JPS61123184A - Conduction modulation type mosfet - Google Patents

Conduction modulation type mosfet

Info

Publication number
JPS61123184A
JPS61123184A JP24481184A JP24481184A JPS61123184A JP S61123184 A JPS61123184 A JP S61123184A JP 24481184 A JP24481184 A JP 24481184A JP 24481184 A JP24481184 A JP 24481184A JP S61123184 A JPS61123184 A JP S61123184A
Authority
JP
Japan
Prior art keywords
layer
type
diffusion layer
conductivity type
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24481184A
Other languages
Japanese (ja)
Other versions
JPH0467790B2 (en
Inventor
Akio Nakagawa
明夫 中川
Hiromichi Ohashi
大橋 弘道
Yoshihiro Yamaguchi
好広 山口
Kiminori Watanabe
渡辺 君則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP24481184A priority Critical patent/JPS61123184A/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to US06/738,188 priority patent/US4672407A/en
Priority to DE3546745A priority patent/DE3546745C2/en
Priority to GB08513599A priority patent/GB2161649B/en
Priority to DE19853519389 priority patent/DE3519389A1/en
Publication of JPS61123184A publication Critical patent/JPS61123184A/en
Priority to US07/019,337 priority patent/US4782372A/en
Priority to US07/116,357 priority patent/US4881120A/en
Priority to US07/146,405 priority patent/US5093701A/en
Priority to US07/205,365 priority patent/US4928155A/en
Priority to US07/712,997 priority patent/US5086323A/en
Priority to US07/799,311 priority patent/US5286984A/en
Publication of JPH0467790B2 publication Critical patent/JPH0467790B2/ja
Priority to US08/261,254 priority patent/US5780887A/en
Priority to US09/104,326 priority patent/US6025622A/en
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a conduction modulation type MOSFET capable of being used in the same manner as a normal power MOSFET and a bipolar Tr by setting a paprmeter value so as to satisfy predetermined relationship in order to make a current value on a latch-up larger than that on the saturation of a channel region. CONSTITUTION:An n<+> type layer 12 and a high-resistance n<-> type layer 13 are formed onto a p<+> type Si sbstrate, and a p<+> type guard ring layer 22 is shaped outside an effective element region while a p<+> type layer 16 is formed. Gate electrodes 19 are shaped through gate oxide films 18, and a diffusion layer 14 is formed while using the gate electrodes 19 as masks. A p<+> type layer 15 is shaped into the layer 14, As is implanted to form n<+> type source diffusion layers 17, and channel regions 21 are shaped. A source electrode 20 and a drain electrode 23 are formed. When the whole channel width per the unit area of the region 21 is represented by W, the area of the gate electrode 19 by Sa, the whole outer-circumferential length of the base diffusion layer 14 in the unit area by T, and the thickness of the gate insulating film 18 by (d), a para sitic thyristor is not latched up by satisfying a formula: (W.Sa)/(T.l.d)<1.1X10<8>.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、導電変調型MOSFETに一関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a conductivity modulated MOSFET.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

導電変調型MOSFETは、通常のパワーMOSFET
Tのドレイン領域をソース領域とは逆の導電型にしたも
のである。従来の導電変調型MOSFETTの構造を第
4図に示す。41はpゝトレイン層、42はn−型高抵
抗層であり、この高抵抗層42の表面にp型ベース拡散
層43が形成され、更にこのp型ベース拡散R43内に
n4型ソ一ス拡散層44が形成されている。そしてソー
ス拡散層44と表面に露出している高抵抗層42に挟ま
れたp型ベース層43部分をチャネル領域49として、
この上にゲート絶縁II!45を介してゲートN極46
を配設し、また、ソー1ス拡散層44とベース拡散層4
3の双方にコンタクトするソース電極47を形成してい
る。ドレイン!I48の表面にはドレイン層tii48
が形成されている。
Conductivity modulation MOSFET is a normal power MOSFET.
The drain region of T is of a conductivity type opposite to that of the source region. The structure of a conventional conductivity modulation type MOSFET is shown in FIG. 41 is a p-train layer, 42 is an n-type high resistance layer, a p-type base diffusion layer 43 is formed on the surface of this high-resistance layer 42, and an n4-type source layer is further formed in this p-type base diffusion R43. A diffusion layer 44 is formed. Then, a portion of the p-type base layer 43 sandwiched between the source diffusion layer 44 and the high resistance layer 42 exposed on the surface is used as a channel region 49.
Gate insulation II on top of this! Gate N pole 46 through 45
In addition, a source diffusion layer 44 and a base diffusion layer 4 are provided.
A source electrode 47 is formed in contact with both of the electrodes 3 and 3. drain! There is a drain layer tii48 on the surface of I48.
is formed.

この導電変調型MOSFETでは、ゲート電極46にソ
ース電極47に対して正の電圧を印加するとチャネル領
域4つに反転層が形成され、ソース拡散層44からの電
子がこのチャネル領域49を通ってn−型高抵抗層42
に注入される。注入された電子は高抵抗層42を拡散し
てドレイン層1148へ抜けるが、このときドレイン層
41から正孔の注入を引起こす。この正孔の注入により
、高抵抗層42にはキャリアの蓄積による導電変調が起
こり、この高抵抗層42の抵抗が低下する。
In this conductivity modulation type MOSFET, when a positive voltage is applied to the gate electrode 46 with respect to the source electrode 47, an inversion layer is formed in the four channel regions, and electrons from the source diffusion layer 44 pass through the channel region 49. - type high resistance layer 42
is injected into. The injected electrons diffuse through the high resistance layer 42 and escape to the drain layer 1148, but at this time, holes are caused to be injected from the drain layer 41. Due to the injection of holes, conductivity modulation occurs in the high resistance layer 42 due to accumulation of carriers, and the resistance of the high resistance layer 42 decreases.

これにより1通常のパワーMOSFETTより低いオン
抵抗を持ったMOSFETが得られることになる。
As a result, a MOSFET having an on-resistance lower than that of a normal power MOSFET can be obtained.

ところでこの様な導電変調型MOSFETTでは、ρ1
型ドレイン層4l−n−型高抵抗層42−p型ベース拡
散層43−n++ソース拡散層44の四層がサイリスタ
を構成する。この奇生サイリスタが導通すると、ゲート
・ソース間電圧を零にし 。
By the way, in such a conductivity modulation type MOSFET, ρ1
The four layers of a type drain layer 4l, an n-type high resistance layer 42, a p-type base diffusion layer 43, and an n++ source diffusion layer 44 constitute a thyristor. When this strange thyristor becomes conductive, the voltage between the gate and source becomes zero.

でも素子はオフできなくなり、多くの場合素子破壊に繋
がる。この寄生サイリスタがオンになる原因は、p+型
トド942層41ら注入された正孔がソース電極47へ
抜ける際にp型ベース拡散層44を通ることにある。即
ち、このような正孔電流が流れ、ベース拡散層・43の
ソース拡散層44直下の抵抗による電圧降下がベース・
ソース間のビルトイン電圧を越えると、ソース層44か
らの電子注入をもたらし、寄生サイリスタがオンしてし
まう。
However, the device cannot be turned off, which often leads to device destruction. The reason why this parasitic thyristor turns on is that the holes injected from the p+ type top 942 layer 41 pass through the p type base diffusion layer 44 when passing to the source electrode 47. In other words, such a hole current flows, and the voltage drop due to the resistance directly under the source diffusion layer 44 of the base diffusion layer 43 becomes the base diffusion layer 43.
Exceeding the built-in voltage between the sources results in electron injection from the source layer 44, turning on the parasitic thyristor.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、寄生サイリスタがラッチアッ
プしないようにして、通常のパワーMOSFETTやバ
イポーラトランジスタと同等に使用することを可能とし
た導電変調型MOSFETTを提供することを目的とす
る。
In view of the above points, it is an object of the present invention to provide a conduction modulation type MOSFET that prevents the parasitic thyristor from latch-up and can be used in the same manner as a normal power MOSFET or a bipolar transistor.

〔発明の概要〕[Summary of the invention]

本発明は、導電変調型MOSFETがラッチアップする
時の電流値を、チャネル領域が飽和する時の電流値より
大きく設計すれば、原理的に寄生サイリスタのラッチア
ップを防止することができる、という発想に基づく。こ
のような発想に基づいた設計パラメータを見出だし、実
験的にこれらの設計パラメータの関係式を求めた。即ち
本発明によれば、導電変調型MOSFETTの有効素子
領域内での単位面積(1d)当りの全チャネル幅をW、
同単位面積内で直下に第2導電型高抵抗層を有する部分
のゲート電極面積をSG、同単位面積内のベース拡散層
の全外周長をT、チャネル長をり、ゲート絶縁膜の厚み
をdとしたとき、(W・SG)/(T−2・d)<1.
1x108を満たすように各パラメータが設定される。
The present invention is based on the idea that latch-up of parasitic thyristors can be prevented in principle by designing the current value when the conductivity modulated MOSFET latches up to be larger than the current value when the channel region is saturated. based on. We found design parameters based on this idea and experimentally determined the relational expressions between these design parameters. That is, according to the present invention, the total channel width per unit area (1d) within the effective element area of the conduction modulation type MOSFET is W,
Within the same unit area, the gate electrode area of the part with the second conductivity type high resistance layer directly below is SG, the total outer circumference length of the base diffusion layer within the same unit area is T, the channel length is calculated, and the thickness of the gate insulating film is When d, (W・SG)/(T-2・d)<1.
Each parameter is set to satisfy 1x108.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、順方向ゲート電圧を印加してドレイン
電流を流せるだけ流しても寄生サイリスタがラッチアッ
プすることがない導電変調型MOSFETTが得られる
。また、本発明によれば、例えば600Vの静耐圧をも
つMOSFETの場合に、ゲート電圧が15V印加され
てMOSFETがオンできる状態で、外部負荷が短絡し
て300Vの電源電圧が直接ドレイン・ソース間に加わ
り大電流が流れたとしても、10μsの間は破壊に至ら
ない素子が得られる。′ 〔発明の実施例〕 以下本発明の詳細な説明する。
According to the present invention, it is possible to obtain a conduction modulation type MOSFET in which the parasitic thyristor does not latch up even when a forward gate voltage is applied to allow the drain current to flow as much as possible. Further, according to the present invention, for example, in the case of a MOSFET with a static withstand voltage of 600V, when a gate voltage of 15V is applied and the MOSFET can be turned on, an external load is short-circuited and a power supply voltage of 300V is directly applied between the drain and source. Even if a large current flows in addition to the above, an element that does not break down for 10 μs can be obtained. [Embodiments of the Invention] The present invention will be described in detail below.

・具体的な素子構造を説明する前に、本発明における設
計パラメータの関係式導出の過程を説明する。まず、導
電変調型MOSFETTがラッチアップするときの電流
値を求める。ソース領域の幅Lsやゲート電極の幅La
 (第1図参照)が十分小さければ、素子内にはほぼ一
様な電流が流れる。
- Before explaining the specific element structure, the process of deriving the relational expression of design parameters in the present invention will be explained. First, the current value when the conductivity modulation type MOSFET T latches up is determined. The width Ls of the source region and the width La of the gate electrode
(See FIG. 1) is sufficiently small, a substantially uniform current flows within the device.

この電流密度をJとし、奇生サイリスタがラッチアップ
するときの電流密度をJLとする。有効素子領域の単位
面積(1crtr )内のゲート電極面積(直下に高抵
抗層がある部分の面積)をSaとすると、素子の単位面
積内にあるゲートの部分に流れ込む電流値Iは、 [=Sa =JL・・・(1) である。n−型高抵抗層に接するp型ベース拡散層の総
置辺長を単位面積当りTとすると、(1)式の電流の内
圧孔電流は第4図に矢印で示すように結局ベース拡散層
に入り込むので、単位の周辺長当りに流れ込む(1)の
電流1bは次式となる。
Let this current density be J, and let JL be the current density when the strange thyristor latches up. If the area of the gate electrode (the area of the part with the high resistance layer directly below) within the unit area of the effective device area (1crtr) is Sa, then the current value I flowing into the gate part within the unit area of the device is [= Sa=JL...(1). If the total side length of the p-type base diffusion layer in contact with the n-type high-resistance layer is T per unit area, the internal pressure hole current of the current in equation (1) will eventually reach the base diffusion layer as shown by the arrow in Figure 4. Therefore, the current 1b in (1) flowing per unit peripheral length is given by the following equation.

Ib =Sa−JL・αp/T・・・(2)ここでαP
は正孔電流の割合いを示す。単位の周辺長当りのベース
拡散層の周辺からソース電極までの平均の抵抗をRbと
すると、ベース拡散層内での(2)の電流による電圧降
下は、 V”Rt) =Sa−JL・αp/T・・・(3)とな
る。この電圧がソース・ベース接合のビルトイン電圧V
bi以上となる時、寄生サイリスタがラッチするので、
(3)式の右辺をVbiとおきJLについて解くと、 JL =Vbi−T/ (R1] −8a )・・・(
4)となる。(4)式で、スイッチング時の過渡時では
チャネルは消失し、全て正孔電流と見なすべきであるか
ら、αp=1と置換えである。
Ib = Sa-JL・αp/T...(2) Here αP
indicates the hole current ratio. If the average resistance from the periphery of the base diffusion layer to the source electrode per unit peripheral length is Rb, the voltage drop due to the current in (2) in the base diffusion layer is: V''Rt) = Sa-JL・αp /T...(3) This voltage is the built-in voltage V of the source-base junction.
When it becomes more than bi, the parasitic thyristor latches, so
Letting the right side of equation (3) be Vbi and solving for JL, JL = Vbi-T/ (R1] -8a)...(
4). In Equation (4), the channel disappears during the transition during switching, and the entire current should be considered as a hole current, so it is replaced with αp=1.

一方、MOSFETの理論から飽和領域の単位面積当り
に流れる電流をJsとするヒ J s = (W/242 )μCi  (Va−VT
)2/(1−αP)         ・・・(5)と
表わされる。ここに、Wは単位面積当りのチャネル幅、
2はチャネル長、μは電子移動度、C1は単位面積当り
のゲート容量、7丁はしきい導電゛ 圧である。
On the other hand, from the MOSFET theory, Js = (W/242) μCi (Va-VT
)2/(1-αP) (5). Here, W is the channel width per unit area,
2 is the channel length, μ is the electron mobility, C1 is the gate capacitance per unit area, and 7 is the threshold conduction pressure.

JLの値をJsより大きくしておけば、基本的に奇生サ
イリスタはラッチすることがない。従って Vbi=T/ (Rb  −Sa  )>(W721μ
Ci  (Va−Vr ) /′(1−αP ) ・・・ (6) となる。ゲート絶縁膜の誘電率をε、厚みをdとすると
、Ci−ε/dであるから、これを用いて(6)式を整
理すると、 W−8G/ (T −2・ d)< 2Vbi(1−αP)/ Rh  ・μ・ ε (Va  −VT  )  ”・
・・ (7) となる。
If the value of JL is set larger than Js, the abnormal thyristor will basically not latch. Therefore, Vbi=T/(Rb-Sa)>(W721μ
Ci (Va-Vr)/'(1-αP) (6). If the dielectric constant of the gate insulating film is ε and the thickness is d, then Ci-ε/d, and using this to rearrange equation (6), W-8G/(T-2・d)<2Vbi( 1-αP)/Rh・μ・ε(Va-VT)”・
... (7) becomes.

(7)式の右辺の値は、αPが1より十分小さいから、
Va、Rbを除いて一定値である。一方、Vaは通常I
Cで駆動することができる値T5V程度であり、Rbは
現実に実現することができる最小鴫は限られているので
、右辺は定数とみてよい。この定数をAMとすると、 W−8G/(T−2・d )<AM・・・(8)となる
Since αP is sufficiently smaller than 1, the value on the right side of equation (7) is,
All values are constant except for Va and Rb. On the other hand, Va is usually I
Since the value T5V that can be driven by C is about T5V, and the minimum value of Rb that can actually be realized is limited, the right-hand side can be regarded as a constant. If this constant is AM, then W-8G/(T-2·d)<AM (8).

(8)式を満足すれば、ゲート電圧を15Vまで上げて
電流を流せるだけ流しても、奇生サイリスタのラッチす
る電流に達しないので、この導電変調型MOSFETT
がラッチアップしてゲートでオフできなくなることは理
論上ないことになる。
If formula (8) is satisfied, even if the gate voltage is increased to 15V and the current is allowed to flow, it will not reach the current latched by the strange thyristor, so this conduction modulation type MOSFET
Theoretically, it is impossible for the gate to latch up and become unable to turn off at the gate.

しかし実際の場合には、素子の電圧降下が1゜07以上
にもなる場合や大電流が流れると素子温度が上昇して素
子の破壊が起こってくる。この場合でも(8)式の左辺
を十分小さくした素子は破壊に強い。このことを第3図
のデータを用いて次に説明する。第3図において縦軸の
Vsc=300Vの点は、’j  )I圧Va=15V
として300Vの定電圧電源に素子を直結して10μs
の間素子に流れるだけ電流を流しても素子が破壊しない
ことを示す。当然のことながらこの時の素子の電圧降下
は電源電圧300Vと同じである。600■素子の場合
300Vの電源まで使われるので、Vscが300V以
上あれば、この素子を用いてシステムを作った場合、た
とえ外部負荷が短絡する事故が起こってN課電圧が直接
素子に加わり多量の電流が流れても、少なくとも10μ
Sの間は素子は破壊しないことになる。この間に素子を
オフにすれば素子破壊を防止することができる。第3図
より、ゲート電圧Vaを15Vかけたままで300の電
圧をかけて10μsの開電流を流しても素子が破壊しな
いためには、 W−8G/(T−λ・d)<1.lX10”であること
が必要である。この値は無次元量である。
However, in actual cases, when the voltage drop across the element exceeds 1°07 or when a large current flows, the element temperature rises and the element is destroyed. Even in this case, an element in which the left side of equation (8) is sufficiently small is resistant to destruction. This will be explained next using the data shown in FIG. In Fig. 3, the point of Vsc = 300V on the vertical axis is 'j) I pressure Va = 15V
10μs by directly connecting the element to a 300V constant voltage power supply.
This shows that the device will not be destroyed even if a current is passed through the device for a period of time. Naturally, the voltage drop of the element at this time is the same as the power supply voltage of 300V. In the case of a 600■ element, a power supply of up to 300V is used, so if Vsc is 300V or more, if a system is created using this element, even if an accident such as an external load short-circuit occurs, a large amount of N applied voltage will be applied directly to the element. Even if a current of at least 10 μ
During S, the element will not be destroyed. If the device is turned off during this time, destruction of the device can be prevented. From FIG. 3, in order for the device not to be destroyed even if a voltage of 300V is applied and an open current of 10μs is passed while the gate voltage Va is kept at 15V, W-8G/(T-λ・d)<1. l×10”. This value is a dimensionless quantity.

以下に具体的な実施例を説明する。第1図は一実施例の
素子構造を示す。第1図(a)は断面図であり、同図(
b)は拡散層パターンである。これを製造工程に従って
説明すれば、ρ“型S1基板11に5X1018/13
以上の濃度のn+型層12をエピタキシャル成長させ、
この上に2×101’/α3の高抵抗n−型層13をエ
ピタキシャル成長させる。次に有効素子領域の外側に高
耐圧化のために数本のp+型ガードリングH22を形成
し、これと同時にベース拡散層の一部となる深い(10
uTrL程度)のp+型H16を形成する。この後10
00人のゲート酸化膜18を介して5000人の多結晶
シリコン膜によるゲート電極19を形成し、ゲート電極
19をマスクとしてp型ベース拡散層14を形成する。
Specific examples will be described below. FIG. 1 shows the device structure of one embodiment. FIG. 1(a) is a cross-sectional view, and the same figure (
b) is a diffusion layer pattern. To explain this according to the manufacturing process, 5X1018/13
Epitaxially growing the n+ type layer 12 with the above concentration,
A high resistance n-type layer 13 of 2×10 1 '/α 3 is epitaxially grown on this. Next, several p+ type guard rings H22 are formed outside the effective element area to increase the withstand voltage, and at the same time, a deep (10
A p+ type H16 (on the order of uTrL) is formed. After this 10
A gate electrode 19 made of a polycrystalline silicon film of 5,000 oxides is formed through the gate oxide film 18 of 5,000 oxides, and a p-type base diffusion layer 14 is formed using the gate electrode 19 as a mask.

次にp型ベース拡散層14内に浅いp+型層15を形成
する。
Next, a shallow p+ type layer 15 is formed within the p type base diffusion layer 14.

n+型ソース拡散層17は、ゲート電極19をマスクと
してASを高濃度に浅くイオン注入して形成する。これ
によりゲート電極19の下にチャネル領1421が形成
される。その後全面をCVD1l化膜て覆い、これにコ
ンタクト孔を開けてソース電極20を形成する。基板1
1の裏面にはドレイン電極23を形成する。ρ型ベース
拡散層14の深さは7μm、ソース拡散層17の深さは
O12μmとする。ゲート電[!1つの直下のn−高抵
抗層13がある部分の幅Laは30μm、ソース領域の
幅Lsは45μmとし、ソースの形状は第1図(b)に
示すようにストライブ状としている。
The n+ type source diffusion layer 17 is formed by shallowly implanting AS at a high concentration using the gate electrode 19 as a mask. As a result, a channel region 1421 is formed under the gate electrode 19. Thereafter, the entire surface is covered with a CVD 11 film, and a contact hole is formed in this to form a source electrode 20. Board 1
A drain electrode 23 is formed on the back surface of 1. The depth of the ρ type base diffusion layer 14 is 7 μm, and the depth of the source diffusion layer 17 is 012 μm. Gate electric [! The width La of the portion where the n-high resistance layer 13 immediately below is 30 μm, the width Ls of the source region is 45 μm, and the shape of the source is striped as shown in FIG. 1(b).

この導電変調型MOSFETでは、5a=30/ (3
0+45)−0,4であり、p型ベース拡散層の外周下
はチャネル幅Wと等しい。またチャネル長αは約5.5
μmであり、従って、W−8a/(T−M・d)=SG
、、/(Q、・d)=7.7x10’ となる。
In this conductivity modulation type MOSFET, 5a=30/(3
0+45)-0,4, and the area below the outer periphery of the p-type base diffusion layer is equal to the channel width W. Also, the channel length α is approximately 5.5
μm, therefore, W-8a/(T-M・d)=SG
,,/(Q,·d)=7.7x10'.

実験結果から、この実施例の場合、ゲートに15Vをか
けておいてドレイン・ソース間に500■の電圧をかけ
ると、素子には300 A / ctAの電流が流れる
が、10μsの間は素子は破壊しない。
From the experimental results, in the case of this example, if 15V is applied to the gate and a voltage of 500μ is applied between the drain and source, a current of 300A/ctA flows through the device, but the device does not operate for 10μs. Do not destroy.

この素子の静耐圧は600Vであり、通常電源電圧が3
00V以下に用途に使われるので、500Vの電圧で破
壊しないこの実施例は十分な特性であるといえる。
The static withstand voltage of this element is 600V, and the normal power supply voltage is 3
Since the device is used for applications where voltages are below 00V, this example can be said to have sufficient characteristics in that it does not break down at a voltage of 500V.

第2図は別の実施例の拡散層パターンを示す。FIG. 2 shows a diffusion layer pattern of another embodiment.

先の実施例と異なる点は、p型ベース拡散層14が複数
の島状をなして配列されていることであり、製造工程は
同じである。従って先の実施例と対応する部分には先の
実施例と同じ符号を付している。
The difference from the previous embodiment is that the p-type base diffusion layer 14 is arranged in a plurality of islands, but the manufacturing process is the same. Therefore, parts corresponding to those in the previous embodiment are given the same reference numerals as in the previous embodiment.

この実施例では、p型ベース拡散層14の外周全てにソ
ース領域を設けず4隅で省略している。従って、p型ベ
ース拡散層14の外周Tとチャネル幅Wは異なり、W/
T=0.8となっている。またLa=20μm、Ls=
45μ乳としている。
In this embodiment, source regions are not provided on the entire outer periphery of the p-type base diffusion layer 14, but are omitted at the four corners. Therefore, the outer circumference T and channel width W of the p-type base diffusion layer 14 are different, and W/
T=0.8. Also, La=20μm, Ls=
The milk is 45μ.

この時、 W−8a/ (T−ffi・d)=7.5X10’であ
り、先の実施例とほぼ同じ特性を示す。
At this time, W-8a/(T-ffi·d)=7.5×10', showing almost the same characteristics as the previous example.

その池水発明はその趣旨を逸脱しない範囲で種々変形実
施することができる。例えば第1図のn+型層12がな
い構造に本発明を適用しても有効である。
The pond water invention can be modified in various ways without departing from its spirit. For example, it is also effective to apply the present invention to a structure without the n+ type layer 12 shown in FIG.

また、1200Vの静耐圧の素子の場合には、   。In addition, in the case of an element with a static withstand voltage of 1200V.

同様にしてVscは600Vまで破壊しないものが得ら
れる。
Similarly, a Vsc that does not break down to 600V can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は本発明の一実施例の導電変調型M
OSFETTの構成を示す図、第2図は他の実施例の導
電変調型MOSFETTの拡散層パターンを示す図、第
3図は本発明の数値限定の眼拠を説明するためのデータ
を示す図、第4図は従来の一般的な導電変調型MOSF
ETTを示す図である。 11・・・p+型ドレイン層、12・・・nゝ型層、1
3・・・n−型高抵抗層、14・・・p型ベース拡散層
、15・・・p1型層、16・・・ρ1型層、17・・
・n“型ソース拡散層、18・・・ゲート絶縁膜、19
・・・ゲート電極、20・・・ソース電極、21・・・
チャネル領域、22・・・p+型ガードリング層、23
・・・ドレイン電憔。
FIGS. 1(a) and 1(b) show a conductive modulation type M according to an embodiment of the present invention.
A diagram showing the configuration of an OSFETT, FIG. 2 a diagram showing a diffusion layer pattern of a conductivity modulation type MOSFETT of another embodiment, and FIG. 3 a diagram showing data for explaining the purpose of numerical limitation of the present invention. Figure 4 shows a conventional general conductivity modulation type MOSF
It is a figure showing ETT. 11...p+ type drain layer, 12...n type layer, 1
3...n-type high resistance layer, 14...p-type base diffusion layer, 15...p1 type layer, 16...ρ1 type layer, 17...
・n" type source diffusion layer, 18... gate insulating film, 19
...gate electrode, 20...source electrode, 21...
Channel region, 22...p+ type guard ring layer, 23
...Drain electric shock.

Claims (3)

【特許請求の範囲】[Claims] (1)高濃度、第1導電型のドレイン層と第2導電型の
高抵抗層を有する半導体基板ウェーハの前記高抵抗層部
分に第1導電型のベース拡散層が形成され、このベース
拡散層内に高濃度、第2導電型のソース拡散層が形成さ
れ、このソース拡散層と前記高抵抗層に挟まれたチャネ
ル領域となるベース拡散層上にゲート絶縁膜を介してゲ
ート電極が形成され、前記ソース拡散層とベース拡散層
の双方にコンタクトするソース電極が形成された導電変
調型MOSFETにおいて、有効素子領域内での単位面
積(1cm^2)当りの全チャネル幅をW、同単位面積
内で第2導電型高抵抗層が直下にある部分のゲート電極
面積をS_G、同単位面積内のベース拡散層の全外周長
をT、チャネル長をl、ゲート絶縁膜の厚みをdとした
とき、 (W・S_G)/(T・2・d)<1.1×10^8を
満たすことを特徴とする導電変調型MOSFET。
(1) A base diffusion layer of a first conductivity type is formed in the high resistance layer portion of a semiconductor substrate wafer having a highly concentrated drain layer of a first conductivity type and a high resistance layer of a second conductivity type; A high concentration, second conductivity type source diffusion layer is formed within the base diffusion layer, and a gate electrode is formed via a gate insulating film on a base diffusion layer which becomes a channel region sandwiched between the source diffusion layer and the high resistance layer. In the conductivity modulation type MOSFET in which a source electrode is formed in contact with both the source diffusion layer and the base diffusion layer, the total channel width per unit area (1 cm^2) in the effective device area is W, and the same unit area is W. The gate electrode area of the part directly under the second conductivity type high resistance layer is S_G, the total outer circumference length of the base diffusion layer within the same unit area is T, the channel length is l, and the thickness of the gate insulating film is d. A conductive modulation type MOSFET characterized by satisfying (W・S_G)/(T・2・d)<1.1×10^8.
(2)第1導電型ベース拡散層が複数回の拡散により形
成されている特許請求の範囲第1項記載の導電変調型M
OSFET。
(2) The conductivity modulation type M according to claim 1, wherein the first conductivity type base diffusion layer is formed by multiple diffusions.
OSFET.
(3)第1導電型ドレイン層と第2導電型高抵抗層の間
に第2導電型の低抵抗層を有する特許請求の範囲第1項
記載の導電変調型MOSFET。
(3) The conductivity modulation type MOSFET according to claim 1, further comprising a second conductivity type low resistance layer between the first conductivity type drain layer and the second conductivity type high resistance layer.
JP24481184A 1984-05-30 1984-11-20 Conduction modulation type mosfet Granted JPS61123184A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP24481184A JPS61123184A (en) 1984-11-20 1984-11-20 Conduction modulation type mosfet
US06/738,188 US4672407A (en) 1984-05-30 1985-05-28 Conductivity modulated MOSFET
DE3546745A DE3546745C2 (en) 1984-05-30 1985-05-30 Variable conductivity power MOSFET
GB08513599A GB2161649B (en) 1984-05-30 1985-05-30 Conductivity modulated mosfet
DE19853519389 DE3519389A1 (en) 1984-05-30 1985-05-30 VARIABLE CONDUCTIVITY MOSFET
US07/019,337 US4782372A (en) 1984-05-30 1987-02-26 Lateral conductivity modulated MOSFET
US07/116,357 US4881120A (en) 1984-05-30 1987-11-04 Conductive modulated MOSFET
US07/146,405 US5093701A (en) 1984-05-30 1988-01-21 Conductivity modulated mosfet
US07/205,365 US4928155A (en) 1984-05-30 1988-06-10 Lateral conductivity modulated MOSFET
US07/712,997 US5086323A (en) 1984-05-30 1991-06-10 Conductivity modulated mosfet
US07/799,311 US5286984A (en) 1984-05-30 1991-11-27 Conductivity modulated MOSFET
US08/261,254 US5780887A (en) 1984-05-30 1994-06-14 Conductivity modulated MOSFET
US09/104,326 US6025622A (en) 1984-05-30 1998-06-25 Conductivity modulated MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24481184A JPS61123184A (en) 1984-11-20 1984-11-20 Conduction modulation type mosfet

Publications (2)

Publication Number Publication Date
JPS61123184A true JPS61123184A (en) 1986-06-11
JPH0467790B2 JPH0467790B2 (en) 1992-10-29

Family

ID=17124297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24481184A Granted JPS61123184A (en) 1984-05-30 1984-11-20 Conduction modulation type mosfet

Country Status (1)

Country Link
JP (1) JPS61123184A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209172A (en) * 1987-02-26 1988-08-30 Toshiba Corp Insulated-gate self-turn-off thyristor
JPS63260176A (en) * 1987-04-17 1988-10-27 Sanyo Electric Co Ltd Manufacture of semiconductor device
US4980743A (en) * 1987-02-26 1990-12-25 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide semiconductor field effect transistor
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US5212396A (en) * 1983-11-30 1993-05-18 Kabushiki Kaisha Toshiba Conductivity modulated field effect transistor with optimized anode emitter and anode base impurity concentrations
US5237186A (en) * 1987-02-26 1993-08-17 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212396A (en) * 1983-11-30 1993-05-18 Kabushiki Kaisha Toshiba Conductivity modulated field effect transistor with optimized anode emitter and anode base impurity concentrations
JPS63209172A (en) * 1987-02-26 1988-08-30 Toshiba Corp Insulated-gate self-turn-off thyristor
US4980743A (en) * 1987-02-26 1990-12-25 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide semiconductor field effect transistor
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US5237186A (en) * 1987-02-26 1993-08-17 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
JPS63260176A (en) * 1987-04-17 1988-10-27 Sanyo Electric Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0467790B2 (en) 1992-10-29

Similar Documents

Publication Publication Date Title
US6025622A (en) Conductivity modulated MOSFET
US4514747A (en) Field controlled thyristor with double-diffused source region
US20150349104A1 (en) Insulated gate turn-off device with turn-off transistor
KR100194668B1 (en) Power insulated gate bipolar transistor
JPH06268227A (en) Insulated gate bipolar transistor
JP2585505B2 (en) Conduction modulation type MOSFET
JPH0512868B2 (en)
US6563193B1 (en) Semiconductor device
JPS61123184A (en) Conduction modulation type mosfet
JPH07101737B2 (en) Method for manufacturing semiconductor device
JPH0612827B2 (en) Conduction modulation type MOSFET
JP2003031821A (en) Semiconductor device
JPH0888357A (en) Lateral igbt
JPS6373670A (en) Conductive modulation type mosfet
JP2000101066A (en) Power semiconductor device
JPS62283669A (en) Conductivity modulation type mosfet
JPS62238668A (en) Conductivity modulation type mosfet
US11610987B2 (en) NPNP layered MOS-gated trench device having lowered operating voltage
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JPS5933988B2 (en) Electrostatic induction thyristor
JPH042169A (en) Horizontal type conductivity modulation semiconductor device
JPS63104481A (en) Conductivity modulated vertical type mosfet
JP2916158B2 (en) Conduction modulation type MOSFET
JP2000114544A (en) Static induction transistor
JPS621261B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term