JPH0444407B2 - - Google Patents

Info

Publication number
JPH0444407B2
JPH0444407B2 JP59005021A JP502184A JPH0444407B2 JP H0444407 B2 JPH0444407 B2 JP H0444407B2 JP 59005021 A JP59005021 A JP 59005021A JP 502184 A JP502184 A JP 502184A JP H0444407 B2 JPH0444407 B2 JP H0444407B2
Authority
JP
Japan
Prior art keywords
activated carbon
double layer
electric double
electrode
phenolic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59005021A
Other languages
Japanese (ja)
Other versions
JPS60149115A (en
Inventor
Ichiro Tanahashi
Atsushi Nishino
Akihiko Yoshida
Yasuhiro Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59005021A priority Critical patent/JPS60149115A/en
Publication of JPS60149115A publication Critical patent/JPS60149115A/en
Publication of JPH0444407B2 publication Critical patent/JPH0444407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は分極性電極と電解質界面で形成される
電気二重層を利用した電気二重層キヤパシタの製
造法に関するものである。 従来例の構成とその問題点 活性炭を分極性電極をする電気二重層キヤパシ
タの基本構成は、第1図に示すように、活性炭電
極(活性炭多孔体)1と、活性炭電極1に形成し
た集電体2を単位分極性電極とし、セパレータ3
を介し、対向する1対の分極性電極に電解液を含
浸したものである。 従来、この種の電気二重層キヤパシタの製造例
としては、次の3種のものがあり、これらの製造
例の問題点を概説する。 第1のものは、第3図に示すように集電体2と
してアルミニウムのパンチングメタルを用い、集
電体2の表面に活性炭電極1として活性短粉末を
主成分とし、ふつ素樹脂粉末などからなる分極性
電極材料を成型プレスするか、または圧延ローラ
にかけて担持させ、セパレータ3を介して一対の
集電体2と活性炭電極1を捲回し、電解液を注入
したものである。ここで用いる活性炭粉末は一般
的に1000m3/g以上の比表面積を有することが難
しい。このような分極性電極では、ふつ素樹脂な
どにより、単位容積当りの活性炭量が減り、二重
層容量も減少する。さらに集電体2を用いて製造
した分極性電極は、集電体2と活性炭電極1とは
基本的には物理的接触にすぎず、特に分極性電極
を捲回して渦巻構造にしたものは、集電体2の外
側の活性炭電極1の層と集電体2の内側の活性炭
電極1の層とは応力がそれぞれ逆にかかるため、
集電体2と活性炭電極1との接触は一層弱くな
り、電気二重層キヤパシタの内部抵抗が次第に増
大したり、活性炭電極1の利用効率が次第に低下
するなどの欠点があつた。 第2のものは、分極性電極として第2図に示す
ように活性炭繊維を主成分とする布、紙、フエル
トなどを活性炭電極1とし、集電体2としてアル
ミニウムやチタンのような金属層を容射法、蒸着
法などにより構成するもので、セパレータ3を介
して対向する一対の分極性電極に電解液を注入し
た後、外装ケース4とガスケツト5とでコイン形
に構成できる。 また、この種のものは、集電体2を有した活性
炭電極1を渦巻構造に捲回し、第1の構成で述べ
た構成を有するものなど任意の形状に構成できる
有利な方法であるとともに活性炭繊維が加工時に
十分な強度を有しているため、活性炭粒子を用い
た場合のようにバインダーが必要でなく、したが
つて単位体積当たりの容量も大きなものとなる。
しかしながら、この方法の欠点は、活性炭繊維が
高価であり、また繊維径が約3〜12μmと細いの
で、電気抵抗を小さくすることが極めて困難なの
が現状である。したがつて放電時に大電流を取り
出すことができないという欠点を有する。 第3のものは、図示していないが、ガラス状カ
ーボンを活性炭化して分極性電極に用いる方法で
ある。しかしこの方法はガラス状カーボンの合成
が困難であり、また活性炭化しても比表面積の大
なるものを得ることはむつかしい。さらに第1、
2に上げたような構成に加工することも極めて困
難である。 発明の目的 本発明は、比表面積が大きく、しかも強度の強
い分極性電極を用い、高性能で安価な電気二重層
キヤパシタを得ることを目的とする。 発明の構成 この目的を達成するため本発明の電気二重層キ
ヤパシタは、スパレータを介して対向配置した少
なくとも一つを分極性電極とする一対の電極に電
解液を含浸した電気二重層キヤパシタの製造法で
あつて、少なくとも一方の分極性電極を活性炭多
孔体とし、この活性炭多孔体を、フエノール樹脂
と、ポリビニルアルコールと、でん粉の混合液
に、ホルマリンおよび酸触媒を加えて前記ポリビ
ニルアルコールのホルマール化反応により生成し
た発泡体を熱融着させ、前記でん粉と酸を除去し
て得たフエノール樹脂発泡体を炭化賦活して作製
するものである。 実施例の説明 本発明における活性炭多孔体の作製法について
述べる。活性炭多孔体を作製するためには、まず
フエノール樹脂の多孔体を作製しなければならな
い。一般にフエノール・ホルムアルデヒド樹脂に
はノボラツク樹脂とレゾール樹脂が知られてい
る。ノボラツク樹脂は、通常フエノール対ホルム
アルデヒドのモル比、たとえば1対0.7〜0.9とな
るようなフエノール過剰の条件下で、しゆう酸の
ような酸触媒を用いて、フエノールとホルマリン
とを反応させて製造されるもので、ノボラツク樹
脂は、フエノールが主としてメチレン基によつて
結合された3〜5量体が主成分をなし、遊離メチ
ロール基をほとんど含有していない。従つてそれ
自体は自己架橋性を有せず、熱可塑性を有するた
め本発明の原料には適さない。また、この種のノ
ボラツク樹脂の他に、フエノール基が7〜10個ス
チレン基で結合された比較的高縮合体の硬化ノボ
ラツク樹脂は本発明の材料に用いることが可能で
ある。 アルカリを触媒として縮合させるレゾール樹脂
は、比較的多量のメチロール基を有するフエノー
ル1〜3量体が主成分をなしている反応性の極め
て大なるものである。これらのフエノール樹脂が
本発明の原料に適する。さらに、従来のフエノー
ル樹脂硬化物は、三次元架橋密度が過剰に大きい
ので硬くもろい。そこで架橋密度を制御し、特に
ポリマーのネツトワークを大きくすることにより
従来のフエノール樹脂硬化物に比べて“伸び”と
“ねばさ”の大きなフエノール樹脂が得られ、本
発明に用いる原料として最適である。 次に、活性炭多孔体の製造法について、一例を
上げて述べる。 多孔体のフエノール樹脂を作製するには、ポリ
ビニルアルコール(ポパール)のホルマール化反
応を利用する。以下その一例のひとつを上げる。 (1) 15〜20%のポリビニルアルコール水溶液を調
整し、これに前述したフエノール樹脂(たとえ
ば、鐘紡(株)製粒状フエノール樹脂、商品名“ベ
ルパール”)を所望する多孔度により相当量混
合し、これに気孔剤として最後の工程で除去で
きるもの、たとえば馬鈴著でん粉を混合する。 (2) 混合液にホルマリンおよび反応触媒の硫酸を
加えて、充分撹拌してホルマール化反応の初期
段階で、多数の気泡を含んだ状態の反応液を型
に流し込む。 (3) 室温ないし50℃で10〜40時間反応させるとホ
ルマール化度60〜70%の水に不溶性の発泡体が
生ずる。 (4) フエノール樹脂を熱融着させるために、150
〜180℃で加熱する。 (5) 生成した発泡体を十分水洗して、でん粉およ
び酸を完全に除去すれば、連続気泡を持つたフ
エノール樹脂多孔体が得られる。 フエノール樹脂多孔体の気泡の数、大きさなど
は、気孔剤の質量、ホルマリン添加剤の混和液の
粘度、反応条件、ホルマール化度によつて変化す
る。 このようにして作られたフエノール樹脂多孔体
は、ネツトワークポリマーの網目が大きいため、
従来のフエノール樹脂硬化物に比べもろくなく、
強度の強いものである。 次にこのようにして作成されたフエノール樹脂
多孔体の炭化、賦活法について述べる。 まず炭化は、上記材料を、窒素ガスなどの不活
性ガス雰囲気下、あるいは真空中で800〜1000℃
の温度をあたえることにより進行する。従来のフ
エノール樹脂を炭化すれば非常にもろいものとな
つたが、本発明のフエノール樹脂多孔体の製造法
を用いると従来品にない機械的強度が得られる。
さらに賦活性方法について述べる。一度炭化した
ものを賦活して活性炭化しても良いが、一度に炭
化、賦活を行なう方が、効率的でしかも良好な特
性の活性炭多孔体が得られる。賦活は、フエノー
ル樹脂多孔体を、窒素、水蒸気雰囲気下、800
〜1000℃で加熱する。水酸化ナトリウム、塩化
亜鉛などの触媒でフエノール樹脂多孔体を処理し
た後、窒素雰囲気、または、窒素、酸素雰囲気下
800〜1000℃で加熱するなどの方法により行なう。 本発明に用いた原料は、従来のフエノール樹脂
よりボリマーのネツトワークの大きい伸びとねば
りの大きな原料を使用しているため、炭化賦活工
程を経ても従来のフエノール樹脂に比べ機械的強
度の優れたものとなり、従来の活性炭多孔体に比
べもろさがなくなる。 また本発明の活性炭多孔体は2200m2/g
(BET法)、程度にまで大きな比表面を有するも
のを得ることが可能である。 実施例 1 分極性電極のアノード、カソード両極に、種々
の比表面積、あな径、気孔率を有する活性炭多孔
体(活性炭電極1)を使用し第2図に示したコイ
ン形電気二重層キヤパシタを試作した。導電性電
極(集電体2)には、カーボン粒子を動電粒子と
する導電性樹脂を用いた。 第1表にこのようなキヤパシタの活性炭多孔体
の比表面積と蓄積容量の関係を示す。本キヤパシ
タは原理的に、分極性電極と電解質界面に蓄積さ
れる二重層容量を利用しているため、二重層形成
面積と容量がほぼ比例して増大することがわか
る。本実施例では分極性電極の重量が50mgであ
り、電解液として、プロピレンカーボネートを溶
媒に、過塩素酸テトラエチルアンモニウムを溶質
にした有機電解液を用いた。本実施例においてあ
な径5〜200μm、気孔率40〜85%の活性炭多孔
体を用いることにより、良好な特性が得られる
が、その中特に比表面積が2000m2/g以上の活性
炭多孔体を用いると、極めて大容量の電気二重層
キヤパシタを得ることができる。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing an electric double layer capacitor using an electric double layer formed at the interface between a polarizable electrode and an electrolyte. Conventional structure and its problems The basic structure of an electric double layer capacitor using activated carbon as a polarizable electrode is as shown in Fig. 1, an activated carbon electrode (activated carbon porous body) 1 and a current collector formed on the activated carbon electrode 1. Body 2 is a unit polarizable electrode, separator 3
A pair of polarizable electrodes facing each other are impregnated with an electrolytic solution through a pair of polarizable electrodes. Conventionally, there are the following three types of electric double layer capacitors that have been manufactured, and the problems of these manufacturing examples will be summarized. The first type, as shown in Fig. 3, uses punched aluminum metal as the current collector 2, and on the surface of the current collector 2, the activated carbon electrode 1 is made of activated short powder as the main component, and is made of fluorine resin powder or the like. A polarizable electrode material is mold-pressed or supported by rolling rollers, a pair of current collectors 2 and an activated carbon electrode 1 are wound around a separator 3, and an electrolytic solution is injected. It is generally difficult for the activated carbon powder used here to have a specific surface area of 1000 m 3 /g or more. In such a polarizable electrode, the amount of activated carbon per unit volume is reduced due to the fluororesin or the like, and the double layer capacity is also reduced. Furthermore, in the polarizable electrode manufactured using the current collector 2, the current collector 2 and the activated carbon electrode 1 are basically only in physical contact. , since stress is applied to the layer of activated carbon electrode 1 outside the current collector 2 and the layer of activated carbon electrode 1 inside the current collector 2 in opposite ways,
There were disadvantages such as the contact between the current collector 2 and the activated carbon electrode 1 becoming weaker, the internal resistance of the electric double layer capacitor gradually increasing, and the utilization efficiency of the activated carbon electrode 1 gradually decreasing. The second type is a polarizable electrode, as shown in Figure 2, with an activated carbon electrode 1 made of cloth, paper, felt, etc. whose main component is activated carbon fiber, and a metal layer such as aluminum or titanium used as a current collector 2. It is constructed by a radiation method, a vapor deposition method, etc., and after injecting an electrolytic solution into a pair of polarizable electrodes facing each other with a separator 3 in between, the outer case 4 and the gasket 5 can be constructed into a coin shape. In addition, this type of device is an advantageous method in which the activated carbon electrode 1 having the current collector 2 is wound in a spiral structure, and can be configured into any shape such as the configuration described in the first configuration. Since the fibers have sufficient strength during processing, no binder is required as is the case when activated carbon particles are used, and the capacity per unit volume is therefore large.
However, the disadvantage of this method is that the activated carbon fibers are expensive and the fiber diameter is as small as about 3 to 12 μm, so it is currently extremely difficult to reduce the electrical resistance. Therefore, it has the disadvantage that a large current cannot be taken out during discharge. The third method, although not shown, is a method in which glassy carbon is activated carbonized and used for polarizable electrodes. However, with this method, it is difficult to synthesize glassy carbon, and even with activated carbonization, it is difficult to obtain a material with a large specific surface area. Furthermore, the first
It is also extremely difficult to process it into a configuration like the one listed above. OBJECTS OF THE INVENTION An object of the present invention is to obtain a high-performance and inexpensive electric double layer capacitor using a polarizable electrode having a large specific surface area and strong strength. Composition of the Invention In order to achieve this object, the electric double layer capacitor of the present invention provides a method for producing an electric double layer capacitor, in which a pair of electrodes, at least one of which is a polarizable electrode, are placed opposite to each other with a spalter interposed therebetween and impregnated with an electrolyte. At least one of the polarizable electrodes is made of porous activated carbon, and formalin and an acid catalyst are added to a mixed solution of phenol resin, polyvinyl alcohol, and starch to carry out a formalization reaction of the polyvinyl alcohol. The phenolic resin foam obtained by heat-sealing the foam produced by above and removing the starch and acid is activated to carbonize. Description of Examples A method for producing an activated carbon porous body according to the present invention will be described. In order to produce a porous activated carbon body, a porous body of phenolic resin must first be produced. Generally, novolac resins and resol resins are known as phenol formaldehyde resins. Novolak resin is usually produced by reacting phenol with formalin using an acid catalyst such as oxalic acid under conditions of excess phenol such that the molar ratio of phenol to formaldehyde is, for example, 0.7 to 0.9 to 1. The novolac resin is mainly composed of trimers to pentamers of phenols bonded mainly through methylene groups, and contains almost no free methylol groups. Therefore, it itself does not have self-crosslinking properties and has thermoplasticity, so it is not suitable as a raw material for the present invention. In addition to this type of novolac resin, a cured novolac resin having a relatively high condensation product in which 7 to 10 phenol groups are bonded through styrene groups can be used in the material of the present invention. The resol resin that is subjected to condensation using an alkali as a catalyst is extremely reactive and contains phenol trimers having a relatively large amount of methylol groups as a main component. These phenolic resins are suitable as raw materials for the present invention. Furthermore, conventional cured phenolic resins have an excessively high three-dimensional crosslink density, making them hard and brittle. Therefore, by controlling the crosslinking density and especially increasing the polymer network, a phenolic resin with greater "elongation" and "stickiness" than conventional phenolic resin cured products can be obtained, making it ideal as a raw material for use in the present invention. be. Next, an example of a method for producing an activated carbon porous body will be described. To produce porous phenolic resin, formalization reaction of polyvinyl alcohol (Popal) is used. Below is one example. (1) Prepare a 15 to 20% polyvinyl alcohol aqueous solution, mix with it a considerable amount of the above-mentioned phenolic resin (for example, granular phenolic resin manufactured by Kanebo Co., Ltd., trade name "Bell Pearl") depending on the desired porosity, This is mixed with something that can be removed in the final step as a pore agent, such as potato starch. (2) Add formalin and sulfuric acid as a reaction catalyst to the mixed solution, stir thoroughly, and pour the reaction solution containing many bubbles into a mold at the initial stage of the formalization reaction. (3) When reacted for 10 to 40 hours at room temperature to 50°C, a water-insoluble foam with a degree of formalization of 60 to 70% is produced. (4) In order to heat-fuse the phenolic resin, 150
Heat to ~180°C. (5) If the generated foam is thoroughly washed with water to completely remove starch and acid, a porous phenolic resin material with open cells can be obtained. The number, size, etc. of bubbles in the phenolic resin porous material vary depending on the mass of the pore agent, the viscosity of the formalin additive mixture, reaction conditions, and degree of formalization. The phenolic resin porous body made in this way has a large network polymer network, so
Less brittle than conventional phenolic resin cured products,
It is strong. Next, a method for carbonizing and activating the phenolic resin porous body produced in this manner will be described. First, carbonization is carried out by heating the above materials at 800 to 1000℃ in an inert gas atmosphere such as nitrogen gas or in a vacuum.
The process progresses by applying a temperature of If conventional phenolic resin was carbonized, it would become extremely brittle, but by using the method for producing a porous phenolic resin of the present invention, mechanical strength not found in conventional products can be obtained.
Furthermore, the activation method will be described. Although it is possible to activate the carbonized material to make it activated carbon, it is more efficient to carbonize and activate the activated carbon porous body with good properties. Activation was carried out by heating the phenolic resin porous material under a nitrogen and water vapor atmosphere at 800 °C.
Heat at ~1000℃. After treating the phenolic resin porous material with a catalyst such as sodium hydroxide or zinc chloride, under a nitrogen atmosphere or a nitrogen or oxygen atmosphere.
This is done by heating at 800-1000°C. The raw material used in the present invention has a higher elongation and toughness of the polymer network than conventional phenolic resins, so even after the carbonization activation process, it has superior mechanical strength compared to conventional phenolic resins. It is less brittle than conventional activated carbon porous materials. In addition, the activated carbon porous material of the present invention has a density of 2200 m 2 /g.
(BET method), it is possible to obtain a material with a relatively large specific surface. Example 1 A coin-shaped electric double layer capacitor shown in Fig. 2 was prototyped using activated carbon porous bodies (activated carbon electrode 1) having various specific surface areas, hole diameters, and porosity as the anode and cathode of polarizable electrodes. did. A conductive resin containing carbon particles as electrodynamic particles was used for the conductive electrode (current collector 2). Table 1 shows the relationship between the specific surface area and storage capacity of the activated carbon porous material of such a capacitor. Since this capacitor in principle utilizes the double layer capacitance accumulated at the interface between the polarizable electrode and the electrolyte, it can be seen that the double layer formation area and the capacitance increase almost in proportion. In this example, the polarizable electrode weighed 50 mg, and an organic electrolyte containing propylene carbonate as a solvent and tetraethylammonium perchlorate as a solute was used as the electrolyte. In this example, good properties can be obtained by using an activated carbon porous body with a hole diameter of 5 to 200 μm and a porosity of 40 to 85%, and in particular, an activated carbon porous body with a specific surface area of 2000 m 2 /g or more is used. Thus, an extremely large capacity electric double layer capacitor can be obtained.

【表】【table】

【表】 実施例 2 実施例1と同様なコイン形キヤパシタを作製し
た。実施例1では、導伝性電極にカーボン粒子を
導電粒子とする導電性樹脂を用いたが、本実施例
では、アルミニウムをプラズマ溶射法で活性炭多
孔体表面上に形成した。プラズマ溶射法を用いる
と活性炭多孔体とアルミニウムの結合が強固にな
り接触抵抗が低減できるとともに、アルミニウム
金属導電性電極であるため、導電性が実施例1に
比べ良好である。第2表に比表面積2200m2/gの
活性炭多孔体を使用した場合の諸特性を示す。ま
たプラズマ溶射のかわりにアルミニウムのアーク
溶射を行なつて得たキヤパシタ特性も第2表に示
す。プラズマ、アークいずれにおいても実施例1
で示したキヤパシタよりインピーダンスの低いキ
ヤパシタが得られる。
[Table] Example 2 A coin-shaped capacitor similar to Example 1 was manufactured. In Example 1, a conductive resin having carbon particles as conductive particles was used for the conductive electrode, but in this example, aluminum was formed on the surface of the activated carbon porous body by plasma spraying. When the plasma spraying method is used, the bond between the activated carbon porous body and aluminum becomes strong and the contact resistance can be reduced, and since the electrode is an aluminum metal conductive electrode, the conductivity is better than that of Example 1. Table 2 shows various properties when using an activated carbon porous body with a specific surface area of 2200 m 2 /g. Table 2 also shows the capacitor characteristics obtained by performing aluminum arc spraying instead of plasma spraying. Example 1 for both plasma and arc
A capacitor with lower impedance than the capacitor shown in can be obtained.

【表】 実施例 3 実施例1で使用したのと同様な2000m2/gの比
表面積の活性炭多孔体をアノード、カソード分極
性電極に使用し、第3表に示すような、溶質、溶
媒系の有機電解液、ならびに水溶液系の水酸化ナ
トリウム、硫酸を電解液に用いてキヤパシタを構
成した。その諸特性を第3表に示した。いずれの
電解液でも良いキヤパシタ特性が得られる。有機
電解液系では耐圧を2V程度まで上げられるがイ
ンピーダンスが溶液系よりも大きくなる。
[Table] Example 3 An activated carbon porous material with a specific surface area of 2000 m 2 /g similar to that used in Example 1 was used for the anode and cathode polarizable electrodes, and the solute and solvent systems as shown in Table 3 were used. The capacitor was constructed using an organic electrolyte of 20% and an aqueous solution of sodium hydroxide and sulfuric acid as the electrolyte. Its properties are shown in Table 3. Good capacitor characteristics can be obtained with either electrolyte. Organic electrolyte systems can increase the withstand voltage to around 2V, but the impedance is larger than that of solution systems.

【表】【table】

【表】 実施例 4 図示していないが、第2図の分極性電極のカソ
ードに比表面積2000m2/gの活性炭多孔体(活性
炭電極1)を、アノードに活性炭多孔体(活性炭
電極1)の代りに金属リチウムを使用し、ポリプ
ロピレン製のセパレータを介してコイン形電気二
重層キヤパシタを構成した。電解液には、リチウ
ムパークロレートをプロピレンカーボネートに溶
解したものを用いた。電極が14mmφの場合の諸特
性を第4表に示す。リチウムのような非分極性電
極をアノードに用いても良好な特性を示すキヤパ
シタができる。
[Table] Example 4 Although not shown, an activated carbon porous material (activated carbon electrode 1) with a specific surface area of 2000 m 2 /g was used as the cathode of the polarizable electrode shown in FIG. 2, and an activated carbon porous material (activated carbon electrode 1) was used as the anode. Metal lithium was used instead, and a coin-shaped electric double layer capacitor was constructed with a polypropylene separator interposed therebetween. The electrolyte used was lithium perchlorate dissolved in propylene carbonate. Table 4 shows the characteristics when the electrode is 14 mmφ. Even if a non-polarizable electrode such as lithium is used as an anode, a capacitor with good characteristics can be produced.

【表】 発明の効果 以上の実施例の説明により明らかなように、本
発明は従来の分極性電極より高強度でしかも高比
表面積を有する活性炭多孔体を作成し、これを分
極性電極に用いているため加工容易でしかも小形
大容量の電気二重層キヤパシタを得ることができ
る。
[Table] Effects of the Invention As is clear from the description of the examples above, the present invention creates an activated carbon porous body that has higher strength and a higher specific surface area than conventional polarizable electrodes, and uses this as a polarizable electrode. Therefore, it is possible to obtain an electric double layer capacitor that is easy to process and has a small size and a large capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例および従来の電気二重
層キヤパシタの基本構成を示す断面図、第2図は
同コイン形電気二重層キヤパシタの構成を示す正
面半截断面図、第3図は従来の捲回形電気二重層
キヤパシタの要部を一部切り欠いて示す斜視図で
ある。 1……活性炭電極(活性炭多孔体)、2……集
電体、3……セパレータ。
FIG. 1 is a sectional view showing the basic structure of an embodiment of the present invention and a conventional electric double layer capacitor, FIG. 2 is a front half-cut sectional view showing the structure of the same coin-shaped electric double layer capacitor, and FIG. FIG. 2 is a partially cutaway perspective view showing a main part of a wound electric double layer capacitor. 1...Activated carbon electrode (activated carbon porous body), 2... Current collector, 3... Separator.

Claims (1)

【特許請求の範囲】 1 セパレータを介して対向配置した少くとも一
つを分極性電極とする一対の電極に電解液を含浸
した電気二重層キヤパシタの前記分極性電極の少
なくとも一つを活性炭多孔体とし、前記活性炭多
孔体はフエノール樹脂と、ポリビニルアルコール
と、でん粉の混合液に、ホルマリンおよび酸触媒
を加えて前記ポリビニルアルコールのホルマール
化反応により生成した発泡体を熱融着させ、前記
でん粉と酸を除去して得たフエノール樹脂発泡体
を炭化賦活して作製することを特徴とする電気二
重層キヤパシタの製造法。 2 分極性電極として用いる活性炭多孔体のあな
径が5〜200μmであり、気孔率が40〜85%であ
ることを特徴とする特許請求の範囲第1項記載の
電気二重層キヤパシタの製造法。
[Scope of Claims] 1. An electric double layer capacitor in which at least one of the polarizable electrodes is impregnated with an electrolytic solution, and at least one of the polarizable electrodes is a porous activated carbon material. The activated carbon porous body is produced by adding formalin and an acid catalyst to a mixed solution of phenolic resin, polyvinyl alcohol, and starch, and thermally fusing the foam produced by the formalization reaction of the polyvinyl alcohol. 1. A method for producing an electric double layer capacitor, characterized in that it is produced by carbonizing and activating a phenolic resin foam obtained by removing. 2. The method for producing an electric double layer capacitor according to claim 1, wherein the activated carbon porous body used as the polarizable electrode has a hole diameter of 5 to 200 μm and a porosity of 40 to 85%.
JP59005021A 1984-01-13 1984-01-13 Electric double layer capacitor Granted JPS60149115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005021A JPS60149115A (en) 1984-01-13 1984-01-13 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005021A JPS60149115A (en) 1984-01-13 1984-01-13 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS60149115A JPS60149115A (en) 1985-08-06
JPH0444407B2 true JPH0444407B2 (en) 1992-07-21

Family

ID=11599852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005021A Granted JPS60149115A (en) 1984-01-13 1984-01-13 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPS60149115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041051A1 (en) * 2013-09-20 2015-03-26 アイオン株式会社 Activated carbon for use in electrode of power-storage device, and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2993965B2 (en) * 1988-03-08 1999-12-27 旭硝子株式会社 Electric double layer capacitor
JPH04206917A (en) * 1990-11-30 1992-07-28 Mitsui Petrochem Ind Ltd Electric double layer capacitor
JP4931116B2 (en) * 2006-07-27 2012-05-16 日本電信電話株式会社 Electrochemical device and method for producing electrode material for electrochemical device
JP6047799B2 (en) * 2012-03-23 2016-12-21 アイオン株式会社 Activated carbon for electrode of electricity storage device and method for producing activated carbon for electrode of electricity storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041051A1 (en) * 2013-09-20 2015-03-26 アイオン株式会社 Activated carbon for use in electrode of power-storage device, and method for producing same
JP2015061053A (en) * 2013-09-20 2015-03-30 アイオン株式会社 Active carbon for power storage device electrode, and method for manufacturing the same
CN105518814A (en) * 2013-09-20 2016-04-20 爱恩株式会社 Activated carbon for use in electrode of power-storage device, and method for producing same
US10083800B2 (en) 2013-09-20 2018-09-25 Aion Co., Ltd. Activated carbon for use in electrode of power-storage device, and method for producing same

Also Published As

Publication number Publication date
JPS60149115A (en) 1985-08-06

Similar Documents

Publication Publication Date Title
US7382601B2 (en) Electric double layer capacitor and method of manufacturing same
JP3446339B2 (en) Activated carbon production method
US6585915B2 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
JP2993343B2 (en) Polarizing electrode and method of manufacturing the same
EP0112923A1 (en) Double electric layer capacitor
WO1986000750A1 (en) Polarizable electrode and production method thereof
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
US3531329A (en) Fuel cell anode composition and method of preparation
JPH046072B2 (en)
JPH0444407B2 (en)
KR20040060927A (en) Polarizing electrode and its manufacturing method, and electric double-layer capacitor
JPH0340931B2 (en)
JPH08250380A (en) Polarizable electrode and its manufacture
JP2674057B2 (en) Method of manufacturing polarizable electrodes
JP2778425B2 (en) Polarizing electrode, method of manufacturing the same, and electric double layer capacitor using the same
JPH08119615A (en) Activated-carbon sheet and electric-double-layer capacitor
JP4179581B2 (en) Activated carbon, its production method and its use
US8437116B2 (en) Electric double layer capacitors, capacitor materials and methods of making the same
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JPH07302735A (en) Electric double layer capacitor
JPS6355204B2 (en)
JPS6355205B2 (en)
JP3315807B2 (en) Electric double layer capacitor and method of manufacturing the same
JPH11297576A (en) Active carbon electrode, its manufacture and electric double layer capacitor
JPH10144570A (en) Electric double layer capacitor