JPS6373670A - Conductive modulation type mosfet - Google Patents

Conductive modulation type mosfet

Info

Publication number
JPS6373670A
JPS6373670A JP21843286A JP21843286A JPS6373670A JP S6373670 A JPS6373670 A JP S6373670A JP 21843286 A JP21843286 A JP 21843286A JP 21843286 A JP21843286 A JP 21843286A JP S6373670 A JPS6373670 A JP S6373670A
Authority
JP
Japan
Prior art keywords
layer
type
width
gate electrode
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21843286A
Other languages
Japanese (ja)
Other versions
JP2513640B2 (en
Inventor
Kiminori Watanabe
渡辺 君則
Yoshihiro Yamaguchi
好広 山口
Akio Nakagawa
明夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61218432A priority Critical patent/JP2513640B2/en
Publication of JPS6373670A publication Critical patent/JPS6373670A/en
Application granted granted Critical
Publication of JP2513640B2 publication Critical patent/JP2513640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Abstract

PURPOSE:To increase a latchup current without increase an ON voltage and to improve a load short-circuit resistance by specifying the width of a gate electrode and the width of a high resistance layer interposed between a base layer and a drain layer. CONSTITUTION:An n<-> type high resistance layer 13 is formed through an n<+> type buffer layer 12 on a p<+> type drain layer 11. A gate electrode 15 is formed through a gate insulating film 14 on the layer 13. with the electrode 15 as a mask a p-type base layer 17 and an n<+> type source layer 18 are formed. In such a structure, the width LG of the gate electrode is set to 30mum or wider, and the width Wn of the layer 13 between the layers 17 and 11 is set to 120mum or longer. The width LG is set to 30mum or longer to effectively increase a latchup current without considerably rising an ON voltage VF. When Wn becomes 120mum or larger, a nonbreakdown rate is abruptly increased to sufficiently increase a load short-circuit resistance.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、導電変調型MO3FETに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a conductivity modulated MO3FET.

(従来の技術) 近年、電力用スイッチング素子として、D S A (
D 1Husion  S elf  A Iingn
 )法によりソースおよびチャネル領域を形成するパワ
ーMO3FETが市場に現れている。しこしこの素子は
1000V以上の高耐圧ではオン抵抗が高くなってしま
い、大N流を流すことが難しい。これに代わる有力な素
子として、ドレイン領域にソースとは逆の導電型層を設
けることにより、高抵抗層に導電変調を起こさせてオン
抵抗を下げるようにした、いわゆる導電変調型MOSF
ETが知られている。導電変調型MO3FETは一般に
次のように形成される。ドレイン層となるp4″Si基
板にn+型バッファ層を介してn−型高抵抗層が形成さ
れる。この高抵抗層上にゲート絶縁膜を介してストライ
ブ状の開口を有するゲート電極が形成され、このゲート
電極をマスクとして不純物の二重拡散を行うことにより
、p型ベース層とその端部に自己整合されたn型ソース
層が形成される。
(Prior art) In recent years, DSA (
D 1 Fusion S elf A Iingn
) power MO3FETs whose source and channel regions are formed by the method have appeared on the market. This stiff element has a high on-resistance at a high breakdown voltage of 1000 V or more, making it difficult to pass a large N current. A promising alternative element is a so-called conductivity modulation type MOSF, which lowers the on-resistance by causing conductivity modulation in the high-resistance layer by providing a layer of conductivity type opposite to that of the source in the drain region.
ET is known. A conductivity modulated MO3FET is generally formed as follows. An n-type high-resistance layer is formed on a p4'' Si substrate that will serve as a drain layer via an n+-type buffer layer.A gate electrode having a striped opening is formed on this high-resistance layer via a gate insulating film. By performing double diffusion of impurities using this gate electrode as a mask, a p-type base layer and an n-type source layer self-aligned at the end thereof are formed.

これにより、ゲート電橿下のn型ソース層とn−型高抵
抗層で挟まれたp型ベース層表面にチャネルm域が形成
される。ソース層とベース層には双方にコンタクトする
ソース電極が形成され、ドレイン層にはドレインIII
が形成される。
As a result, a channel m region is formed on the surface of the p-type base layer sandwiched between the n-type source layer and the n-type high-resistance layer under the gate electrode. A source electrode in contact with both the source layer and the base layer is formed, and a drain III is formed in the drain layer.
is formed.

この導電変調型MOSFETでは、ゲート電極に正電圧
を印加してターンオンする際、n++ソース層からチャ
ネル領域を通ってn−型高抵抗層に注入される電子電流
に対して、p+型トド142層ら正孔注入が起り、この
結果n−型高抵抗層には多量のキャリア蓄積による導電
変調が起こる。
In this conductivity modulation type MOSFET, when a positive voltage is applied to the gate electrode to turn it on, the p+ type TODO 142 layer resists the electron current injected from the n++ source layer through the channel region to the n- type high resistance layer. As a result, conductivity modulation occurs in the n-type high resistance layer due to the accumulation of a large amount of carriers.

n−型高抵抗層に注入された正孔電流は、n1型ソ一ス
層下のp型ベース層を通り、ソース電極にぬける。ソー
ス電極はn1型ソ一ス層とp型ベース層を短絡している
ため、サイリスタ動作は阻止される。ゲート・ソース間
電圧を零とすれば、素子はターンオフする。
The hole current injected into the n-type high resistance layer passes through the p-type base layer under the n1-type source layer and into the source electrode. Since the source electrode short-circuits the n1 type source layer and the p type base layer, thyristor operation is prevented. When the gate-source voltage is zero, the device is turned off.

この導電変調型MOSFETは、高耐圧化した場合にも
、従来のパワーMOSFETに比べて導電変調の結果と
して十分に低いオン電圧が1qられる。
Even when the withstand voltage is increased, this conductive modulation type MOSFET has a sufficiently lower on-voltage of 1q as a result of conductive modulation compared to a conventional power MOSFET.

しかしながらこの導電変調型MOSFETにも未だ問題
がある。第1に、素子を流れる電流の密度が大きくなる
と、ソース層下の横方向抵抗による電圧降下が大きくな
る。そしてp型ベース層とn+型リソース層間順バイア
スされるようになるとサイリスタ動作に入り、ゲート・
ソース間バイアスを零にしても素子がオフしない、いわ
ゆるラッチアップ現象が生じる。この問題を解決する方
法として従来、p型ベース層を深く拡散する方法、p型
ベース層内に重ねて深くp型層を拡散する方法等が採用
されている。しかしこれらの方法では、オン電圧の上昇
を招く。第6図はその様子を示すもので、p型ベース層
の拡散深さXpとオン電圧VFおよびラッチアップ電流
ILの関係を示す。
However, this conductivity modulation type MOSFET still has problems. First, as the density of current flowing through the device increases, the voltage drop due to the lateral resistance under the source layer increases. Then, when the p-type base layer and the n+ type resource layer become forward biased, the thyristor operation begins, and the gate and
A so-called latch-up phenomenon occurs in which the device does not turn off even if the source-to-source bias is reduced to zero. Conventionally, methods for solving this problem include a method of deeply diffusing a p-type base layer, a method of deeply diffusing a p-type layer overlaid within a p-type base layer, and the like. However, these methods lead to an increase in on-state voltage. FIG. 6 shows this situation, and shows the relationship between the diffusion depth Xp of the p-type base layer, the on-voltage VF, and the latch-up current IL.

オン電圧を低くするには、p型ベース層の拡散深さXp
は浅くしなければならないが、これによりラッチアップ
電流ILは小さくなる。第2に、従来の導電変調型MO
3FETでは負荷短絡耐量がまだ不十分である。導電変
調型MO3FETをインバータ装置等に用いて負荷が短
絡した場合、ドレイン・ソース間には電源電圧電圧がそ
のままかかり過大な電流が流れるために、この状態が続
くと導電変調型MO5FETは破壊される。これを防止
するためには保護回路が用いられるが、負荷短絡が発生
してから保護回路が作動するまでの概略10μsecの
時間破壊しない耐量を有することが要求される。これが
負荷短絡耐量である。素子の順方向阻止電圧が高くなる
と数機い電圧も高くなり、負荷短絡耐量も大きくしなけ
ればならない。
In order to lower the on-voltage, the diffusion depth of the p-type base layer
must be made shallow, which reduces the latch-up current IL. Second, conventional conduction modulation type MO
3FET still has insufficient load short-circuit capability. If a conduction modulation type MO3FET is used in an inverter device or the like and the load is short-circuited, the power supply voltage will be applied between the drain and source and an excessive current will flow, so if this condition continues, the conduction modulation type MO5FET will be destroyed. . In order to prevent this, a protection circuit is used, but it is required that the protection circuit has the ability to withstand breakdown for approximately 10 μsec from the occurrence of a load short circuit to the activation of the protection circuit. This is the load short-circuit tolerance. As the forward blocking voltage of the element increases, the voltage also increases by several orders of magnitude, and the load short-circuit resistance must also be increased.

(発明が解決しようとする問題点) 以上のように従来の導電変調型MOSFETは、オン電
圧を上昇させることなくラッチアップ電流の大幅な増大
を図ることが難しく、負荷短絡耐量が不十分である、と
いう問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional conduction modulation type MOSFET, it is difficult to significantly increase the latch-up current without increasing the on-state voltage, and the load short-circuit resistance is insufficient. There was a problem.

本発明はこ′の様な問題を解決した導電変調型MOSF
ETを提供することを目的とする。
The present invention is a conductive modulation type MOSF that solves these problems.
The purpose is to provide ET.

[発明の構成コ (問題点を解決するための手段) 本発明にかかる導電変調型MO3FETは、第1導電型
ドレイン層上に第2導電型の低抵抗バッファ層を介して
第2導電型の高抵抗層を有し、この高抵抗層上にゲート
絶縁膜を介して格子状のゲート電極が配設され、このゲ
ート電極の開口部からの不純物拡散により第1導電型ベ
ース層およびこのベース層内に位置する第2導電型ソー
ス層が形成され、かつソース領域は不連続的に形成され
てMOSFET動作をする実効的チャネル領域とMOS
FET動作をしない領域が周期的に形成され、ドレイン
層にコンタクトするドレイン電極、およびソース層とベ
ース層に同時にコンタクトするソース電極を有する。こ
の様な導電変調型M OS F E Tにおいて、本発
明は、ゲート電極の幅をLasベース層とドレイン層に
挟まれる高抵抗層の幅をWnとしたとき、 Lo≧30μm Wn≧120μm なる条件を満たすようにしたことを特徴とする。
[Configuration of the Invention (Means for Solving Problems)] The conductivity modulation type MO3FET according to the present invention has a conductivity modulation type MO3FET in which a second conductivity type is formed on a first conductivity type drain layer via a second conductivity type low resistance buffer layer. A lattice-shaped gate electrode is disposed on the high-resistance layer via a gate insulating film, and impurities are diffused from the opening of the gate electrode to form a first conductivity type base layer and this base layer. A source layer of a second conductivity type located within is formed, and the source region is formed discontinuously to form an effective channel region and a MOS for MOSFET operation.
Regions that do not perform FET operation are periodically formed and have a drain electrode in contact with the drain layer and a source electrode in contact with the source layer and the base layer at the same time. In such a conductivity modulation type MOS FET, the present invention provides the following conditions: Lo≧30μm Wn≧120μm, where the width of the gate electrode is Las and the width of the high resistance layer sandwiched between the base layer and the drain layer is Wn. It is characterized by satisfying the following.

(作用) 上述のような設計パラメータを限定することにより、後
に具体的なデータを挙げて説明するように導電変調型M
O3FETの特性の大幅な改善が図られる。即ち、ゲー
ト電極幅Loを大きくすることにより、オン電圧を上昇
させることなくラッチアップ電流の増大を図ることがで
き、また高抵抗層幅Wnを大きく設定することにより負
荷短絡耐量の改善を図ることができる。
(Function) By limiting the design parameters as described above, conductive modulation type M
Significant improvement in the characteristics of O3FET is achieved. That is, by increasing the gate electrode width Lo, it is possible to increase the latch-up current without increasing the on-voltage, and by setting the high resistance layer width Wn large, it is possible to improve the load short circuit withstand capability. Can be done.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図(a)(b)は一実施例の導電変調型MOSFE
Tを示す平面図とそのA−A’断面図である。11はp
+型ドレイン層11であり、この上にn+型バッファ1
12を介してn−型高抵抗l!!13が形成されている
。この高抵抗層13上にゲート絶縁l1114を介して
例えば多結晶シリコン膜によりゲート電極15が形成さ
れている。ゲート電極15は第1図(a)に斜線を施し
て示したように、ストライプ状の間隙(開口部)16を
有する格子状に配設形成される。このゲート電極15を
マスクとしてDSA法による不純物拡散を行うことによ
り、p型ベース層17およびn+型ソース層18が形成
されている。ソース層18は第1図(a)に示すように
不連続的に配列形成される。これにより、p型ベース層
の端部、即ちソース層18と高抵抗層13に挟まれた領
域のp型ベース層17表面にチャネル領域19が形成さ
れる。チャネル領域19は、実際にMO3FET動作を
する実効チャネル領域19aと、ソース層がない部分の
MOSFET動作をしない領域19bとが周期的に配列
形成された状態になる。20はソース層18とベース層
17に同時にコンタクトするソース電極であり、21は
ドレイン電極である。p型ベース層17の中央部には、
その横方向抵抗を小さくするためにp+型!22が拡散
形成されている。
Figures 1(a) and 1(b) show an example of a conductivity modulation type MOSFE.
It is a top view which shows T, and its AA' sectional view. 11 is p
+ type drain layer 11, and an n+ type buffer 1 on top of this.
12 through n-type high resistance l! ! 13 are formed. A gate electrode 15 made of, for example, a polycrystalline silicon film is formed on this high resistance layer 13 via a gate insulator 1114. The gate electrode 15 is arranged in a lattice shape having striped gaps (openings) 16, as shown by hatching in FIG. 1(a). A p-type base layer 17 and an n+-type source layer 18 are formed by performing impurity diffusion using the DSA method using this gate electrode 15 as a mask. The source layers 18 are discontinuously arranged as shown in FIG. 1(a). As a result, a channel region 19 is formed at the end of the p-type base layer, that is, on the surface of the p-type base layer 17 in a region sandwiched between the source layer 18 and the high-resistance layer 13. In the channel region 19, an effective channel region 19a that actually performs MO3FET operation and a region 19b that does not perform MOSFET operation where there is no source layer are arranged in a periodic manner. 20 is a source electrode that contacts the source layer 18 and base layer 17 at the same time, and 21 is a drain electrode. In the center of the p-type base layer 17,
P+ type to reduce the lateral resistance! 22 is formed by diffusion.

この様な構成においてこの実施例では、ゲート電極幅L
oを30μm以上に設定し、またp型ベース層17とド
レイン層11の間(より正確には、p+型層22とn”
型バフフッ層12の間)の^抵抗層13の幅Wnを12
0μm以上に設定する。
In this embodiment, in such a configuration, the gate electrode width L
o is set to 30 μm or more, and between the p-type base layer 17 and the drain layer 11 (more precisely, between the p+ type layer 22 and n”
The width Wn of the resistance layer 13 (between the mold buffing layers 12) is 12
Set to 0 μm or more.

この素子の具体的な製造工程例を説明すると、次の通り
である。先ず0.001〜0.004Ω” artのρ
1型Si基板と、100〜150Ω”/Jのn゛型Si
基板を用意する。n−型S1基板の一方の鏡面研磨面に
ドーズ10.5〜1×1018/α2のリン・イオン注
入を行い熱処理する。次にp+型Si基板の鏡面研磨面
とn−型3i基板のリン・イオン注入面を、直接接着技
術により接合させる。これにより、p型ドレイン層11
−n+型バッファ層12−n−型高抵抗層13のウェー
ハが得られる。ここでn−型Si基板の厚さは、最終的
に高抵抗層13の幅Wnが120μm以上となるように
予め調整しておく。
A specific example of the manufacturing process for this element will be explained as follows. First, ρ of 0.001~0.004Ω” art
1-type Si substrate and 100-150Ω”/J n-type Si substrate
Prepare the board. Phosphorus ions are implanted at a dose of 10.5 to 1.times.10@18 /.alpha.2 into one mirror-polished surface of the n-type S1 substrate, followed by heat treatment. Next, the mirror polished surface of the p+ type Si substrate and the phosphorus ion implanted surface of the n− type 3i substrate are bonded together by direct bonding technology. As a result, the p-type drain layer 11
A wafer of -n+ type buffer layer 12-n- type high resistance layer 13 is obtained. Here, the thickness of the n-type Si substrate is adjusted in advance so that the final width Wn of the high resistance layer 13 is 120 μm or more.

この後n−型高抵抗1113表面にゲート絶縁膜14と
して1000人の熱酸化膜を形成し、この上に5000
人の多結晶シリコン膜を堆積する。
After this, a thermal oxide film of 1,000 layers is formed on the surface of the n-type high resistance layer 1113 as the gate insulating film 14, and on this
Deposit a polycrystalline silicon film.

そしてこの多結晶シリコン膜を、周期的な開口部16を
有するようにエツチング加工してゲート電極15とする
。ゲート電極15の幅Loは30μm以上とする。次に
このゲート電極14をマスクとしてボロンを拡散してp
型ベース層17を形成する。更にゲート電極15をマス
クの一部として用いて、ヒ素をドーズ15X10Is/
、、2イオン注入して熱処理し、ソース層18を形成す
る。
This polycrystalline silicon film is then etched to form a gate electrode 15 so as to have periodic openings 16. The width Lo of the gate electrode 15 is set to be 30 μm or more. Next, using this gate electrode 14 as a mask, boron is diffused and p
A mold base layer 17 is formed. Furthermore, using the gate electrode 15 as part of a mask, arsenic is applied at a dose of 15×10 Is/
, 2 ions are implanted and heat treated to form the source layer 18.

ソースWJ18は第1図(a)に示すように不連続的に
複数個配列される。この後全面をCVDM化躾で覆い、
これにコンタクト孔を開けてソース電極20を形成する
。基板裏面には、V−Ni−Aui!lの蒸着によりド
レイン電極21を形成する。
A plurality of source WJs 18 are arranged discontinuously as shown in FIG. 1(a). After this, the entire surface is covered with CVDM treatment,
A contact hole is opened in this to form a source electrode 20. On the back side of the board, V-Ni-Aui! A drain electrode 21 is formed by evaporating 1.

以上のようにして、ゲート′R極幅Lo≧30μ肌、高
抵抗層幅W n≧120μmの導電変調型MO3FET
が得られる。またチャネル領域は、通常のMOSFET
動作をする実効的チャネル領域19aと、ソース層がな
いためにMOSFET動作しない領IU19bが交互に
配列された状態となる。
As described above, conduction modulation type MO3FET with gate 'R pole width Lo≧30μm and high resistance layer width Wn≧120μm
is obtained. Also, the channel region is a normal MOSFET.
The effective channel region 19a that operates and the region IU 19b that does not operate as a MOSFET because there is no source layer are arranged alternately.

この実施例の導電変調型MOSFETでは、素子がオン
のときにゲート電極15下に開口するn−型層13から
p型ペース!117にドレインから注入される正孔電流
のうち、チャネル領域19bを通るものはソース層18
下を通らず直接ソース電極20に流れる。即ちソース層
18の間は正孔電流のバイパス領域となっており、ソー
ス層下の横方向抵抗が実効的に小さくなり、大電流まで
ラッチアップ現象を生じない。
In the conductivity modulation type MOSFET of this embodiment, when the device is on, a p-type layer is formed from the n-type layer 13 which opens below the gate electrode 15. Of the hole current injected from the drain to the source layer 117, the one that passes through the channel region 19b flows through the source layer 18.
It flows directly to the source electrode 20 without passing under it. That is, the space between the source layers 18 serves as a bypass region for hole current, and the lateral resistance under the source layer is effectively reduced, so that latch-up does not occur even at large currents.

以上のような構造パラメータの設定により優れた素子特
性が得れる理由を、具体的な実験データに基づいて次に
説明する。前述したようにラッチアップ電流の増大を図
るために単にチャネル長βを大きくするだけでは、オン
電圧が急激に増大する。
The reason why excellent device characteristics can be obtained by setting the structural parameters as described above will be explained below based on specific experimental data. As described above, if the channel length β is simply increased in order to increase the latch-up current, the on-state voltage will increase rapidly.

第2図は、ゲート電極幅Loとオン電圧VFの関係を測
定した結果である。p型ベース層拡散深さが4μmで、
前述のようにバイパス領域を設けた素子では、オン電圧
VFはゲートN極幅Loに大きく依存し、Loが30μ
m以上になると低いオン電圧が得られることが分る。
FIG. 2 shows the results of measuring the relationship between the gate electrode width Lo and the on-voltage VF. The p-type base layer diffusion depth is 4 μm,
As mentioned above, in a device provided with a bypass region, the on-voltage VF largely depends on the gate N-pole width Lo, and when Lo is 30μ
It can be seen that a low on-voltage can be obtained when the value is m or more.

第3図はゲート電極幅Loとラッチアップ電流ILの関
係を示す。第3図の縦軸はLa−20μ而におけるラッ
チアップ電流を1とした時のラッチアップi!!流の変
化率である。図示のようにバイパス領域がない素子では
ラッチアップ電流は低く、またゲート電極幅Loが大き
くなるとラッチアップ電流は低下しているが、バイパス
領域A域を設けた素子ではゲート電極幅Loが大きくな
ってもラッチアップ電流の低下は認められない。
FIG. 3 shows the relationship between the gate electrode width Lo and the latch-up current IL. The vertical axis in Figure 3 is the latch-up i! when the latch-up current at La-20μ is 1! ! is the rate of change of flow. As shown in the figure, the latch-up current is low in a device without a bypass region, and the latch-up current decreases as the gate electrode width Lo increases, but in a device with a bypass region A region, the gate electrode width Lo increases. However, no decrease in latch-up current was observed.

以上を纒めると、ソース層を不連続的に形成しバイパス
領域を設けた構造の導電変調型MOSFETにおいて、
ゲート電極幅Loを30μm以上に設定することにより
、オン電圧VFを余り上昇させることなく、効果的にラ
ッチアップ電流の増大を図ることができる。
To summarize the above, in a conductivity modulation type MOSFET with a structure in which the source layer is formed discontinuously and a bypass region is provided,
By setting the gate electrode width Lo to 30 μm or more, the latch-up current can be effectively increased without significantly increasing the on-voltage VF.

次に負荷短絡耐量について説明する。順方向阻止電圧が
1000V以上の導電変調型 MO3FETでは、取扱い電圧が500V以上になる。
Next, load short-circuit tolerance will be explained. A conduction modulation type MO3FET with a forward blocking voltage of 1000V or more has a handling voltage of 500V or more.

またゲート電圧は15Vである。従って、電源電圧10
00V、ゲート電圧15Vの条件で負荷短絡通電をおこ
ない、10μsecの間素子が非破壊であれば、負荷短
絡耐量は十分であるといえる。そこで種々の構造パラメ
ータについて実験を行った結果、負荷短絡耐量はベース
暦とドレイン層に挟まれる高抵抗層の幅Wnに依存する
ことが明らかになった。第4図がそのデータであり、W
nと素子の非破壊率の関係をヒストグラムで表わしたも
のである。図から明らかなように、Wnが120μm以
上になると非破壊率が急激に高くなり、負荷短絡耐量が
十分大きくなることが分る。
Further, the gate voltage is 15V. Therefore, the power supply voltage 10
If the load short-circuit current is applied under the conditions of 00 V and gate voltage of 15 V, and the element is not destroyed for 10 μsec, it can be said that the load short-circuit tolerance is sufficient. As a result of conducting experiments on various structural parameters, it became clear that the load short-circuit withstand capability depends on the width Wn of the high-resistance layer sandwiched between the base layer and the drain layer. Figure 4 shows the data, W
This is a histogram representing the relationship between n and the non-destructive rate of the element. As is clear from the figure, when Wn becomes 120 μm or more, the non-destructive rate increases rapidly, and the load short-circuit resistance becomes sufficiently large.

なお、Wnが同一のとき、低抵抗バラフッ層がある場合
とない場合とでは、ある場合の方が負荷短絡耐量が大き
いことが確認された。
It was confirmed that when Wn is the same, the load short-circuit withstand capacity is greater in the case with and without the low-resistance barrier layer.

第5図(a)(b)は他の実施例の導電変調型MOSF
ETの平面図とそのB−B−断面図である。先の実施例
と対応する部分には同じ符号を付して詳細な説明は省略
する。この実施例ではソース層18連続的に形成されて
いる。そしてp型ベース層17内にp+型層22と共に
、ソース側エツジが凹凸パターンとなるp9型1i12
3を形成している。即ちp+型層23は、チャネル領域
に終端するエツジとソース層18下に終端するエツジが
交互に現われるパターンとし、チャネル領域19が、M
OSFET動作に寄与する実効的チャネル領It119
aと、MOSFET動作に寄与しない領域19bが交互
に配列形成された状態とする。
FIGS. 5(a) and 5(b) are conduction modulation type MOSFs of other embodiments.
It is a top view of ET and its BB sectional view. Portions corresponding to those in the previous embodiment are given the same reference numerals and detailed explanations will be omitted. In this embodiment, the source layer 18 is formed continuously. Then, in the p-type base layer 17, together with the p+-type layer 22, the p9 type 1i12 whose source side edge has a concavo-convex pattern is formed.
3 is formed. That is, the p+ type layer 23 has a pattern in which edges terminating in the channel region and edges terminating below the source layer 18 appear alternately, and the channel region 19
Effective channel area It119 contributing to OSFET operation
A and regions 19b that do not contribute to MOSFET operation are arranged alternately.

つまりこの実施例では、チャネル領域19bは、そのし
きい値がチャネル領域19aでのそれに比べて高く設定
されている。
That is, in this embodiment, the threshold value of channel region 19b is set higher than that of channel region 19a.

この実施例の素子では、ゲート電極15にオン・ゲート
信号を与えた時、チャネル領域19aがMOSFET動
作によりオンし、チャネル領域19bではオンしない。
In the device of this embodiment, when an on-gate signal is applied to the gate electrode 15, the channel region 19a is turned on by MOSFET operation, but the channel region 19b is not turned on.

高抵抗層13で導電変調が起こって大電流が流れるオン
状態では、高抵抗層13からの電流がチャネル領域19
bをも流れるが、チャネル領域19aに比べるとp”型
層がソース1118の全体に亙って形成されているため
、ソース層下の横方向抵抗が小さく、ここでの電圧降下
は小さい。即ちチャネル領域19bにバイパス領域を用
いた構造と等価になる。
In the on state where conductivity modulation occurs in the high resistance layer 13 and a large current flows, the current from the high resistance layer 13 flows into the channel region 19.
However, since the p'' type layer is formed over the entire source 1118 compared to the channel region 19a, the lateral resistance under the source layer is small, and the voltage drop there is small. This is equivalent to a structure in which a bypass region is used in the channel region 19b.

従ってこの実施例の構造でも、ゲート電極幅Loおよび
高抵抗層幅Wnを先の実施例と同様の条件に設定するこ
とにより、ラッチアップを生じることなく、大電流を流
すことができ、低いオン電圧を得ることができる。
Therefore, even in the structure of this example, by setting the gate electrode width Lo and the high resistance layer width Wn to the same conditions as in the previous example, a large current can flow without latch-up, and a low on-state voltage can be obtained.

なお本発明は上記実施例に限られるものではなく、その
趣旨を逸脱しない範囲で種々変形して実施することがで
きる。
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without departing from the spirit thereof.

[発明の効果] 以上述べたように本発明によれば、素子パラメータの最
適設計により、オン電圧の上昇をもたらすことなくラッ
チアップN流の増大を図ることができ、また負荷短絡耐
量の向上を図った導電変調型MOSFETを得ることが
できる。
[Effects of the Invention] As described above, according to the present invention, by optimally designing element parameters, it is possible to increase the latch-up N current without increasing the on-voltage, and to improve the load short-circuit resistance. A conductivity modulation type MOSFET as intended can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の一実薇例の導電変調型M
OSFETを示す平面図とそのA−A’断面図、第2図
はゲート電極幅Loとオン電圧V、の関係を示す図、第
3図は同じくゲート電極幅Loとラッチアップ電流IL
の関係を示す図、第4図は高抵抗層幅Wnと素子の非破
壊率の関係を示す図、第5図(a)(b)は他の実施例
の導電変調型MO3FETの平面図とそのB−8′断面
図、第6図はp型ベース層の拡散深さとオン電圧VFお
よびラッチアップ電流ILの関係を示す図である。 11・・・p4″型ドレイン層、12・・・n+型バッ
ファ層、13・・・n−型高抵抗層、14・・・ゲート
絶縁層、15・・・ゲート電極、16・・・間隙(開口
部)、17・・・p型ベース層、18・・・n+型ソー
ス層、19a・・・実効チャネル領域、19b・・・M
OSFET動作しないチャネル領域、2o・・・ソース
II4極、21・・・ドレイン電極、22.23・・・
p+型層。 出願人代理人 弁理士 鈴江武彦 第 1 囚 富2図 p欠イノぐス力 Wn (pm〕 第S図 為6rJA
FIGS. 1(a) and 1(b) show a conductive modulation type M as an example of the present invention.
A plan view showing an OSFET and its AA' cross-sectional view, FIG. 2 is a diagram showing the relationship between gate electrode width Lo and on-voltage V, and FIG. 3 is a diagram showing the relationship between gate electrode width Lo and latch-up current IL.
FIG. 4 is a diagram showing the relationship between the high resistance layer width Wn and the non-destructive rate of the device, and FIGS. The B-8' sectional view of FIG. 6 is a diagram showing the relationship between the diffusion depth of the p-type base layer, the on-voltage VF, and the latch-up current IL. DESCRIPTION OF SYMBOLS 11... P4'' type drain layer, 12... N+ type buffer layer, 13... N- type high resistance layer, 14... Gate insulating layer, 15... Gate electrode, 16... Gap (opening), 17...p type base layer, 18...n+ type source layer, 19a... effective channel region, 19b...M
OSFET non-operating channel region, 2o...4 source II poles, 21...drain electrode, 22.23...
p+ type layer. Applicant's representative Patent attorney Takehiko Suzue No. 1 Prisoner of wealth 2 figure p lack of innovation Wn (pm) Part S figure 6rJA

Claims (1)

【特許請求の範囲】 第1導電型ドレイン層と第2導電型高抵抗層に挟まれた
領域に前記高抵抗層より不純物濃度が高い第2導電型の
低抵抗バッファ層を有し、前記高抵抗層上にゲート絶縁
膜を介してゲート電極が配設され、このゲート電極の間
隙部からの不純物拡散により第1導電型ベース層および
このベース層内に位置する第2導電型ソース層が形成さ
れ、前記ドレイン層にコンタクトするドレイン電極、お
よび前記ベース層とソース層の双方にコンタクトするソ
ース電極を有し、かつ前記ゲート電極下のチャネル領域
がMOSFET動作をする実効チャネル領域とMOSF
ET動作をしない領域の周期的配列として形成された導
電変調型MOSFETおいて、前記ゲート電極の幅をL
_G、前記ドレイン層とベース層に挟まれる高抵抗層の
幅をWnとしたとき、 L_G≧30μm Wn≧120μm を満たすことを特徴とする導電変調型 MOSFET。
Claims: A low-resistance buffer layer of a second conductivity type having a higher impurity concentration than the high-resistance layer is provided in a region sandwiched between the drain layer of the first conductivity type and the high-resistance layer of the second conductivity type; A gate electrode is provided on the resistance layer via a gate insulating film, and a first conductivity type base layer and a second conductivity type source layer located within this base layer are formed by impurity diffusion from the gap between the gate electrodes. a drain electrode that contacts the drain layer, and a source electrode that contacts both the base layer and the source layer, and a channel region under the gate electrode that operates as a MOSFET;
In a conductivity modulation MOSFET formed as a periodic array of regions that do not perform ET operation, the width of the gate electrode is set to L.
A conductivity modulation type MOSFET, characterized in that L_G≧30 μm and Wn≧120 μm, where Wn is the width of the high resistance layer sandwiched between the drain layer and the base layer.
JP61218432A 1986-09-17 1986-09-17 Conduction modulation type MOSFET Expired - Lifetime JP2513640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61218432A JP2513640B2 (en) 1986-09-17 1986-09-17 Conduction modulation type MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61218432A JP2513640B2 (en) 1986-09-17 1986-09-17 Conduction modulation type MOSFET

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7246195A Division JP2718911B2 (en) 1995-09-25 1995-09-25 Conduction modulation type MOSFET

Publications (2)

Publication Number Publication Date
JPS6373670A true JPS6373670A (en) 1988-04-04
JP2513640B2 JP2513640B2 (en) 1996-07-03

Family

ID=16719816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218432A Expired - Lifetime JP2513640B2 (en) 1986-09-17 1986-09-17 Conduction modulation type MOSFET

Country Status (1)

Country Link
JP (1) JP2513640B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990975A (en) * 1988-12-16 1991-02-05 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor and method of manufacturing the same
JPH04133355A (en) * 1990-09-25 1992-05-07 Fuji Electric Co Ltd Insulated gate type bipolar transistor
US5489788A (en) * 1993-03-09 1996-02-06 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device with improved short-circuit tolerance
US5703383A (en) * 1995-04-11 1997-12-30 Kabushiki Kaisha Toshiba Power semiconductor device
JP2009289988A (en) * 2008-05-29 2009-12-10 Fuji Electric Device Technology Co Ltd High-breakdown voltage vertical mosfet
CN106952945A (en) * 2017-03-24 2017-07-14 深圳深爱半导体股份有限公司 Power semiconductor and its manufacture method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605568A (en) * 1983-06-23 1985-01-12 Sanken Electric Co Ltd Vertical insulated gate field effect transistor
JPS6182477A (en) * 1984-09-29 1986-04-26 Toshiba Corp Conduction modulation type mosfet
JPS61208268A (en) * 1985-03-13 1986-09-16 Toshiba Corp Conductance modulation type semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605568A (en) * 1983-06-23 1985-01-12 Sanken Electric Co Ltd Vertical insulated gate field effect transistor
JPS6182477A (en) * 1984-09-29 1986-04-26 Toshiba Corp Conduction modulation type mosfet
JPS61208268A (en) * 1985-03-13 1986-09-16 Toshiba Corp Conductance modulation type semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990975A (en) * 1988-12-16 1991-02-05 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor and method of manufacturing the same
JPH04133355A (en) * 1990-09-25 1992-05-07 Fuji Electric Co Ltd Insulated gate type bipolar transistor
US5489788A (en) * 1993-03-09 1996-02-06 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device with improved short-circuit tolerance
US5703383A (en) * 1995-04-11 1997-12-30 Kabushiki Kaisha Toshiba Power semiconductor device
JP2009289988A (en) * 2008-05-29 2009-12-10 Fuji Electric Device Technology Co Ltd High-breakdown voltage vertical mosfet
CN106952945A (en) * 2017-03-24 2017-07-14 深圳深爱半导体股份有限公司 Power semiconductor and its manufacture method

Also Published As

Publication number Publication date
JP2513640B2 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
JP3321185B2 (en) High voltage semiconductor device
JP3417013B2 (en) Insulated gate bipolar transistor
JPH0467343B2 (en)
JP3209091B2 (en) Semiconductor device having insulated gate bipolar transistor
JP3182262B2 (en) Semiconductor device
JPH0512868B2 (en)
JPS62232167A (en) Semiconductor device
JP2001060685A (en) High breakdown-strength transistor
JPS6276671A (en) Conductivity modulation type mosfet
JPH0786580A (en) High-voltage semiconductor device
JPS6373670A (en) Conductive modulation type mosfet
JPS62150769A (en) Semiconductor device
JPH0620141B2 (en) Conduction modulation type MOSFET
JP3240896B2 (en) MOS type semiconductor device
JPH0888357A (en) Lateral igbt
JPS63186475A (en) Conductivity modulation type mosfet
JPS62283669A (en) Conductivity modulation type mosfet
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JPH04196174A (en) Insulated-gate bipolar
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JPH10229192A (en) Semiconductor switch element
JPS63104481A (en) Conductivity modulated vertical type mosfet
JP2718911B2 (en) Conduction modulation type MOSFET
JPH042169A (en) Horizontal type conductivity modulation semiconductor device
JP3353529B2 (en) Horizontal insulated gate bipolar transistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term