JPS607070A - Manufacture of sealed lead-acid battery - Google Patents

Manufacture of sealed lead-acid battery

Info

Publication number
JPS607070A
JPS607070A JP58114041A JP11404183A JPS607070A JP S607070 A JPS607070 A JP S607070A JP 58114041 A JP58114041 A JP 58114041A JP 11404183 A JP11404183 A JP 11404183A JP S607070 A JPS607070 A JP S607070A
Authority
JP
Japan
Prior art keywords
battery
plate
paste
electrolyte
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114041A
Other languages
Japanese (ja)
Inventor
Akio Komaki
小牧 昭夫
Toshiyuki Matsumura
敏之 松村
Takao Ogura
孝夫 小倉
Yoshinari Morimoto
森本 佳成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58114041A priority Critical patent/JPS607070A/en
Publication of JPS607070A publication Critical patent/JPS607070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a sealed lead-acid battery having improved self discharge performance and recovery performance after overdischarge by assembling a battery using plates prepared by performing formation of a paste filled plate and allowing to stand a cathode plate for degassing, then completely charging the battery. CONSTITUTION:A paste filled plate prepared by filling a cathode paste in a grid is immersed in a formation bath and formation is performed. By this process, a cathode plate and anode plate are prepared. Both plates are inserted into a container with electrolyte placed in between to assemble a battery. The battery is allowed to stand at a specified temperature or below to remove attached gas to the cathode plate and low oxide PbOx (x<2) in active material is converted to PbSO4. The battery is completely charged to oxidized PbSO4 to PbO2 and a sealed lead-acid battery is formed. By this process, recovery performance by charging after overdischarge is improved, and acceleration of self discharge caused by direct contact of electrolyte to grid is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シール鉛蓄電建嘩撮棟の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a sealed lead-acid electric construction building.

従来技術 電解液の漏れを防ぎ、密閉型に構成したシール鉛蓄電池
では、補水や電解液の補充等のメンテナンスを行なわな
いで所定の寿命を得るようにする必要がある。そのため
、シール鉛蓄電池においては格子体をアンチモンフリー
鉛系金属(例えばJ\ Pb−Ca−8n合金或いはPb−Ca合金等)によシ
形成している。また液漏れを防止するため、電解液の量
を極限まで少なくしている。このように、シール鉛蓄電
池では、電解液の量が極端に少ないため、放室中に電解
液の比重が大幅に低下し、その結果自己放電が大きくな
るという欠点があった。また放電が行き過ぎて過放電の
状態になると、電解液の比重が水とほぼ同じ1iで低下
する。特に過放電後更に放置した場合には電解液の比重
の低下が著しく、回復充電を行なっても復元することが
難しい状態になる。
Conventional Sealed lead-acid batteries that prevent electrolyte leakage and are constructed in a sealed manner must be designed to have a specified lifespan without maintenance such as water replenishment or electrolyte replenishment. Therefore, in sealed lead-acid batteries, the lattice is made of antimony-free lead-based metal (for example, J\Pb-Ca-8n alloy or Pb-Ca alloy). Additionally, to prevent leakage, the amount of electrolyte is kept to a minimum. As described above, sealed lead-acid batteries have the disadvantage that, since the amount of electrolyte is extremely small, the specific gravity of the electrolyte decreases significantly while the battery is released from the room, resulting in increased self-discharge. Further, when the discharge progresses too much and an overdischarge state occurs, the specific gravity of the electrolytic solution decreases to 1i, which is approximately the same as that of water. In particular, if the battery is left for a long time after being overdischarged, the specific gravity of the electrolytic solution will drop significantly, making it difficult to restore the battery even if recovery charging is performed.

上記のように、従来のシール鉛蓄電池において過放電放
置後の回復性能が損なわれるのは、陽極板の化成工程に
おいて活物質中に低級酸化物が形成されるためである。
As mentioned above, the reason why the recovery performance after being left overdischarged in conventional sealed lead acid batteries is impaired is because lower oxides are formed in the active material during the anode plate formation process.

即ち、陽極板′f:製造するにはまず格子体に陽極ペー
ストを充填し、このペースト充填板に対して化成を施し
てペーストの活物質化(pbo□化)を行なう。との化
成は、比重が1.05〜1.20の範囲の電解液中にお
いて極板に0 、1〜1 、0 A/cm2の電流密度
で10〜70時間程度通電することによ多行なう。この
化成工程においては先ず格子体表面付近のペーストが活
物質化し、次いでペーストの内部から表面へと活物質化
が進む。格子体表面付近のペーストは初期に活物質化さ
れるため、ペーストの内部から表面にかけて化成が進行
する過程においては、格子体表面近傍から水分解による
0□〃スが発生する。この02ガスの発生は、化成が1
0多程度進行した時点から起り、その後は02fスの発
生を伴ないなから化成が進行することになる。したがっ
て多孔性に富んだ、化成が進行中のペーストの内部はガ
スが充満した状態となシ、複雑な表面をもつ多孔質のペ
ースト内にこのガスが吸着される。この力スの気泡とに
−ストとの界面では、化成液中の硫酸根(−5o4−2
)の拡散が阻害され、化成の進行が妨げられる。このよ
うに化成の進行が妨げられた部分は、化成終了後完全に
PbO2化されないため、活物質中にはpb−oX(x
、 (2)のような低級酸化物が残存することになる。
That is, anode plate 'f: To manufacture, first, a grid body is filled with anode paste, and this paste-filled plate is subjected to chemical conversion to convert the paste into an active material (pbo□). The chemical formation is often carried out by energizing the electrode plate at a current density of 0, 1 to 1, 0 A/cm2 for about 10 to 70 hours in an electrolytic solution with a specific gravity in the range of 1.05 to 1.20. . In this chemical conversion step, the paste near the surface of the lattice body is first converted into an active material, and then the conversion into the active material progresses from the inside of the paste to the surface. Since the paste near the surface of the lattice body is initially converted into an active material, in the process of chemical conversion from the inside of the paste to the surface, 0□〃 gas is generated from near the surface of the lattice body due to water decomposition. The generation of this 02 gas is due to chemical formation of 1
This occurs at the point when the 02f phase has progressed to a certain extent, and after that, chemical formation proceeds without the occurrence of 02f gas. Therefore, the interior of the paste, which is highly porous and undergoing chemical conversion, is filled with gas, and this gas is adsorbed within the porous paste having a complex surface. At the interface between the gas bubbles and the nitrogen gas, the sulfate group (-5o4-2
) diffusion is inhibited, and the progress of chemical formation is hindered. The areas where the progress of chemical conversion is hindered are not completely converted into PbO2 after the chemical conversion is completed, so pb-oX(x
, (2) will remain.

このような低級酸化物が陽極活物質中に残存していると
、容量の発現に支障をきたすだけでなく、過放電放置後
の残存容量が少なくなったシ、回復充電を行なっても復
元しなかったシするという問題が生じる。このような傾
向は、陽極活物質を完全に高級酸化物(PbO2)化す
ると弱まることが知られている。
If such lower oxides remain in the anode active material, they not only hinder the development of capacity, but also cause the remaining capacity to decrease after being left over-discharged, and cannot be restored even after recovery charging. The problem arises that it is not possible to do so. It is known that such a tendency is weakened when the anode active material is completely converted into a higher oxide (PbO2).

また上記のように化成工程においてガスが発生して化成
終了後の陽極物質が多孔性に富んだものとなると、電解
液が格子体へ直接接触して自己放電が促進され、自己放
電性能が低下することになる。
In addition, as mentioned above, if gas is generated during the chemical formation process and the anode material becomes highly porous after chemical formation, the electrolyte will come into direct contact with the grid, promoting self-discharge and reducing self-discharge performance. I will do it.

発明の目的 本発明の目的は、自己放電性能及び過放電放置後の回復
性能の改善を図ることができるようにしたシール鉛蓄電
池の製造方法を提案することにある。
OBJECTS OF THE INVENTION An object of the present invention is to propose a method for manufacturing a sealed lead-acid battery that can improve self-discharge performance and recovery performance after over-discharging.

発明の構成 本発明の第1の方法においては、格子体にペーストを充
填してペースト充填板を形成するペースト充填工程と、
前記ペースト充填板金化成槽中に浸漬して化成を行なっ
て陽極板と陰極板とを形成する化成工程と、前記陽極板
と陰極板との間に電解質を介在して該陽極板と陰極板と
電解質とを電槽内に配置して電池を組立てる組立工程と
、前記電池を所定温度下に放置することによシ前記陽極
板に付着するガスを脱気する放置脱気工程と、前記陽極
板に付着するガスが脱気された電池を完全充電する充電
工程とを行なってシール鉛蓄電池を完成する。
Structure of the Invention The first method of the present invention includes a paste filling step of filling a grid body with paste to form a paste filling plate;
A chemical forming step of forming an anode plate and a cathode plate by immersing the sheet metal in the paste-filled chemical forming bath, and forming an anode plate and a cathode plate by interposing an electrolyte between the anode plate and the cathode plate. an assembly step of assembling the battery by placing an electrolyte in a battery case; a leaving degassing step of leaving the battery at a predetermined temperature to degas the gas adhering to the anode plate; A sealed lead-acid battery is completed by performing a charging process to completely charge the battery from which the gas adhering to the battery has been degassed.

本発明の第2の方法においては、上記本発明の第1の方
法における放置脱気工程を、電池を所定温度下の不活性
ガス中に放置するようにしてシール鉛蓄電池を完成する
In the second method of the present invention, the sealed lead-acid battery is completed by replacing the degassing step in the first method of the present invention with leaving the battery in an inert gas at a predetermined temperature.

上記の方法によれば、放置脱気工程において、陽極ペー
スト中に含まれている02ガスが脱気されて陽極活物質
中の低級酸化物Pbox(’ x (2)が硫酸鉛Pb
SO4になり、初充電工程において上記PbSO4を高
級酸化物PbO2に復元するため、陽極活物質を完全に
PbO2化することができる。したがって本発明の方法
によシ製造した陽極板を用いてシール鉛蓄電池を構成す
ると、電池の過放電放置後 きる。また陽極活物質の層は多孔質ではなく、緻密なも
のになるため、従来のように電解液が格子体に直接触れ
て自己放電が促進されるのを抑えることができる。また
第2の方法によれば、第1の方法による作用に加えて第
1の方法における陰極板の絶対容量の低下を抑えて陰極
板の自己放電を抑制できる。
According to the above method, in the standing degassing step, the 02 gas contained in the anode paste is degassed, and the lower oxide Pbox (' x (2) in the anode active material becomes lead sulfate Pb
Since the PbSO4 is restored to the higher oxide PbO2 in the initial charging step, the anode active material can be completely converted to PbO2. Therefore, when a sealed lead acid battery is constructed using an anode plate manufactured by the method of the present invention, the battery will die after being overdischarged. Furthermore, since the anode active material layer is not porous but dense, it is possible to prevent the electrolyte from coming into direct contact with the grid and promoting self-discharge, which is the case in the past. Further, according to the second method, in addition to the effect of the first method, it is possible to suppress the decrease in the absolute capacity of the cathode plate in the first method, thereby suppressing self-discharge of the cathode plate.

実施例 実施例では、各セルを陽極板1枚と陰極板2枚とによ多
構成する容量2 AHのシール鉛蓄電池を製作した。本
実施例では陽極板の幅寸法を50mn、高さを40m、
厚さを3.5瓢とした。電池を製造するに当シ、先ずア
ンチモンフリー鉛系金属からなる格子体に陽極ペースト
を充填してペースト充填板を形成するペースト充填工程
を行なった。次いで該ペースト充填板を十分に乾燥させ
た後陰極用のペースト充填板とともに比重1.100の
希硫酸を入れた化成槽中に浸漬して、40℃の温度で電
流密度0 、3 A/cm2の電流を流して40時間化
成を行なって陽極板と陰極板とを形成する化成工程を行
なった。この化成工程によって形成された陽極板と陰極
板によシ極板群を構成し、電解質を陽極板と陰極板との
間に介在させ、更に極板群と電解質とを電槽内に装填し
て電池を構成する。その後第1図に示すような雰囲気温
度と放置時間とを設定して電池を放置する。この際陽極
活物質に内包されているガスを脱気して、その内側の活
物質表面の低級酸化物層を電解質の希硫酸と接触させる
EXAMPLE In this example, a sealed lead-acid battery having a capacity of 2 AH was fabricated, each cell having one anode plate and two cathode plates. In this example, the width of the anode plate is 50 mm, the height is 40 m,
The thickness was set to 3.5 gourds. To manufacture the battery, a paste filling process was first performed in which a grid made of antimony-free lead-based metal was filled with anode paste to form a paste-filled plate. Next, after thoroughly drying the paste-filled plate, it was immersed together with the paste-filled plate for the cathode in a chemical conversion bath containing dilute sulfuric acid with a specific gravity of 1.100, and the current density was 0 and 3 A/cm2 at a temperature of 40°C. A chemical conversion step was performed in which an anode plate and a cathode plate were formed by applying a current of 100 mL to conduct chemical conversion for 40 hours. The anode plate and cathode plate formed by this chemical formation process constitute a cathode plate group, an electrolyte is interposed between the anode plate and the cathode plate, and the electrode plate group and electrolyte are loaded into a battery case. to form a battery. Thereafter, the ambient temperature and standing time as shown in FIG. 1 are set, and the battery is left unattended. At this time, the gas contained in the anode active material is degassed, and the lower oxide layer on the surface of the active material inside is brought into contact with dilute sulfuric acid as an electrolyte.

これによシ低級酸化物pbox(x (2)k硫酸鉛P
bSO4とする。その後完全充電を行なって、硫酸鉛P
b5O4f:PbO2化する。この場合陽極活物質の低
級酸化物Pb0Xが活物質全体の20%以上硫酸鉛化し
ていれば全ての低級酸化物が硫酸鉛化するとみなすこと
ができる。上記完全充電は例えば14.5〜l 6.O
Vの定電圧で約18時間充填することにより行なうと好
結果を得ることができる。また所定温度下で放置する放
置脱気工程を行なう前に1〜数回充放電を繰シ返すと放
置後の容量回復性が良好になる。との充電工程において
、PbSO4は、完全にPbO2に復元する。したがっ
てこの初充電工程が終了した時点においては、陽極活物
質が完全にPbO2化される。このように、陽極活物質
を二度完全にPbO2化しておくと、この陽極板を用い
て組み立てたシール鉛蓄電池を過放電後放置してその後
回復充電を行なった際の回復性能は良好である。
This results in lower oxide pbox(x (2)k lead sulfate P
Let it be bSO4. After that, fully charge the lead sulfate P
b5O4f: Converts to PbO2. In this case, if 20% or more of the lower oxide Pb0X of the positive electrode active material is converted into lead sulfate, it can be considered that all the lower oxides are converted into lead sulfate. The above-mentioned complete charging takes, for example, 14.5 to 16. O
Good results can be obtained by filling at a constant voltage of V for about 18 hours. Moreover, if charging and discharging are repeated one to several times before performing the degassing step of leaving the battery at a predetermined temperature, the capacity recovery after leaving the battery will be improved. In the charging process, PbSO4 is completely restored to PbO2. Therefore, at the end of this initial charging step, the anode active material is completely converted into PbO2. In this way, if the anode active material is completely converted to PbO2 twice, the recovery performance is good when a sealed lead-acid battery assembled using this anode plate is left after overdischarging and then subjected to recovery charging. .

また陽極活物質は緻密なものとなるので電解液が陽極格
子体に直接接触して自己放電を促進する傾向になるのを
防ぐととができる。
Furthermore, since the anode active material is dense, it can prevent the electrolyte from directly contacting the anode grid and promoting self-discharge.

上記の製造方法において、所定温度下で放置することは
、自己放電反応を促進させることにつながるわけである
から、この故里脱気工程中に極板からガスが発生し、電
池の内圧が高まシ、このように内圧が高まると、ゴム弁
等からなる排気弁が作動して電気内部のガスが外部に放
出されることになる。このようにガスが排出される際電
池内部のガスのみを排出できて、外部の空気が入シ込ま
ないことが理想であるが、実際には弁が開いたときに外
部の空気が入る確率が高い。空気が電池内に入り込むと
空気中の酸素が陰極板に吸収され、陰極活物質の鉛pb
が酸素と希硫酸とに反応して次式にしたがって硫酸鉛P
bSO4を形成して自己放電を起す。
In the above manufacturing method, leaving the battery at a certain temperature will accelerate the self-discharge reaction, so gas will be generated from the electrode plates during this degassing process, increasing the internal pressure of the battery. When the internal pressure increases in this way, an exhaust valve made of a rubber valve or the like operates, and the gas inside the electric appliance is released to the outside. Ideally, when gas is discharged in this way, only the gas inside the battery can be exhausted and no outside air can get in, but in reality there is a high probability that outside air will get in when the valve opens. expensive. When air enters the battery, oxygen in the air is absorbed by the cathode plate, and the cathode active material lead PB
reacts with oxygen and dilute sulfuric acid to form lead sulfate P according to the following formula:
bSO4 is formed and self-discharge occurs.

zPb+02+2H2SO4→2PbSO4+2H20
本願のシール鉛蓄電池はその充電時、まず陽極板の充電
が終了してそれ以降に発生する02ガスを陰極活物質が
吸収して次式に示す反応を起し、PbSO4を陰極板に
形成する。
zPb+02+2H2SO4→2PbSO4+2H20
When the sealed lead-acid battery of the present invention is charged, the cathode active material absorbs the 02 gas generated after the charging of the anode plate is completed and the reaction shown in the following formula occurs, forming PbSO4 on the cathode plate. .

2Pb+02→2 PbO 2PbO+2H2S04→2PbSO4+2H20した
がって陰極板は完全に充電されることがないから、H2
ガスの発生はなく、水分解は起らず電解質が減ることは
ない。このように陰極板は常に放電を内在させつつ充電
されることになる。つまシ外気の02ガスにより陰極板
が自己放電することは上記の陰極の充電反応のバランス
をくずすこととなシ、もともと完全充電されない上に、
自己放電も加わるわけであるから陰極板の絶対容量が低
下することとなり第1図に示す温度下で放置して陽極板
を充分にPbO2化したとしても陰極板の自己放電を促
進しては何にもならない。そこで本願第2の発明におい
ては、放置脱気工程を例えばN2.ガスの不活性ガス中
で行なう。このようにすると電池内に外気の02ガスが
入シ込むことがなく、電池の自己放電を抑制することが
できる。
2Pb+02→2 PbO 2PbO+2H2S04→2PbSO4+2H20 Therefore, the cathode plate is never fully charged, so H2
There is no gas generation, no water splitting, and no electrolyte loss. In this way, the cathode plate is always charged while internally discharging. Self-discharging of the cathode plate by the 02 gas in the outside air will upset the balance of the cathode charging reaction described above, and in addition to not being fully charged in the first place,
Since self-discharge is also added, the absolute capacity of the cathode plate decreases, and even if the anode plate is left at the temperature shown in Figure 1 and the anode plate is sufficiently converted to PbO2, what will happen if the self-discharge of the cathode plate is promoted? It doesn't even become. Therefore, in the second invention of the present application, the leaving degassing step is performed using, for example, N2. Carry out in an inert gas atmosphere. In this way, 02 gas from the outside air does not enter the battery, and self-discharge of the battery can be suppressed.

尚上記電解質は非流動化が図られたもので、リテーナに
電解液を含浸させたもの、ダル状化したもの、リテーナ
にダル状化したものを含浸させ左もの及びリテーナに電
解液を含浸させたものとダル状化したものとを組合せた
もの等があるが、本発明においてはこれらのいずれを用
いてもよい。
In addition, the above electrolyte is made non-fluidized, and the retainer is impregnated with the electrolyte, the retainer is made into a slurry, the retainer is impregnated with the slurry, and the retainer is impregnated with the electrolyte. There are some combinations of solid and dulled materials, but any of these may be used in the present invention.

上記の方法によシ製造したシール鉛蓄電池の自己放電特
性の一例を従来の方法により製造した電池と比較して第
1図に示した。第1図において横軸は放置日数をまた縦
軸は、1.25A放電持続時間をそれぞれ示しておシ、
曲線Aは本発明の第1の方法によシ製造したシール鉛蓄
電池の場合を、また曲線Bは本発明の第2の方法により
製造されたシール鉛蓄電池の場合を、更に曲線Cは従来
の方法によシ製造した電池の場合を示している。
An example of the self-discharge characteristics of a sealed lead acid battery manufactured by the above method is shown in FIG. 1 in comparison with a battery manufactured by a conventional method. In Figure 1, the horizontal axis represents the number of days left unused, and the vertical axis represents the 1.25A discharge duration.
Curve A is for a sealed lead-acid battery manufactured by the first method of the present invention, curve B is for a sealed lead-acid battery manufactured by the second method of the present invention, and curve C is for a conventional sealed lead-acid battery. The case of a battery manufactured by this method is shown.

次に、第2図は過放電後放置した場合の回復性能を測定
した実験結果水したもので、この実験においては、完成
後、過放電させ、そのまま室温で10日間放置した後1
4.7 Vで定電圧充電を行なりたときの充電時間と充
電電流との関係を示しだものである。同図において曲線
Aは本発明の第1の方法によシ製造したシール鉛蓄電池
の場合を、また曲線Bは本発明の第1の方法によジ製造
したシール鉛蓄電池の場合を、更に曲線Cは従来の方法
によシ製造した電池の場合を示している。
Next, Figure 2 shows the results of an experiment measuring the recovery performance when left undisturbed after over-discharging.
It shows the relationship between charging time and charging current when constant voltage charging is performed at 4.7 V. In the figure, curve A represents the case of a sealed lead-acid battery manufactured by the first method of the present invention, curve B represents the case of a sealed lead-acid battery manufactured by the first method of the present invention, and a further curve C shows the case of a battery manufactured by a conventional method.

発明の効果 以上のように本発明によれば、啄−スト充填板に化成を
施し、電池を組立て、この電池を所定温度下に放置し、
更にその後電池を完全充電したので、化成工程で生じる
低級酸化物pbox(x(2)を放置脱気工程でPbS
O4にし、このPbSO4を充電工程でpbo□にして
陽極活物質全体をPbO2化することができ、過放電後
放置してその後回復充電を行なった際の回復性能の向上
を図ることができる。また陽極活物質を緻密なものにす
ることができるので、自己放電を抑制することができる
。また特に本発明第2の発明によれば、放置脱気工程を
不活性ガス中で行なうようにして電槽内への空気の侵入
を防ぐようにしたので、陰極板の絶対容量の低下を抑え
自己放電の抑制を図ることができる。
Effects of the Invention As described above, according to the present invention, chemical conversion is applied to the filling plate, a battery is assembled, and the battery is left at a predetermined temperature.
Furthermore, since the battery was fully charged after that, the lower oxide pbox (x (2)) produced in the chemical formation process was left to be left to become PbS in the degassing process.
This PbSO4 can be changed to pbo□ in the charging process to convert the entire anode active material into PbO2, and it is possible to improve the recovery performance when left after overdischarging and then performing recovery charging. Furthermore, since the anode active material can be made dense, self-discharge can be suppressed. In particular, according to the second aspect of the present invention, the degassing step is performed in an inert gas to prevent air from entering the battery case, thereby suppressing a decrease in the absolute capacity of the cathode plate. Self-discharge can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放置脱気工程におけるPb504が2
0%及び30%析出する雰囲気温度と放置時間との関係
を示すグラフ、第2図は従来の方法によシ製造したシー
ル鉛蓄電池と本発明の方法にょシ製造したシール鉛蓄電
池との自己放電特性の一例を示したグラフ、第3図は従
来の方法によシ製造したシール鉛蓄電池本発明の方法に
よシ製造したシール鉛蓄電池との過放電後1o日間放置
してその後回復充電を行なった際の回復性能を示すグラ
フである。 0 10 20 30 4(+ 50 放1期間U) 70 20 30 40 5θ 方匁1 日l久(日) 第3図 0 20 40 60 80 100 I20克電時間
(4+)
Figure 1 shows that Pb504 in the standing degassing process of the present invention is 2
A graph showing the relationship between ambient temperature and standing time for 0% and 30% precipitation. Figure 2 shows self-discharge between sealed lead-acid batteries manufactured by the conventional method and sealed lead-acid batteries manufactured by the method of the present invention. Figure 3 is a graph showing an example of the characteristics of a sealed lead-acid battery manufactured by a conventional method and a sealed lead-acid battery manufactured by the method of the present invention after being left for 10 days after being over-discharged and then performing recovery charging. It is a graph showing recovery performance when 0 10 20 30 4 (+ 50 release 1 period U) 70 20 30 40 5θ Homonme 1 day l long (Sun) Figure 3 0 20 40 60 80 100 I20 Katsuden time (4+)

Claims (2)

【特許請求の範囲】[Claims] (1)格子体にペーストを充填してペースト充填板を形
成するペースト充填工程と、前記ペースト充填板を化成
槽中に浸漬して化成を行なって陽極板と陰極板とを形成
する化成工程と、前記陽極板と陰極板との間に電解質を
介在させて該陽極板と陰極板と電解質とを電槽内に配置
して電池を組立てる組立工程と、前記電池を所定温度下
に放置することによシ前記陽極板に付着したガスを脱気
する放置脱気工程と、前記陽極板に付着したガスが脱気
された電池を完全充電する充電工程とを行なうことを特
徴とするシール鉛蓄電池の製造方法。
(1) A paste filling process in which a grid body is filled with paste to form a paste-filled plate, and a chemical formation process in which the paste-filled plate is immersed in a chemical conversion bath to form an anode plate and a cathode plate. , an assembly step of assembling a battery by interposing an electrolyte between the anode plate and the cathode plate, placing the anode plate, the cathode plate, and the electrolyte in a battery case; and leaving the battery at a predetermined temperature. A sealed lead-acid battery characterized by performing a standing degassing step of degassing the gas adhering to the anode plate, and a charging step of fully charging the battery from which the gas adhering to the anode plate has been degassed. manufacturing method.
(2)格子体にペーストを充填してペースト充填板を形
成するペースト充填工程と、前記ペースト充填板を化成
槽中に浸漬して化成を行なって陽極板と陰極板とを形成
する化成工程と、前記陽極板と陰極板との間に電解質を
介在させて該陽極板と陰極板と電解質とを電槽内に配置
して電池を組立てる組立工程と、前記電池を所定温度下
の不活性ガス中に放置することによシ前記陽極板に付着
したガスを脱気する放置脱気工程と、前記陽極板に付着
したガスが脱気された電池を完全充電する充電工程とを
行なうことを特徴とするシール鉛蓄電池の製造方法。
(2) a paste filling step in which a grid body is filled with paste to form a paste-filled plate; and a chemical formation step in which the paste-filled plate is immersed in a chemical conversion tank and chemically formed to form an anode plate and a cathode plate. an assembly step of assembling a battery by interposing an electrolyte between the anode plate and the cathode plate and arranging the anode plate, the cathode plate, and the electrolyte in a battery case; The battery is characterized by performing a leaving degassing step in which the gas adhering to the anode plate is degassed by leaving it in the battery, and a charging step in which the battery from which the gas adhering to the anode plate has been degassed is fully charged. A method for manufacturing a sealed lead-acid battery.
JP58114041A 1983-06-24 1983-06-24 Manufacture of sealed lead-acid battery Pending JPS607070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58114041A JPS607070A (en) 1983-06-24 1983-06-24 Manufacture of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114041A JPS607070A (en) 1983-06-24 1983-06-24 Manufacture of sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPS607070A true JPS607070A (en) 1985-01-14

Family

ID=14627544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114041A Pending JPS607070A (en) 1983-06-24 1983-06-24 Manufacture of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPS607070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264072A (en) * 1985-09-13 1987-03-20 Matsushita Electric Ind Co Ltd Manufacture of lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264072A (en) * 1985-09-13 1987-03-20 Matsushita Electric Ind Co Ltd Manufacture of lead storage battery

Similar Documents

Publication Publication Date Title
EP2263276B1 (en) Flooded lead-acid battery
US3607408A (en) Dry-charged lead acid storage battery having partially recharged electrodes and method
Wagner Positive active-materials for lead–acid battery plates
JPS607070A (en) Manufacture of sealed lead-acid battery
JPS58115775A (en) Lead-acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JPS607069A (en) Manufacture of sealed lead-acid battery
JPH0793135B2 (en) Lead acid battery and manufacturing method thereof
JPS59138062A (en) Lead storage battery
JPS607059A (en) Manufacture of positive plate for sealed lead storage battery
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JPS62145664A (en) Manufacture of sealed lead storage battery
JP2541355B2 (en) Method for manufacturing electrode plate for lead acid battery
JPH04345756A (en) Manufacture of lead storage battery electrode
JPH0246662A (en) Sealed lead-acid battery
JPS58158874A (en) Lead storage battery
JP3577709B2 (en) Sealed lead-acid battery
JPH10134810A (en) Manufacture of lead-acid battery
JPS63187576A (en) Enclosed type lead storage cell
JPS61142668A (en) Manufacture of lead storage battery
JP2008091189A (en) Sealed lead acid storage battery
JPS58209063A (en) Manufacture of plate for lead-acid battery
JPS59138061A (en) Lead storage battery
JPH0444389B2 (en)
JPS6050862A (en) Positive plate for quick use type lead storage battery