JPH10134810A - Manufacture of lead-acid battery - Google Patents

Manufacture of lead-acid battery

Info

Publication number
JPH10134810A
JPH10134810A JP8288122A JP28812296A JPH10134810A JP H10134810 A JPH10134810 A JP H10134810A JP 8288122 A JP8288122 A JP 8288122A JP 28812296 A JP28812296 A JP 28812296A JP H10134810 A JPH10134810 A JP H10134810A
Authority
JP
Japan
Prior art keywords
lead
pbo
battery
active material
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8288122A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kusama
和幸 草間
Yasushi Yamazawa
靖 山沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8288122A priority Critical patent/JPH10134810A/en
Publication of JPH10134810A publication Critical patent/JPH10134810A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance reaction efficiency at a positive electrode in a formation process, and also enhance processing efficiency for the formation process by making reaction time shorter. SOLUTION: This method is so constituted that a plurality of positive electrode plate lattices and negative electrode plate lattices, in which PbO as active material is filled, are combined with each other together with separators so as to be formed into a plurality of groups of the pole plates, these groups of the pole plates are charged into the respective cells of a battery jar, concurrently electrolyte is injected into the respective cells so as to be assembled into a lead battery, and formation processing is performed by energizing the battery so as to be formed into an initial charged condition thereafter, so that the lead battery is thereby manufactured. In this case, when the aforesaid PbO is filled in the aforesaid positive pole plate lattices, alkaline metallic permanagnate is added as oxidant. Since oxidation from PbO to PbO2 is accelerated chemically in the formation process by adding oxidant (NaMnO4 and the like), the efficiency of an oxidating reaction is enhanced, and concurrently the reaction time is also shortened, so that the formation process is thereby enhanced in efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池の製造方法
に関し、より詳しくは通電により化成処理する際の処理
効率性を高めた鉛蓄電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a lead-acid battery, and more particularly to a method for manufacturing a lead-acid battery with a high treatment efficiency when a chemical conversion treatment is performed by energization.

【0002】[0002]

【従来の技術】鉛蓄電池は、液口栓及び複数のセルをも
つ電槽と、各セル内に注入された電解液(希硫酸)と、
各セルにそれぞれ装入され、正極板、負極板及びセパレ
ータを必要枚数組み合わせた極板群とから構成されてい
る。正極板又は負極板は、鉛合金からなる極板格子に活
物質(正極はPbO2 、負極はPb)を充填してなり、
両極板の間にガラスマット等からなるセパレータを挟ん
で極板群が構成されている。
2. Description of the Related Art A lead storage battery includes a battery case having a liquid stopper and a plurality of cells, an electrolyte (dilute sulfuric acid) injected into each cell,
Each cell is composed of a positive electrode plate, a negative electrode plate, and an electrode plate group in which a required number of separators are combined. The positive electrode plate or the negative electrode plate is formed by filling an active material (PbO 2 for the positive electrode and Pb for the negative electrode) into an electrode grid made of a lead alloy.
An electrode group is configured with a separator made of a glass mat or the like interposed between the two electrode plates.

【0003】この鉛蓄電池では、正極活物質(Pb
2 )も負極活物質(Pb)も放電によって硫酸鉛(P
bSO4 )となり、充電によってほとんど全く元の状態
に戻るため、多数回の充放電を繰り返すことができる。
このような鉛蓄電池は、一般に以下のようにして製造さ
れる。まず、純鉛、カルシウム及びアンチモン等よりな
る鉛合金から極板格子を鋳造する。また、純鉛から製造
したPbOを主成分とする鉛粉と硫酸とを混合してペー
ストを準備する。そして、上記極板格子に上記ペースト
を充填した後、室温若しくは40〜50℃の雰囲気中に
2日放置することにより熟成し、所定形状に切断する。
これにより、PbOを活物質とする未化成の正・負極板
を得る。このようにして得られた未化成の正・負極板及
びセパレータを必要枚数組み合わせるとともに、各極板
の耳部を鉛合金よりなるストラップに溶接して極板群を
製造する。複数製造した極板群を電槽の各セル内にそれ
ぞれ装入するとともに、隣り合う極板群のストラップ同
士を溶接した後、各セル内に電解液を注入し、蓋及び液
口栓を熱溶着することにより、鉛蓄電池を組み立てる。
こうして得られた未化成の鉛蓄電池は、通電することに
より化成処理されて初期充電状態となり、充電済みの鉛
蓄電池とされる。
In this lead-acid battery, a positive electrode active material (Pb
O 2 ) and the negative electrode active material (Pb) are discharged by lead sulfate (Pb).
bSO 4 ) and almost completely return to the original state by charging, so that charging and discharging can be repeated many times.
Such a lead storage battery is generally manufactured as follows. First, an electrode grid is cast from a lead alloy made of pure lead, calcium, antimony or the like. Also, a paste is prepared by mixing a lead powder mainly composed of PbO manufactured from pure lead and sulfuric acid. Then, after filling the above-mentioned paste into the above-mentioned electrode grid, it is aged by leaving it in a room temperature or an atmosphere of 40 to 50 ° C. for 2 days, and cut into a predetermined shape.
Thus, unformed positive and negative electrode plates using PbO as an active material are obtained. The required number of unformed positive / negative electrode plates and separators thus obtained are combined, and the lugs of each electrode plate are welded to a lead alloy strap to produce an electrode plate group. A plurality of manufactured electrode groups are inserted into each cell of the battery case, and the straps of the adjacent electrode groups are welded to each other. Then, an electrolytic solution is injected into each cell, and the lid and the liquid port plug are heated. The lead storage battery is assembled by welding.
The unformed lead storage battery thus obtained is subjected to a chemical conversion treatment by being energized, is brought into an initial charged state, and is a charged lead storage battery.

【0004】なお、充電済みの鉛蓄電池は放置しておく
と自己放電してしまうので、自己放電防止策として、充
電後の電解液中にNa2 SO4 を数g/リットル添加す
ることが行われている。
[0004] Since a charged lead storage battery is self-discharged if left unattended, as a measure for preventing self-discharge, it is necessary to add several g / liter of Na 2 SO 4 to the charged electrolyte. Have been done.

【0005】[0005]

【発明が解決しようとする課題】上記未化成の鉛蓄電池
においては、正極及び負極ともに活物質はPbOであ
る。そして、上記化成処理により、正極では酸化反応
(PbO→PbO2 )、負極では還元反応(PbO→P
b)が起こって、正極の活物質はPbO2 とされ、負極
の活物質はPbとされる。
In the non-chemical lead-acid battery, the active material of both the positive electrode and the negative electrode is PbO. Then, by the chemical conversion treatment, an oxidation reaction (PbO → PbO 2 ) at the positive electrode and a reduction reaction (PbO → Pb) at the negative electrode
b) occurs, and the active material of the positive electrode is PbO 2 and the active material of the negative electrode is Pb.

【0006】しかし、負極における反応効率が100%
であるのに対して、正極における反応効率は50%程度
と低い。また、正極における反応には通常2〜3日程度
を要し、この反応時間が化成処理時間、ひいては鉛蓄電
池の製造時間の律速となっている。本発明は上記実情に
鑑みてなされたものであり、化成処理における正極での
反応効率を高めるとともに、反応時間を短縮化すること
により、化成処理の処理効率を高めることを解決すべき
技術課題とするものである。
However, the reaction efficiency at the negative electrode is 100%.
On the other hand, the reaction efficiency in the positive electrode is as low as about 50%. In addition, the reaction on the positive electrode usually requires about 2 to 3 days, and this reaction time is the rate-determining time for the chemical conversion treatment time and, consequently, the production time of the lead storage battery. The present invention has been made in view of the above circumstances, and while increasing the reaction efficiency at the positive electrode in the chemical conversion treatment, by shortening the reaction time, to improve the processing efficiency of the chemical conversion treatment and the technical problem to be solved Is what you do.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の鉛蓄電池の製造方法は、活物質としてのPbOがそ
れぞれ充填された正極板格子及び負極板格子をセパレー
タとともに複数枚組み合わせて複数の極板群を形成し、
各該極板群を電槽の各セル内に装入するとともに各該セ
ル内に電解液を注入して鉛蓄電池を組み立てた後、通電
により化成処理を行って初期充電状態とする鉛蓄電池の
製造方法において、上記正極板格子に上記PbOを充填
する際、酸化剤としてのアルカリ金属の過マンガン酸塩
を添加することを特徴とするものである。
According to the present invention, there is provided a method for manufacturing a lead-acid battery, comprising: combining a plurality of positive and negative electrode grids each filled with PbO as an active material together with a separator; Forming a group of electrodes,
Each of the electrode groups is inserted into each cell of the battery case, and an electrolyte is injected into each cell to assemble the lead storage battery. In the production method, when the positive electrode plate lattice is filled with the PbO, an alkali metal permanganate as an oxidizing agent is added.

【0008】[0008]

【発明の実施の形態】本発明の鉛蓄電池の製造方法で
は、正極板格子に活物質としてのPbOを充填する際
に、酸化剤としてのアルカリ金属の過マンガン酸塩を添
加する。このアルカリ金属の過マンガン酸塩としては、
NaMnO4 、KMnO4 等を挙げることができる。こ
れらのアルカリ金属の過マンガン酸塩のうちNaMnO
4 は、反応後、後述するように自己放電防止剤としての
Na2 SO4 に変化するので、最も適している。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for manufacturing a lead storage battery of the present invention,
When filling the positive electrode grid with PbO as an active material
To an alkali metal permanganate as an oxidizing agent
Add. As the alkali metal permanganate,
NaMnOFour, KMnOFourAnd the like. This
Of these alkali metal permanganates, NaMnO
FourAfter the reaction, as described below,
NaTwoSOFourIs the most suitable.

【0009】このように、正極の活物質中に酸化剤とし
てのアルカリ金属の過マンガン酸塩、例えばNaMnO
4 が添加されていると、鉛蓄電池の組み立て後の通電に
よる化成処理において、 5PbO+2NaMnO4 +3H2 SO4 →Na2
4 +2MnSO4 +5PbO2 +3H2 O の化学的な酸化還元反応が起こる。このため、通電によ
る電気的な酸化(PbO→PbO2 )のみによって、正
極の活物質をPbOからPbO2 に変化させる従来の化
成処理と比較して、上記化学的な酸化還元反応により酸
化が促進される分だけ、化成処理の処理効率が向上す
る。すなわち、PbOからPbO2 への反応効率が向上
するとともに、その反応時間も短縮化される。
As described above, an alkali metal permanganate as an oxidizing agent, for example, NaMnO
When 4 is added, 5PbO + 2NaMnO 4 + 3H 2 SO 4 → Na 2 S in the chemical conversion treatment by energization after assembling the lead storage battery.
A chemical redox reaction of O 4 + 2MnSO 4 + 5PbO 2 + 3H 2 O occurs. For this reason, compared with the conventional chemical conversion treatment in which the active material of the positive electrode is changed from PbO to PbO 2 only by electric oxidation (PbO → PbO 2 ) by energization, the oxidation is promoted by the chemical oxidation-reduction reaction. To this extent, the processing efficiency of the chemical conversion treatment is improved. That is, the reaction efficiency of PbO to PbO 2 is improved, and the reaction time is shortened.

【0010】また、上記反応式からもわかるように、ア
ルカリ金属の過マンガン酸塩としてNaMnO4 を用い
た場合は、化成処理によりNa2 SO4 が生成される。
このNa2 SO4 は、前述のとおり鉛蓄電池の自己放電
を防止する機能を果たす。このため、化成処理後に自己
放電防止剤としてのNa2 SO4 を別途添加する必要が
なく、処理工程の省略化を図ることができる。
As can be seen from the above reaction formula, when NaMnO 4 is used as the alkali metal permanganate, Na 2 SO 4 is generated by the chemical conversion treatment.
This Na 2 SO 4 functions to prevent self-discharge of the lead storage battery as described above. Therefore, it is not necessary to separately add Na 2 SO 4 as a self-discharge preventing agent after the chemical conversion treatment, and the treatment step can be omitted.

【0011】例えば、1セル当たりの正極活物質量:3
00g、電解液量:500ミリリットル程度のバッテリ
型式JIS55D23の鉛蓄電池においては、正極活物
質量に対してNaMnO4 :5wt%の添加により、1
5g/リットルのNa2 SO 4 が生成される。これは、
現在市販されているバッテリに採用されているNa2
4 量とほぼ一致する。
For example, the amount of the positive electrode active material per cell: 3
00g, electrolyte volume: 500ml battery
In the lead storage battery of model JIS55D23, the positive electrode active material
NaMnO to massFour: 1% by adding 5 wt%
5g / liter NaTwoSO FourIs generated. this is,
Na currently used in commercially available batteriesTwoS
OFourIt almost matches the amount.

【0012】上記酸化剤の添加量は、正極板格子に充填
される活物質量に対して、2〜10wt%とすることが
好ましい。正極活物質量に対する酸化剤の添加量が2w
t%より少ないと、酸化剤添加による化成処理の処理効
率向上の効果が十分に期待できない。一方、正極活物質
量に対する酸化剤の添加量が10wt%より多いと、酸
化剤の添加量が増える分だけ活物質の充填量が減ること
との関係上、正極板格子として必要な活物質量、ひいて
は鉛蓄電池として必要な電気容量を確保できなくなる。
The amount of the oxidizing agent is preferably 2 to 10% by weight based on the amount of the active material filled in the grid of the positive electrode plate. The amount of the oxidizing agent added to the amount of the positive electrode active material is 2w
If the amount is less than t%, the effect of improving the treatment efficiency of the chemical conversion treatment by adding the oxidizing agent cannot be sufficiently expected. On the other hand, if the amount of the oxidizing agent added to the amount of the positive electrode active material is more than 10% by weight, the amount of the active material required for the positive electrode plate grid is reduced because the amount of the active material decreases as the amount of the oxidizing agent increases. As a result, the required electric capacity of the lead storage battery cannot be secured.

【0013】上記酸化剤の活物質への添加は、正極板格
子に活物質を充填する際に準備するペースト中に酸化剤
を添加することにより行うことができる。正極板格子及
び負極板格子は、従来と同様、純鉛、カルシウム及びア
ンチモン等よりなる鉛合金から鋳造することができる。
これら極板格子への活物質の充填は、例えば、純鉛から
製造したPbOを主成分とする鉛粉と硫酸とを混練して
ペーストを作成し、このペーストを極板格子に塗布し、
乾燥後、室温若しくは40〜50℃の雰囲気中に2日放
置して熟成することにより行うことができる。そして、
所定形状に切断して、PbOを活物質とする未化成の正
・負極板を得ることができる。
The above-mentioned oxidizing agent can be added to the active material by adding the oxidizing agent to a paste prepared when the active material is filled in the positive electrode grid. The positive electrode plate lattice and the negative electrode plate lattice can be cast from a lead alloy made of pure lead, calcium, antimony, or the like, as in the related art.
For filling the electrode grid with the active material, for example, a paste is prepared by kneading a lead powder mainly composed of PbO manufactured from pure lead and sulfuric acid, and applying this paste to the electrode grid.
After drying, it can be left to stand in a room temperature or an atmosphere of 40 to 50 ° C. for 2 days for aging. And
By cutting into a predetermined shape, unformed positive and negative electrode plates using PbO as an active material can be obtained.

【0014】このようにして得られた未化成の正・負極
板は、常法に従って、合成樹脂製の隔離板やガラスマッ
ト等のセパレータを挟みながら複数組み合せてストラッ
プに溶接し、極板群とすることができる。そして、複数
の極板群を電槽の各セル内にそれぞれ装入するととも
に、隣り合う極板群のストラップ同士を溶接した後、各
セル内に電解液を注入し、蓋及び液口栓を熱溶着するこ
とにより、鉛蓄電池を組み立てることができる。
The unformed positive / negative electrode plates obtained in this manner are welded to a strap by combining a plurality of them while sandwiching a separator such as a synthetic resin separator or a glass mat in accordance with a conventional method. can do. Then, a plurality of electrode groups are inserted into each cell of the battery case, and after the straps of the adjacent electrode groups are welded to each other, an electrolytic solution is injected into each cell, and a lid and a liquid port stopper are attached. By heat welding, a lead storage battery can be assembled.

【0015】こうして得られた未化成の鉛蓄電池は、通
電することにより化成処理されて初期充電状態となり、
充電済みの鉛蓄電池とされる。本発明の製造方法におけ
る化成処理では、酸化剤が予め添加されていることから
上記したように化成処理の処理効率が向上しているの
で、酸化剤を添加しない従来法と比較して、処理時間を
1/3〜1/2程度に短縮することができる。
The unformed lead storage battery thus obtained is subjected to a chemical conversion treatment by being energized, and is brought into an initial charged state.
It is a charged lead storage battery. In the chemical conversion treatment in the production method of the present invention, the treatment efficiency of the chemical conversion treatment is improved as described above because the oxidizing agent is added in advance, so that the treatment time is shorter than that of the conventional method in which the oxidizing agent is not added. Can be reduced to about 1/3 to 1/2.

【0016】[0016]

【実施例】以下、本発明の鉛蓄電池の製造法の実施例に
ついてより具体的に説明する。 (実施例1)純鉛及びカルシウムよりなる鉛カルシウム
合金(0.08%Ca−Pb)の溶湯より極板格子を鋳
造した。
EXAMPLES Examples of the method for manufacturing a lead storage battery according to the present invention will be described below more specifically. Example 1 An electrode grid was cast from a molten lead-calcium alloy (0.08% Ca-Pb) composed of pure lead and calcium.

【0017】一方、活物質としてのPbO粉末:100
重量部と、酸化剤としてのNaMnO4 粉末:5重量部
と、Pb粉末:20重量部と、25%硫酸:25重量部
とを混練し、活物質の質量に対して酸化剤が5wt%添
加された正極用のペーストを作成した。また、PbO粉
末:100重量部と、Pb粉末:20重量部と、リグニ
ン:3重量部と、25%硫酸:25重量部とを混練し、
負極用のペーストを作成した。
On the other hand, PbO powder as an active material: 100
Parts by weight, 5 parts by weight of NaMnO 4 powder as an oxidizing agent, 20 parts by weight of a Pb powder, and 25 parts by weight of 25% sulfuric acid, and 5 wt% of the oxidizing agent is added to the mass of the active material. The prepared paste for a positive electrode was prepared. Also, 100 parts by weight of PbO powder, 20 parts by weight of Pb powder, 3 parts by weight of lignin, and 25 parts by weight of 25% sulfuric acid are kneaded,
A paste for a negative electrode was prepared.

【0018】上記極板格子に上記正極用のペースト又は
負極用のペーストをそれぞれ塗布し、乾燥後、室温若し
くは40〜50℃の雰囲気中に2日放置して熟成するこ
とにより、極板格子に活物質を充填した。そして、所定
形状に切断して、PbOを活物質とする未化成の正・負
極板を得た。このようにして得られた未化成の正・負極
板を、常法に従って、合成樹脂製の隔離板やガラスマッ
ト等のセパレータを挟みながら複数組み合せてストラッ
プに溶接し、極板群とした。なお、一つの極板群におい
て、正極板は6枚であり、負極板は7枚である。そし
て、複数の極板群を電槽の各セル内にそれぞれ装入する
とともに、隣り合う極板群のストラップ同士を溶接した
後、各セル内に電解液としての希硫酸を注入し、蓋及び
液口栓を熱溶着することにより、鉛蓄電池を組み立て
た。なお、セル数は6個であり、電解液量は1セル当た
り0.4リットルである。
The above-mentioned positive electrode paste or negative electrode paste is applied to the above-mentioned electrode grid, and dried and then left to stand at room temperature or in an atmosphere of 40 to 50 ° C. for 2 days to ripen the electrode grid. The active material was filled. And it cut | disconnected in the predetermined shape, and obtained the unformed positive / negative electrode plate which uses PbO as an active material. The thus obtained unformed positive and negative electrode plates were welded to a strap by combining a plurality of them while sandwiching a separator such as a synthetic resin separator or a glass mat according to a conventional method. Note that in one electrode plate group, the number of positive electrode plates is six and the number of negative electrode plates is seven. Then, the plurality of electrode groups are charged into each cell of the battery case, and after welding the straps of the adjacent electrode groups to each other, dilute sulfuric acid as an electrolyte is injected into each cell, and the lid and A lead storage battery was assembled by heat welding the liquid port stopper. The number of cells was 6, and the amount of electrolyte was 0.4 liter per cell.

【0019】こうして得られた未化成の鉛蓄電池は、室
温で5Aの電流を24時間通電することにより化成処理
し、初期充電状態とされた本実施例1の鉛蓄電池を製造
した。なお、この鉛蓄電池はバッテリ型式46B24
(JISD5301)のものである。
The unformed lead storage battery thus obtained was subjected to a chemical conversion treatment by applying a current of 5 A at room temperature for 24 hours to produce a lead storage battery of Example 1 in an initial charged state. The lead storage battery is a battery type 46B24
(JISD5301).

【0020】(実施例2)活物質の質量に対する酸化剤
の添加量が10wt%となるように変更すること以外
は、上記実施例1と同様にして、本実施例2の鉛蓄電池
を製造した。 (実施例3)活物質の質量に対する酸化剤の添加量が2
wt%となるように変更すること以外は、上記実施例1
と同様にして、本実施例3の鉛蓄電池を製造した。
Example 2 A lead-acid battery of Example 2 was manufactured in the same manner as in Example 1 except that the amount of the oxidizing agent added to the mass of the active material was changed to 10 wt%. . (Example 3) The amount of the oxidizing agent added to the mass of the active material was 2
Example 1 except that the weight ratio was changed to wt%.
In the same manner as in the above, a lead storage battery of Example 3 was manufactured.

【0021】(比較例)正極用のペーストに酸化剤を添
加しないこと以外は、上記実施例1と同様にして、比較
例の鉛蓄電池を製造した。 (化成処理効率の評価)上記実施例1〜3及び比較例の
鉛蓄電池について、化成処理の処理効率を評価した。
Comparative Example A lead storage battery of a comparative example was manufactured in the same manner as in Example 1 except that no oxidizing agent was added to the positive electrode paste. (Evaluation of Chemical Conversion Efficiency) The lead storage batteries of Examples 1 to 3 and Comparative Example were evaluated for chemical conversion treatment efficiency.

【0022】まず、上記実施例1〜3及び比較例の鉛蓄
電池について、上記初期充電状態における電圧を調べ
た。その結果を表1に示す。
First, the voltages of the lead storage batteries of Examples 1 to 3 and Comparative Example in the above-mentioned initial charge state were examined. Table 1 shows the results.

【0023】[0023]

【表1】 表1から明らかなように、本実施例1〜3の鉛蓄電池
は、いずれも初期充電電圧が比較例の鉛蓄電池よりも向
上していた。これは、酸化剤の添加により、PbOから
PbO2 への反応効率が向上するとともに、その反応時
間も短縮化されるので、24時間という短い化成処理時
間であっても十分にPbOからPbO2 へ反応したため
と考えられる。なお、実施例3の鉛蓄電池の初期充電電
圧が実施例1及び実施例2の鉛蓄電池のものと比べて低
いのは、酸化剤の添加量が2wt%と比較的少なく、酸
化剤添加による化成処理の処理効率向上の効果が実施例
1及び実施例2のものと比べて小さかったためと考えら
れる。また、実施例1及び実施例2の初期充電電圧であ
る12.6Vは、このバッテリ型式46B24(JIS
D5301)の鉛蓄電池が完全充電された状態の値であ
る。また、実施例3及び比較例の鉛蓄電池であっても、
化成処理時間を長くすることにより、完全充電状態とす
ることができる(比較例の鉛蓄電池を完全充電状態にす
るには、通常2〜3日必要である。)。
[Table 1] As is clear from Table 1, the lead-acid batteries of Examples 1 to 3 all had an initial charging voltage higher than that of the lead-acid batteries of Comparative Examples. This is because the addition of the oxidizing agent improves the efficiency of the reaction from PbO to PbO 2 and shortens the reaction time. Therefore, even if the conversion treatment time is as short as 24 hours, the PbO can be sufficiently converted from PbO 2 to PbO 2 . Probably because of the reaction. Note that the initial charge voltage of the lead-acid battery of Example 3 is lower than those of the lead-acid batteries of Example 1 and Example 2 because the addition amount of the oxidizing agent is relatively small at 2 wt%, and It is considered that the effect of improving the processing efficiency of the processing was smaller than that of the first and second embodiments. The initial charging voltage of 12.6 V in the first and second embodiments is the same as the battery type 46B24 (JIS).
D5301) when the lead storage battery is fully charged. Further, even in the lead storage batteries of Example 3 and Comparative Example,
By extending the chemical conversion treatment time, the battery can be fully charged (usually two to three days are required to bring the lead storage battery of the comparative example into a fully charged state).

【0024】この結果、酸化剤を添加することにより、
添加しない場合と比べて短時間で完全充電状態にするこ
とができ、また酸化剤の添加量を5wt%以上とするこ
とにより、24時間という短い化成処理時間であって
も、完全充電状態にすることができることが確認され
た。次に、上記実施例1〜3及び比較例の鉛蓄電池を初
期充電状態から5時間率電流(7.2A)で放電し、完
全放電状態になる(端子電圧が1.5Vになる)までの
時間を測定した。その結果を図1に示す。
As a result, by adding the oxidizing agent,
A fully charged state can be obtained in a shorter time as compared with the case where no addition is performed, and the addition amount of the oxidizing agent is set to 5 wt% or more, so that a fully charged state is obtained even in a short chemical conversion treatment time of 24 hours. It was confirmed that it was possible. Next, the lead storage batteries of Examples 1 to 3 and the comparative example are discharged from the initial charge state at a 5-hour rate current (7.2 A) until they reach a complete discharge state (terminal voltage becomes 1.5 V). The time was measured. The result is shown in FIG.

【0025】図1から明らかなように、本実施例1〜3
の鉛蓄電池は、いずれも完全放電状態になるまでの放電
時間が比較例の鉛蓄電池よりも長くなっていた。これ
は、初期充電電圧の違いに因るものと考えられる。な
お、実施例1と実施例2とを比較した場合、いずれも初
期充電で完全充電状態とされているにもかかわらず、実
施例2の放電時間が実施例1のものと比べて短いのは、
実施例2では酸化剤の添加量が10wt%と多い分、活
物質の充填量が少なくなり、その結果完全充電状態であ
っても蓄えられる電気容量が少ないためと考えられる。
As is apparent from FIG.
In each of the lead storage batteries, the discharge time until the battery was completely discharged was longer than that of the lead storage battery of the comparative example. This is considered to be due to the difference in the initial charging voltage. When the first embodiment is compared with the second embodiment, the discharge time of the second embodiment is shorter than that of the first embodiment, even though the battery is fully charged in the initial charging. ,
In Example 2, it is considered that the amount of the oxidizing agent added was as large as 10 wt%, so that the filling amount of the active material was reduced. As a result, the stored electric capacity was small even in the fully charged state.

【0026】なお、本実施例では鉛カルシウム合金を極
板格子に用いた例を示したが、極板格子の材質は問わ
ず、例えば、鉛アンチモン合金(1.7%Sb−Pb)
を用いても同様の効果が得られる
In this embodiment, an example is shown in which a lead calcium alloy is used for the electrode grid, but the material of the electrode grid is not limited, and for example, a lead-antimony alloy (1.7% Sb-Pb)
The same effect can be obtained by using

【0027】[0027]

【発明の効果】以上詳述したように、本発明の鉛蓄電池
の製造方法では、正極板格子に活物質を充填する際に酸
化剤としてのアルカリ金属の過マンガン酸塩を添加する
ことにより、化成処理において、化学的にPbOからP
bO2 への酸化を促進することができるので、この酸化
反応の効率が向上するとともに、その反応時間も短縮化
され、化成処理の処理効率を向上させることが可能とな
る。
As described above in detail, in the method for manufacturing a lead-acid battery according to the present invention, an alkali metal permanganate as an oxidizing agent is added when the positive electrode grid is filled with an active material. In chemical conversion treatment, PbO is chemically converted to P
Since the oxidation to bO 2 can be promoted, the efficiency of this oxidation reaction is improved, and the reaction time is shortened, so that the treatment efficiency of the chemical conversion treatment can be improved.

【0028】また、アルカリ金属の過マンガン酸塩とし
てNaMnO4 を用いた場合は、化成処理により自己放
電防止剤としてのNa2 SO4 が生成されるため、化成
処理後に自己放電防止剤を別途添加する必要がなく、処
理工程の省略化を図ることができる。
When NaMnO 4 is used as the alkali metal permanganate, Na 2 SO 4 as a self-discharge inhibitor is generated by the chemical conversion treatment, so that the self-discharge inhibitor is separately added after the chemical conversion treatment. It is not necessary to perform the process, and the processing steps can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化剤の添加量を変化させることにより、初期
充電状態から5時間率電流で放電させたときの放電時間
が変化する様子を示す線図である。
FIG. 1 is a diagram showing how a discharge time when a discharge is performed at a 5-hour rate current from an initial charge state by changing an addition amount of an oxidizing agent.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活物質としてのPbOがそれぞれ充填さ
れた正極板格子及び負極板格子をセパレータとともに複
数枚組み合わせて複数の極板群を形成し、各該極板群を
電槽の各セル内に装入するとともに各該セル内に電解液
を注入して鉛蓄電池を組み立てた後、通電により化成処
理を行って初期充電状態とする鉛蓄電池の製造方法にお
いて、 上記正極板格子に上記PbOを充填する際、酸化剤とし
てのアルカリ金属の過マンガン酸塩を添加することを特
徴とする鉛蓄電池の製造方法。
1. A plurality of electrode plates are formed by combining a plurality of positive electrode plate lattices and a plurality of negative electrode plate lattices each filled with PbO as an active material together with a separator, and each of the electrode plate groups is placed in each cell of a battery case. And charging the electrolyte into each of the cells to assemble the lead-acid battery. Then, the lead-acid battery is subjected to a chemical conversion treatment by energization to bring the battery into an initial charged state. A method for producing a lead-acid battery, characterized by adding an alkali metal permanganate as an oxidizing agent when filling.
JP8288122A 1996-10-30 1996-10-30 Manufacture of lead-acid battery Pending JPH10134810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8288122A JPH10134810A (en) 1996-10-30 1996-10-30 Manufacture of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8288122A JPH10134810A (en) 1996-10-30 1996-10-30 Manufacture of lead-acid battery

Publications (1)

Publication Number Publication Date
JPH10134810A true JPH10134810A (en) 1998-05-22

Family

ID=17726099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8288122A Pending JPH10134810A (en) 1996-10-30 1996-10-30 Manufacture of lead-acid battery

Country Status (1)

Country Link
JP (1) JPH10134810A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004976A1 (en) * 1999-07-09 2001-01-18 Japan Storage Battery Co., Ltd. Positive plate current collector for lead storage battery and lead storage battery comprising the same
CN112467100A (en) * 2020-11-04 2021-03-09 双登集团股份有限公司 Lead-acid storage battery positive electrode formula capable of shortening formation period and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004976A1 (en) * 1999-07-09 2001-01-18 Japan Storage Battery Co., Ltd. Positive plate current collector for lead storage battery and lead storage battery comprising the same
US6620551B1 (en) 1999-07-09 2003-09-16 Japan Storage Battery Co., Ltd. Positive plate current collector for lead storage battery and lead storage battery comprising the same
CN112467100A (en) * 2020-11-04 2021-03-09 双登集团股份有限公司 Lead-acid storage battery positive electrode formula capable of shortening formation period and preparation method thereof

Similar Documents

Publication Publication Date Title
EP2263276B1 (en) Flooded lead-acid battery
JP4899467B2 (en) Lead acid battery
US2883443A (en) Lead-acid storage battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
US4230779A (en) Battery plate
JPH10134810A (en) Manufacture of lead-acid battery
JPH11329420A (en) Manufacture of lead-acid battery
JP2003317711A (en) Formation method of lead-acid battery
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JPH01302661A (en) Lead acid battery and its manufacture
JPH0414758A (en) Lead-acid accumulator
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JPH0850896A (en) Manufacture of lead-acid battery
US4295940A (en) Method for battery plate
JP4742424B2 (en) Control valve type lead acid battery
JP2929894B2 (en) Manufacturing method of sealed lead-acid battery
JPH10223211A (en) Lead-acid battery and manufacture therefor
JP2548227B2 (en) Manufacturing method of electrode plate for lead-acid battery
JP3040718B2 (en) Lead storage battery
JPS62216167A (en) Positive pole active material for lead storage battery
JPH07320728A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPS61161660A (en) Lead-acid battery
JPH0887999A (en) Manufacture of lead-acid battery
JP2000182615A (en) Lead-acid battery
JP2008034286A (en) Closed lead battery