JPS607069A - Manufacture of sealed lead-acid battery - Google Patents

Manufacture of sealed lead-acid battery

Info

Publication number
JPS607069A
JPS607069A JP58114040A JP11404083A JPS607069A JP S607069 A JPS607069 A JP S607069A JP 58114040 A JP58114040 A JP 58114040A JP 11404083 A JP11404083 A JP 11404083A JP S607069 A JPS607069 A JP S607069A
Authority
JP
Japan
Prior art keywords
plate
battery
paste
chemical conversion
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58114040A
Other languages
Japanese (ja)
Inventor
Akio Komaki
小牧 昭夫
Takeshi Hirakawa
平川 武
Toshiyuki Matsumura
敏之 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP58114040A priority Critical patent/JPS607069A/en
Publication of JPS607069A publication Critical patent/JPS607069A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/128Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a sealed lead-acid battery having improved self discharge performance and recovery performance after overdischarge by performing formation of a paste filled plate in a formation bath and allowing to stand it in an other dilute sulfuric acid bath for degassing and assembling a battery by using the plate obtained, then initial charge is performed. CONSTITUTION:A paste filled plate prepared by filling a cathode paste in a grid is immersed in a formation bath and formation is performed. By this process, a cathode plate and anode plate are prepared. At least the cathode plate is immersed in an other dilute sulfuric acid bath and allowed to stand for degassing, and low oxide PbOx (x<2) in active material is converted to PbSO4. This cathode plate and the anode plate is inserted into a container with electrolyte placed in between to assemble a battery. The battery is charged to oxidize PbSO4 to PbO2 and a sealed lead-acid battery is completed. By this process, recovery performance by charging after overdischarge is improved, and acceleration of self discharge caused by direct contact of electrolyte to grid is suppressed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シール鉛蓄電ニセ陽極板の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing sealed lead-acid fake anode plates.

従来技術 電解液の漏れを防ぎ、密閉型に構成したシール鉛蓄電池
では、補水や雷1M液の補充等のメンテヅーンスを行な
わないで所定の寿命を得るようにする必要がある。その
ため、シール鉛蓄電池においては、格子体をアンチモン
フリー鉛系金属(filえばPb −Ca −Su合金
或いはpl+ −Ca合金等)によシ形成している。ま
た液漏れを防止するため、雷、留液の量を極限まで少な
くしている。このように、シール鉛蓄電池では、@解液
の量が極端に少ないだめ、放電中に電解液の比重が大幅
に低下し、その結果自己放電が大きくなるという欠点力
くあつた。
Conventional Sealed lead-acid batteries that prevent electrolyte leakage and are constructed in a sealed manner must be designed to have a specified lifespan without maintenance such as water replenishment or replenishment with 1M electrolyte. Therefore, in sealed lead-acid batteries, the lattice body is formed of antimony-free lead-based metal (for example, Pb--Ca--Su alloy or pl+--Ca alloy). In addition, to prevent liquid leakage, the amount of residual liquid has been minimized to the absolute minimum. As described above, sealed lead-acid batteries have the disadvantage that because the amount of electrolyte is extremely small, the specific gravity of the electrolyte decreases significantly during discharge, resulting in increased self-discharge.

捷だ放電が行き過ぎて過放電の状態になると、電解液の
比重が水とほぼ同じ1″i!、で低下する。特に過放電
後更に放置した場合には電解液の比重のイ氏下が著しく
、回復充電を行なっても復元することが難しい状態にな
る。
If the short discharge goes too far and becomes an over-discharge state, the specific gravity of the electrolyte will drop by 1" i!, which is almost the same as water. Especially if the electrolyte is left for a long time after over-discharge, the specific gravity of the electrolyte will drop by 1" i! It becomes extremely difficult to restore the state even if recovery charging is performed.

上記のように、従来のシール鉛蓄電池において過放電放
置後の回復性能が損なわれるのは、陽極板の化成工程に
おいて活物質中に低級酸イヒ9勿75;形成されるため
である。即ち、陽極板を製造するにはまず格子体に陽極
波−ストを充填し、この塾−スト充填板に対して化成を
施してペーストの活物質化(PbO2化)を行なう。こ
の化或は、比重が1.05〜1.20の範囲の電解液中
において極板に0、1〜1. OA/cm の電流密度
で10〜70時間程度通電することによシ行なう。この
化成工程においては先ず格子体表面付近のペーストが活
物質化し10次いでペーストの内部から表面へと活物質
化が進む。格子体表面付近のペーストは初期に活物質化
されるため、被−ストの内部から表面にかけて化成が進
行する過程においては、格子体表面近傍から水分解によ
る02ガスが発生する。この02ガスの発生は、化成が
10係程度進行した時点から起シ、その後は02ガスの
発生を伴ないなから化成が進行することになる。したが
って多孔性に富んだ、化成が進行中のペーストの内部は
ガスが充満した状態となり、複雑な表面をもつ多孔質の
ペースト内にこのガスが吸着される。このガスの気泡と
ペーストとの界面では、化成液中の硫酸根(−804−
2)の拡散が阻害され、化成の進行が妨けられる。この
ように化成の進行が妨げられた部分は、化成終了後完全
にPbO2化きれないため、活物質中にはpb−ox(
X〈2 )のような低級酸化物が残存することになる。
As mentioned above, the reason why the recovery performance after overdischarge is impaired in conventional sealed lead-acid batteries is that lower acids are formed in the active material during the anode plate formation process. That is, in order to manufacture an anode plate, first, a lattice body is filled with an anode wave paste, and the paste filled plate is subjected to chemical conversion to convert the paste into an active material (conversion to PbO2). In this case, the electrode plate is coated with a specific gravity of 0, 1 to 1. This is done by applying current at a current density of OA/cm2 for about 10 to 70 hours. In this chemical conversion step, first the paste near the surface of the grid becomes an active material, and then the active material progresses from the inside of the paste to the surface. Since the paste near the surface of the lattice body is initially converted into an active material, 02 gas is generated from near the surface of the lattice body due to water decomposition in the process of chemical conversion from the inside to the surface of the lattice body. The generation of this 02 gas begins when the chemical formation has progressed by about 10 times, and thereafter the chemical formation proceeds without the generation of the 02 gas. Therefore, the interior of the paste, which is highly porous and undergoing chemical conversion, is filled with gas, and this gas is adsorbed within the porous paste having a complex surface. At the interface between the gas bubbles and the paste, the sulfate group (-804-
The diffusion of 2) is inhibited, and the progress of chemical conversion is hindered. The areas where the progress of chemical conversion is hindered cannot be completely converted into PbO2 after the chemical conversion is completed, so pb-ox (
Lower oxides such as X<2) will remain.

このような低級酸化物が陽極活物質中に残存していると
、容量の発現に支障をきたすだけでなく、過放電放置後
の残存容量が少なくなったり、回復充電を行なっても復
元しなかったりするという問題が生じる。このような傾
向は、陽極活物質を完全に高級酸化物(PbO2)化す
ると弱まることが知られている。
If such lower oxides remain in the anode active material, they not only hinder the development of capacity, but also cause the remaining capacity to decrease after being left over-discharged, or not to recover even after recovery charging. The problem arises that It is known that such a tendency is weakened when the anode active material is completely converted into a higher oxide (PbO2).

棟だ上記のように化成工程においてガスが発生して化成
終了後の陽極活物質が多孔性に富んだものとなると、電
解液が格子体と直接接触して自己放電が促進され、自己
放電性能が低下することになる。
As mentioned above, when gas is generated during the chemical formation process and the anode active material becomes highly porous after chemical formation, the electrolyte comes into direct contact with the lattice body, promoting self-discharge, resulting in poor self-discharge performance. will decrease.

発明の目的 本発明の目的は、自己放電性能及び過放電放置後の回復
性能の改善を図ることができるようにしたシール鉛蓄電
池の製造方法を提案することにある。
OBJECTS OF THE INVENTION An object of the present invention is to propose a method for manufacturing a sealed lead-acid battery that can improve self-discharge performance and recovery performance after over-discharging.

発明の構成 本発明の方法においては、格子体に陽極に一反トを充電
してペースト充填板を形成した後肢充填板を化成槽中に
入れて陽極板と陰極板とを形成する化成工程を行ない、
該化成工程の終了後少なくとも陽極板を化成槽中から取
出して他の希硫酸槽に浸漬して放置することによシイ−
スト中のガスを脱気させる放置脱気工程を行なう。次い
で脱気されて陽極板と陰極板との間に電解質を介在させ
て該陽極板と陰極板と電解質とを電槽内に配置して電池
を組立てその後膣電池を初充電してシール鉛蓄電池を完
成する。
Structure of the Invention In the method of the present invention, a chemical conversion step is carried out in which a hindlimb filling plate is formed by charging an anode with a lattice body to form a paste filling plate, and is placed in a chemical conversion tank to form an anode plate and a cathode plate. conduct,
After the completion of the chemical conversion process, at least the anode plate is removed from the chemical conversion tank and immersed in another dilute sulfuric acid tank and left there.
A degassing process is performed to degas the gas in the stock. Next, the battery is assembled by deaerating the anode plate, interposing an electrolyte between the anode plate and the cathode plate, placing the anode plate, the cathode plate, and the electrolyte in a battery case, and then charging the vaginal battery for the first time to form a sealed lead-acid battery. complete.

上記の方法によれば、放置脱気工程において、陽極ペー
スト中に含まれている02ガスが脱気されて陽極活物質
中の低級酸化物Pb0x(X〈2)が硫酸鉛pbso4
になり、初充電工程において上記PbSO4を高級酸化
物pbo2に復元するため、陽極活物質を完全にpbo
z化することができる。したがって本発明の方法により
製造した陽極板を用いてシール鉛蓄電池を構成すると、
電池の過放電放置後 きる。また陽極活物質の層は多孔質ではなく、緻密なも
のになるため、従来のように電解液が格子体に直接触れ
て自己放電が促進されるのを抑えることができる。
According to the above method, in the standing degassing step, the 02 gas contained in the anode paste is degassed, and the lower oxide Pb0x (X<2) in the anode active material is converted to lead sulfate pbso4.
In order to restore the above-mentioned PbSO4 to higher oxide pbo2 in the initial charging process, the anode active material is completely converted to pbo2.
It can be converted into z. Therefore, when a sealed lead acid battery is constructed using an anode plate manufactured by the method of the present invention,
The problem occurs after the battery is left over-discharged. Furthermore, since the anode active material layer is not porous but dense, it is possible to prevent the electrolyte from coming into direct contact with the grid and promoting self-discharge, which is the case in the past.

実施例 実施例では、各セルを陽極板1枚と陰極板2枚とによ多
構成する容量2AHのシール鉛蓄電池を製作した。本実
施例では陽極板の幅寸法を50咽、高さを40咽、厚さ
を35■としだ。電池を製造するに当シ、先ずアンチモ
ンフリー鉛系金属からなる格子体に陽極ペーストを充填
してペースト充填板を形成するペースト充填工程を行な
った。次いで該ペースト充填板を十分に乾燥させた後陰
極用の被−スト充填板とともに比重1.100の希硫酸
を入れた化成槽中に浸漬して、40℃の温度で電流密度
0.3 A/crn2の電流を流して40時間化成を行
なって陽極板と陰極板とを形成する化成工程を行なった
。この化成工程においては、陽極板の多孔質のペースト
内はガスが充満した状態になり、ガスの気泡に接する活
物質表面はP box(x < 2 )からなる低級酸
化物を含んでいる。
EXAMPLE In this example, a sealed lead-acid battery having a capacity of 2AH was manufactured in which each cell was composed of one anode plate and two cathode plates. In this embodiment, the width of the anode plate is 50 mm, the height is 40 mm, and the thickness is 35 mm. To manufacture the battery, a paste filling process was first performed in which a grid made of antimony-free lead-based metal was filled with anode paste to form a paste-filled plate. Next, after thoroughly drying the paste-filled plate, it was immersed together with the cathode-filled plate in a chemical conversion tank containing dilute sulfuric acid with a specific gravity of 1.100, and the current density was 0.3 A at a temperature of 40°C. A chemical conversion step was performed in which an anode plate and a cathode plate were formed by applying a current of /crn2 for 40 hours. In this chemical conversion step, the porous paste of the anode plate is filled with gas, and the surface of the active material in contact with the gas bubbles contains a lower oxide consisting of P box (x < 2).

上記第1の化成工程後、極板を化成槽から取出して比重
1.100の希硫酸の槽内に配置して40℃の温度で4
8時間放置することにより、陽極活物質中に含まれてい
るガスを脱気させる放置脱気工程を行なった。この工程
においては、化成液の温度が高い程、また放置時間が長
い程脱気の完全を期することができるので、製造上杵さ
れる限度内で、できるだけ高い温度で長時間放置するの
が好ましい。この放置脱気工程においては、PbOxが
希硫酸と接し、放置中にPbSO4となる。上記放置脱
気工程後に陽極板と陰極板との間に電解質を介在させて
該陽極板と陰極板とを電槽内に配置して電池を組立てた
After the first chemical conversion step, the electrode plate was taken out from the chemical conversion tank, placed in a tank of dilute sulfuric acid with a specific gravity of 1.100, and heated at a temperature of 40°C.
By leaving it for 8 hours, a leaving degassing step was performed in which the gas contained in the anode active material was degassed. In this process, the higher the temperature of the chemical solution and the longer the time it is allowed to stand, the more complete the deaeration can be. preferable. In this standing degassing step, PbOx comes into contact with dilute sulfuric acid and becomes PbSO4 during standing. After the above degassing step, the anode plate and the cathode plate were placed in a battery case with an electrolyte interposed between the anode plate and the cathode plate to assemble the battery.

上記電池を組立てた後、この電池を室温で147〜16
.5Vの定電圧で約18時間初充電を行なった。この初
充電工程において、PbSO4は、完全にPbO2に復
元する。したがってこの初充電工程が終了した時点にお
いては、陽極活物質が完全にPbO2化される。このよ
うに、陽極活物質を二度完全にPbO2化しておくと、
この陽極板を用いて組み立てたシール鉛蓄電池を過放電
後放置してその後回復充電を行なった際の回復性能は良
好である。また陽極活物質は緻密なものとなるので、電
、解散が陽極格子体に直接接触して自己放電を促進する
傾向になるのを防ぐことができる。
After assembling the above battery, the battery was heated to 147 to 16
.. Initial charging was performed for about 18 hours at a constant voltage of 5V. In this initial charging step, PbSO4 is completely restored to PbO2. Therefore, at the end of this initial charging step, the anode active material is completely converted into PbO2. In this way, if the anode active material is completely converted into PbO2 twice,
When a sealed lead-acid battery assembled using this anode plate is left to stand after overdischarging and then subjected to recovery charging, the recovery performance is good. In addition, since the anode active material is dense, it is possible to prevent electricity and dissolution from directly contacting the anode lattice body, which tends to promote self-discharge.

尚上記電解質は非流動化が図られたもので、リテーナに
電解液を含浸させたもの、グル状化したもの、リテーナ
にケ9ル状化したものを含浸させたもの及びリテーナに
電解液を含浸させたものとケ゛ル状化したものとを組合
せたもの等があるが、本発明においてはこれらのいずれ
を用いてもよい。
The above electrolyte is made non-fluid, and there are three types: a retainer impregnated with an electrolyte, a glue-formed one, a keratinized retainer impregnated with an electrolyte, and a retainer impregnated with an electrolyte. There are combinations of impregnated materials and keeled materials, but any of these may be used in the present invention.

上記の方法により製造したシール鉛蓄電池の自己放電特
性の一例を従来の方法により製造した電池と比較して第
1図に示した。第1図において横軸は放置日数をまた縦
軸は、1.25 A放電持続時間をそれぞれ示しておし
、曲線Aは本発明の方法によシ製造したシール鉛蓄電池
の場合を、また曲線Bは従来の方法により製造した電池
の場合を示している。
An example of the self-discharge characteristics of a sealed lead acid battery manufactured by the above method is shown in FIG. 1 in comparison with a battery manufactured by a conventional method. In FIG. 1, the horizontal axis shows the number of days left unused, and the vertical axis shows the 1.25 A discharge duration. Curve A shows the case of a sealed lead acid battery manufactured by the method of the present invention, and B shows the case of a battery manufactured by a conventional method.

次に、第2図は過放電後放置した場合の回復性能を測定
した実験結果を示したもので、この実験においては、完
成後、過放電させ、その−!、ま室温で10日間放置し
た後14.7Vで定電圧充電を行なったときの充電時間
と充電電流との関係を示したものである。同図において
曲線Aは本発明の方法によシ製造したシール鉛蓄電池の
場合を、捷た曲線Bは従来の方法により製造した電池の
場合を示している。
Next, Figure 2 shows the results of an experiment in which the recovery performance was measured when the recovery performance was left as it was after over-discharging. This figure shows the relationship between charging time and charging current when constant voltage charging was performed at 14.7 V after the battery was left at room temperature for 10 days. In the figure, curve A shows the case of a sealed lead-acid battery produced by the method of the present invention, and curve B shows the case of a battery produced by the conventional method.

発明の効果 塀上のように本発明によれば、ペースト充填板に化成を
施し、化成工程で得られた陽極板と陰椿板のうち少なく
とも陽極板を他の希硫酸槽に浸漬放置して、その後電池
を組立てて初充電を行なったので、化成工程で生じる低
級酸化物Pb0X(x < 2 )を放置脱気工程でP
bSO4にし、とのPbSO4を初充電工程でPbO2
にして陽極活物質全体をPbO2化することができ、過
放電後放置してその後回復充電を行なった際の回復性能
の向上を図ることができる。また陽極活物質を緻密なも
のにすることができるので、自己放電を抑制することカ
ニできる。
Effects of the Invention According to the present invention, a paste-filled plate is chemically formed, and at least the anode plate and the negative plate obtained in the chemical conversion process are immersed and left in another dilute sulfuric acid bath. After that, the battery was assembled and charged for the first time, so the lower oxide Pb0X (x < 2) produced in the chemical formation process was left to stand and was degassed.
bSO4 and PbSO4 to PbO2 in the initial charging process.
By doing this, the entire anode active material can be converted to PbO2, and recovery performance can be improved when the battery is left to stand after overdischarging and then a recovery charge is performed. Furthermore, since the anode active material can be made dense, self-discharge can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法により製造した・ンール鉛蓄電池と
本発明の方法により製造したシール鉛蓄電池との自己放
電特性の一例を示したり゛ラフ、第2図は従来の方法に
より製造したシール鉛蓄電池A【発明の方法によシ製造
したシール鉛蓄電池との過放電後10日間放置してその
後回復充電を行なった際の回復性能を示すグラフである
Figure 1 shows an example of the self-discharge characteristics of a sealed lead-acid battery manufactured by the conventional method and a sealed lead-acid battery manufactured by the method of the present invention. This is a graph showing the recovery performance of storage battery A (sealed lead-acid battery manufactured by the method of the invention) when the battery was left for 10 days after overdischarging and then subjected to recovery charging.

Claims (1)

【特許請求の範囲】[Claims] 格子体にペーストを充填してペースト充−填板を形成す
るペースト充填工程と、前記ペースト充填板を化成槽中
に浸漬して化成を行なって陽極板と陰極板とを形成する
化成工程と、前記化成工程の終了後少なくとも陽極板を
化成槽から取出して他の希硫酸槽に浸漬して放置するこ
とにより脱気させる放置脱気工程と、前記放置脱気工程
後前記陽極板と陰極板との間に電解質を介在させて該陽
極板と陰極板と電解質とを電槽内に配置して電池を組立
てる組立工程と、前記電池を初充電する初充電工程とを
行なうことを特徴とするシール鉛蓄電池の製造方法。
a paste filling step in which a grid body is filled with paste to form a paste-filled plate; a chemical conversion step in which the paste-filled plate is immersed in a chemical conversion tank to perform chemical conversion to form an anode plate and a cathode plate; After the completion of the chemical conversion step, at least the anode plate is taken out from the chemical conversion tank and immersed in another dilute sulfuric acid tank and left to degas, and the anode plate and the cathode plate are removed after the storage degassing step. A seal characterized by performing an assembly process of assembling a battery by placing the anode plate, cathode plate, and electrolyte in a battery case with an electrolyte interposed between them, and an initial charging process of charging the battery for the first time. Method of manufacturing lead-acid batteries.
JP58114040A 1983-06-24 1983-06-24 Manufacture of sealed lead-acid battery Pending JPS607069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58114040A JPS607069A (en) 1983-06-24 1983-06-24 Manufacture of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58114040A JPS607069A (en) 1983-06-24 1983-06-24 Manufacture of sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPS607069A true JPS607069A (en) 1985-01-14

Family

ID=14627518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58114040A Pending JPS607069A (en) 1983-06-24 1983-06-24 Manufacture of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPS607069A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743270A (en) * 1987-05-27 1988-05-10 General Motors Corporation Filling mat-immobilized-electrolyte batteries
JPH01292175A (en) * 1988-05-14 1989-11-24 Takatome Sangyo Kk Production of fiber having attached ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743270A (en) * 1987-05-27 1988-05-10 General Motors Corporation Filling mat-immobilized-electrolyte batteries
JPH01292175A (en) * 1988-05-14 1989-11-24 Takatome Sangyo Kk Production of fiber having attached ceramic

Similar Documents

Publication Publication Date Title
US4871428A (en) Method for in situ forming lead-acid batteries having absorbent separators
JP4752365B2 (en) Lead acid battery
JPS609065A (en) Sealed lead storage battery
TW200409393A (en) Valve regulated lead acid battery
JPS607069A (en) Manufacture of sealed lead-acid battery
JPS607059A (en) Manufacture of positive plate for sealed lead storage battery
JPS59138062A (en) Lead storage battery
JPS58115775A (en) Lead-acid battery
JPS6040672B2 (en) Manufacturing method of sealed lead-acid battery
JPS635866B2 (en)
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JPS607070A (en) Manufacture of sealed lead-acid battery
JP3163509B2 (en) Manufacturing method of hybrid bipolar plate
JP4719962B2 (en) Manufacturing method of sealed lead-acid battery
JPS62145664A (en) Manufacture of sealed lead storage battery
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
JP2541355B2 (en) Method for manufacturing electrode plate for lead acid battery
JPS5933754A (en) Lead-acid battery
KR860000820B1 (en) Storage battery
JPS58158874A (en) Lead storage battery
JPH05151987A (en) Manufacture of sealed type lead acid battery
JP2008091189A (en) Sealed lead acid storage battery
JPH05325950A (en) Manufacture of lead-acid battery of negative electrode absorbing sealed type
JPH053709B2 (en)
JPS61142668A (en) Manufacture of lead storage battery