the battery was discharged under a fixed load of 1 hour, and the battery capacity (FlwH) at the time of discharge was measured at 25°C and 20°C.

又、1艷の定電流放電を行い、電圧平担性を測った。電
池容量測定の1例を第4図に、電圧特性を第5図に示す
。電池の構成及び測定結果を表1に示す。
Further, one vessel of constant current discharge was performed to measure voltage flatness. An example of battery capacity measurement is shown in FIG. 4, and voltage characteristics are shown in FIG. Table 1 shows the configuration of the battery and the measurement results.

ここで低温特性は、25℃で測定した容量に対する−2
0 ’Cの容量の比率である。また電圧平担性は初期電
圧の90%以上の電圧を保持している時間をいう。
Here, the low temperature characteristics are -2 relative to the capacity measured at 25°C.
0 'C capacity ratio. Further, voltage flatness refers to the time during which a voltage of 90% or more of the initial voltage is maintained.

ここで、比表面積はB、E、T、(Brunauer、
Emmett& Ta1ler )  法によりCar
lo Erba社(イタリヤ)製8orptornat
ic 1800により測定した。
Here, the specific surface areas are B, E, T, (Brunauer,
Emmett & Taller) method
8orptornat manufactured by lo Erba (Italy)
Measured by IC 1800.

また電容量は放電時の電圧を1分毎に2QHr測定し、 電池容量=Σ(V /R) t ここで t:放電時間(1分) V;電池電圧 R=固定負荷(2にΩ) 得られた値を活性炭素繊維重量当りに換算して示した。In addition, the capacitance is measured by measuring the voltage during discharge for 2QHr every minute. Battery capacity = Σ (V / R) t Here, t: discharge time (1 minute) V; battery voltage R = fixed load (2Ω) The obtained values are shown in terms of weight of activated carbon fiber.

実施例2 フェノール樹脂を紡糸した後、硬化させる際に硬化剤の
ホルマリンが繊維中心部まで到達しないよう処理し、さ
らにアンモニアで処理した部分硬化繊維をフェルトに成
型し、1000℃で乾留賦活した。このフェルトを両電
極として用い、溶媒としてエチレンカーボネート、電解
質としてテトラエチルアンモニウムバークロレートヲ用
い、実施例1と同様の方法で容量を測定した。表1に結
果を示す。
Example 2 After spinning a phenolic resin, the partially cured fiber was treated to prevent formalin, a curing agent, from reaching the center of the fiber during curing, and further treated with ammonia.The partially cured fiber was molded into felt, and activated by carbonization at 1000°C. Capacity was measured in the same manner as in Example 1 using this felt as both electrodes, ethylene carbonate as the solvent, and tetraethylammonium verchlorate as the electrolyte. Table 1 shows the results.

実施例3 ポリビニルアルコール系am (PM品名ビニロン)製
の布にリン酸アンモニウムを4重量%、硫酸アンモニウ
ムを4重量%添着し、190℃で30分間処理し、30
0〜400℃で10℃/分で昇温した後、1100℃で
15分間賦活した。この中空状活性炭繊維布を両電極と
して用い、溶媒としてプロピレンカーボネート、電解質
としてLiCl0aを用い、実施例1と同様の方法で容
量を測定した。表1に結果を示す。
Example 3 4% by weight of ammonium phosphate and 4% by weight of ammonium sulfate were impregnated onto a cloth made of polyvinyl alcohol-based am (PM product name: Vinylon), and treated at 190°C for 30 minutes.
After increasing the temperature from 0 to 400°C at a rate of 10°C/min, activation was performed at 1100°C for 15 minutes. Capacity was measured in the same manner as in Example 1 using this hollow activated carbon fiber cloth as both electrodes, propylene carbonate as the solvent, and LiCl0a as the electrolyte. Table 1 shows the results.

実施例4 ポリビニルアルコール系繊M ([品名ビニロン)製の
フェルトにリン酸アンモニウムを5重量%、硫酸アンモ
ニウムを5重量%添着し、190’Cで60分間処理し
、300℃〜400℃で10℃/分で昇温した後、11
00℃で20分間賦活した。
Example 4 5% by weight of ammonium phosphate and 5% by weight of ammonium sulfate were impregnated on felt made of polyvinyl alcohol fiber M (product name: Vinylon), treated at 190'C for 60 minutes, and heated at 300°C to 400°C at 10°C. /min, then 11
Activation was performed at 00°C for 20 minutes.

Lj金属箔をi極に、中空状活性炭繊維フェルトを陰極
に用い、溶媒としてTブチロラクトン、電解質としてL
iCIO4を用い、実施例1と同様の方法で容量を測定
した。結果を表1に示す。
Lj metal foil is used as the i-electrode, hollow activated carbon fiber felt is used as the cathode, T-butyrolactone is used as the solvent, and L is used as the electrolyte.
Capacity was measured using iCIO4 in the same manner as in Example 1. The results are shown in Table 1.

実施例5 セルロース系繊維(商品名ポリノジック)からなる不織
布を塩酸気流中で200℃〜500℃まで、10℃/分
で昇温処理し、800℃で乾留した後900℃で30分
間賦活処理して、中空状活性炭繊維を得た。この中空状
活性炭繊維不織布を陰極とし、Li金属を陽極として用
い、溶媒としてプロピレンカーボネート、電解質として
、LiCjOaを用い、実施例1と同様の方法で容量を
測定した。結果を表1に示す。
Example 5 A nonwoven fabric made of cellulose fibers (trade name Polynosic) was heated in a hydrochloric acid stream from 200°C to 500°C at a rate of 10°C/min, carbonized at 800°C, and then activated at 900°C for 30 minutes. As a result, hollow activated carbon fibers were obtained. The capacity was measured in the same manner as in Example 1 using this hollow activated carbon fiber nonwoven fabric as a cathode, Li metal as an anode, propylene carbonate as a solvent, and LiCjOa as an electrolyte. The results are shown in Table 1.

実施例6 原油分解で得られたピッチを溶融紡糸した後、濃硫酸を
表面に塗布した後、200”CNt中で30分間、さら
に300℃〜600℃まで20℃7分で昇温処理し、1
000℃で20分間賦活し、中空状活性炭繊維を得た。
Example 6 After melt-spinning the pitch obtained from crude oil cracking, applying concentrated sulfuric acid to the surface, heating it in 200"CNt for 30 minutes, and then increasing the temperature from 300°C to 600°C at 20°C for 7 minutes, 1
Activation was performed at 000° C. for 20 minutes to obtain hollow activated carbon fibers.

この繊維を6 m/fnにカットした後、活性炭繊維7
0部、ビニロン繊維30部からなるベーパーを作成し、
これを両電極として用いた。
After cutting this fiber to 6 m/fn, activated carbon fiber 7
Create a vapor consisting of 0 parts and 30 parts of vinylon fiber,
This was used as both electrodes.

溶媒として、プロピレンカーボネート、電解質として、
 Li0IIJaを用い、実施例1と同様の方法で容量
を測定した。表1に結果を示す。
Propylene carbonate as a solvent, as an electrolyte,
Capacity was measured in the same manner as in Example 1 using Li0IIJa. Table 1 shows the results.

比較例1 市販の中空でない、セルロース系活性炭繊維を用い、実
施例1と同様の方法で容量測定を行った。
Comparative Example 1 Capacity was measured in the same manner as in Example 1 using commercially available solid cellulose-based activated carbon fibers.

表1に結果を示す。Table 1 shows the results.

比較例2 紡糸の際、原液に不融化剤として、リン酸アンモニウム
および硫酸アンモニウムを各々4重量%混入して紡糸し
たポリビニルアルコール系lI&碓ヲ190℃で熱処理
し、さらに200〜400℃まで処理した後、  10
00℃で賦活し、中空状でない活性炭繊維を得た。
Comparative Example 2 During spinning, a polyvinyl alcohol-based lI & Usui spun with 4% by weight each of ammonium phosphate and ammonium sulfate mixed as an infusibility agent in the stock solution was heat-treated at 190°C, and then further processed to 200-400°C. , 10
Activation was performed at 00°C to obtain non-hollow activated carbon fibers.

これを用いて実施例3と同様の方法で容量を測定した。Using this, the capacity was measured in the same manner as in Example 3.

表1に結果を示す。Table 1 shows the results.

比較例3 リン酸アンモニウムおよび硫酸アンモニウムを各々5重
量%づつ混入した原液を紡糸して得られたPVA系繊維
を原料として、比較例2と同様の方法で、中空状でない
活性炭繊維を得た。これを用いて実施例4と同様の方法
で容量を譜定した。結果を表1に示す。
Comparative Example 3 Non-hollow activated carbon fibers were obtained in the same manner as in Comparative Example 2 using PVA fibers obtained by spinning a stock solution containing 5% by weight of each of ammonium phosphate and ammonium sulfate. Using this, the capacity was determined in the same manner as in Example 4. The results are shown in Table 1.

比較例4 リン酸アンモニウムおよび硫酸アンモニウムを各々4重
量%づつ混入した原液を紡糸して得られたPVA系繊維
を原料として、比較例2と同様の方法で、中空状でない
活性炭繊維を得た。これを用いて実施例3と同様の方法
で容量を測定した。結果を第1表に示す。
Comparative Example 4 Non-hollow activated carbon fibers were obtained in the same manner as Comparative Example 2 using PVA fibers obtained by spinning a stock solution containing 4% by weight of each of ammonium phosphate and ammonium sulfate. Using this, the capacity was measured in the same manner as in Example 3. The results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電極に使用する中空状活性炭の走査型電子顕微
鏡写真を示す。第2図は両極共に中空状活性炭繊維を使
用した電池、$3図は陽極には金属、陰極には中空状活
性炭繊維を使用した電池の構造を示す。 第4図は2vで8時間充電した後、負荷2にΩで放電し
た際の電池の電圧の経時変化を測定した結果である。第
5図は充電後の開放端電圧の経時変化を示したものであ
る。 特許出願人 クラレケミカル株式会社 代 理 人 弁理士 小回中 壽 雄 第    1    図 中空状活性炭繊維の電子顕微鏡写真 (6000倍) 第  2  図 t1Mケース 放電時間CHr) 経過時間(Hr) 手続補正帯 (方式) 昭和60年6月10日 特願昭60−15051 、発明の名称 有機電解質電池 3、補正をする者 事件との関係  特許出願人 岡山県備前市鶴海4342 クラレケミカル株式会社 代表取締役 豊 島 賢太部 4、代 理 人 大阪市北区芝田1丁目4番14号 5、補正命令の日付   昭和60年5月28日(発送
日)7、補正の内容 明細書第17頁第2行「電極に使用する中空状活性炭」
を「5j!施例3で電極に使用した中空状活性炭繊維」
と訂正する。
FIG. 1 shows a scanning electron micrograph of hollow activated carbon used for electrodes. Figure 2 shows a battery using hollow activated carbon fibers for both electrodes, and Figure 3 shows the structure of a battery using metal for the anode and hollow activated carbon fibers for the cathode. FIG. 4 shows the results of measuring the change in battery voltage over time when the battery was charged at 2V for 8 hours and then discharged to a load 2 at Ω. FIG. 5 shows the change in open circuit voltage over time after charging. Patent Applicant Kuraray Chemical Co., Ltd. Agent Patent Attorney Hisashi Koenaka 1st Figure Electron micrograph of hollow activated carbon fiber (6000x) 2nd Figure t1M case discharge time CHr) Elapsed time (Hr) Procedure correction band ( Method) June 10, 1985, Japanese Patent Application No. 60-15051, Title of the invention: Organic electrolyte battery 3, Relationship with the amended case: Patent applicant: 4342 Tsurumi, Bizen City, Okayama Prefecture Kuraray Chemical Co., Ltd. Representative Director Kenta Toyoshima Section 4, Agent 1-4-14-5, Shibata, Kita-ku, Osaka City, Date of amendment order: May 28, 1985 (shipment date) 7, Statement of contents of amendment, page 17, line 2: “Electrode Hollow activated carbon used
"5j! Hollow activated carbon fiber used for electrode in Example 3"
I am corrected.

Claims (1)

【特許請求の範囲】[Claims] 中空状活性炭繊維を分極性電極とする有機電解質電池。An organic electrolyte battery that uses hollow activated carbon fibers as polarizable electrodes.
JP60015051A 1985-01-28 1985-01-28 Organic electrolyte battery Granted JPS61173459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60015051A JPS61173459A (en) 1985-01-28 1985-01-28 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60015051A JPS61173459A (en) 1985-01-28 1985-01-28 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS61173459A true JPS61173459A (en) 1986-08-05
JPH0530290B2 JPH0530290B2 (en) 1993-05-07

Family

ID=11878032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60015051A Granted JPS61173459A (en) 1985-01-28 1985-01-28 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS61173459A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227056A2 (en) * 1985-12-23 1987-07-01 BASF Aktiengesellschaft Rechargeable electrochemical cell
WO2007145052A1 (en) * 2006-06-14 2007-12-21 Calgon Mitsubishi Chemical Corporation Phosphorus compound-complexed activated carbon for electric double layer capacitor and method for producing the same
JP2011243667A (en) * 2010-05-16 2011-12-01 Kyushu Institute Of Technology Method for producing carbon material for electric double layer capacitor polarizable electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515090A (en) * 1974-07-01 1976-01-16 Yoshito Noda DAKUDOSOKUTEIHOHO
JPS5599714A (en) * 1979-01-25 1980-07-30 Matsushita Electric Ind Co Ltd Double layer capacitor
JPS5835881A (en) * 1981-08-27 1983-03-02 Kao Corp Electrochemical cell
JPS59146165A (en) * 1983-02-08 1984-08-21 Kao Corp Electrochemical battery
JPS59173979A (en) * 1983-03-22 1984-10-02 Toyobo Co Ltd Nonaqueous battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515090A (en) * 1974-07-01 1976-01-16 Yoshito Noda DAKUDOSOKUTEIHOHO
JPS5599714A (en) * 1979-01-25 1980-07-30 Matsushita Electric Ind Co Ltd Double layer capacitor
JPS5835881A (en) * 1981-08-27 1983-03-02 Kao Corp Electrochemical cell
JPS59146165A (en) * 1983-02-08 1984-08-21 Kao Corp Electrochemical battery
JPS59173979A (en) * 1983-03-22 1984-10-02 Toyobo Co Ltd Nonaqueous battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227056A2 (en) * 1985-12-23 1987-07-01 BASF Aktiengesellschaft Rechargeable electrochemical cell
EP0227056A3 (en) * 1985-12-23 1987-10-14 BASF Aktiengesellschaft Rechargeable electrochemical cell
WO2007145052A1 (en) * 2006-06-14 2007-12-21 Calgon Mitsubishi Chemical Corporation Phosphorus compound-complexed activated carbon for electric double layer capacitor and method for producing the same
JP2008021966A (en) * 2006-06-14 2008-01-31 Calgon Mitsubishi Chemical Corp Phosphorus compound combined active carbon for electric double layer capacitor, and its manufacturing method
JP2011243667A (en) * 2010-05-16 2011-12-01 Kyushu Institute Of Technology Method for producing carbon material for electric double layer capacitor polarizable electrode

Also Published As

Publication number Publication date
JPH0530290B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
US7061749B2 (en) Supercapacitor having electrode material comprising single-wall carbon nanotubes and process for making the same
US7948738B2 (en) Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
JPS58209864A (en) Organic electrolyte battery
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
Kale et al. N-Enriched carbon nanofibers for high energy density supercapacitors and Li-ion batteries
JPS61173459A (en) Organic electrolyte battery
JP2007269551A (en) Activated carbon and method of manufacturing the same
JPH01204409A (en) Electric double-layer capacitor
JP4179581B2 (en) Activated carbon, its production method and its use
JPH11144759A (en) Secondary power source
JPH11102708A (en) Negative electrode body, and secondary electric source
JPH11329492A (en) Secondary power source
JP2001035493A (en) Manufacture of secondary battery electrode carrier
JP2011114140A (en) Electrode material, manufacturing method thereof, and electrochemical capacitor using electrode material
JPH11322322A (en) Carbonaceous substance and its production and electric double layer capacitor using the same
JPH0799141A (en) Polarized electrode, manufacture thereof and electric double layer capacitor using the same
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor
JPH0444407B2 (en)
JP2920073B2 (en) Organic electrolyte battery
JPS63218159A (en) Active carbon electrode
JPH11185751A (en) Secondary power source
JP2006245386A (en) Electric double layer capacitor using very thin carbon fiber and/or very thin activated carbon fiber as subsidiary conductive material
JP2010021413A (en) Electrode active material for electric double-layer capacitor, and method of manufacturing the same
JPH11297580A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees