JPH0793135B2 - Lead acid battery and manufacturing method thereof - Google Patents

Lead acid battery and manufacturing method thereof

Info

Publication number
JPH0793135B2
JPH0793135B2 JP63132166A JP13216688A JPH0793135B2 JP H0793135 B2 JPH0793135 B2 JP H0793135B2 JP 63132166 A JP63132166 A JP 63132166A JP 13216688 A JP13216688 A JP 13216688A JP H0793135 B2 JPH0793135 B2 JP H0793135B2
Authority
JP
Japan
Prior art keywords
pbo
electrode plate
active material
discharge
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63132166A
Other languages
Japanese (ja)
Other versions
JPH01302661A (en
Inventor
康司 松村
慎治 斉藤
朝比古 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP63132166A priority Critical patent/JPH0793135B2/en
Publication of JPH01302661A publication Critical patent/JPH01302661A/en
Publication of JPH0793135B2 publication Critical patent/JPH0793135B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高容量化した鉛蓄電池の自己放電、過放電放
置の充電回復特性を良好とするものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention is to improve the charge recovery characteristics of a high capacity lead storage battery after self-discharge and over-discharge.

従来技術 従来、鉛蓄電池の自己放電、過放電放置の充電回復特性
を向上させるためには、化成後極板を低濃度の硫酸中で
放置したり、電池を高温中で放置したりして、格子近傍
に充放電反応に不活性で導電性のあるα−PbO2を生成さ
せていた。すなわち、放電反応においても格子近傍は高
抵抗物質であるPbSO4は生成せず、充電時にはα−PbO2
を通じて充電電流が活物質に流れるものである。さらに
は、未化成正極板に中性の硫酸溶液を含浸させた後、希
硫酸を主体とした電解液中で化成し、化成初期に活物質
中の中性電解液と格子近傍の活物質を反応させてα−Pb
O2を生成し、つづいて電解液中の硫酸が拡散して来て反
応性の優れたβ−PbO2が極板内部および表面に生成す
る。したがってこれも上記と同様の効果が得られる。
Conventional technology Conventionally, in order to improve the self-discharge of lead-acid batteries and the charge recovery characteristics after being left over-discharged, the electrode plate after chemical formation is left in low-concentration sulfuric acid, or the battery is left in high temperature. In the vicinity of the lattice, α-PbO 2 was formed, which was inactive in the charge / discharge reaction and was conductive. That is, even in the discharge reaction, PbSO 4 , which is a high-resistance substance, is not generated in the vicinity of the lattice, and α-PbO 2
Through which a charging current flows to the active material. Furthermore, after the unformed positive electrode plate is impregnated with a neutral sulfuric acid solution, it is formed in an electrolytic solution composed mainly of dilute sulfuric acid, and the neutral electrolytic solution in the active material and the active material in the vicinity of the lattice are formed at the initial stage of the formation. React to α-Pb
O 2 is generated, and then sulfuric acid in the electrolytic solution is diffused to form β-PbO 2 having excellent reactivity inside and on the surface of the electrode plate. Therefore, the same effect as described above can be obtained.

発明が解決しようとする課題 一般に、過放電放置又は自己放電後の正極板は格子界面
に高抵抗物質であるPbSO4皮膜や低級酸化物であるPbOが
形成するため充電立ち上り性が悪いという欠点がある。
そこで上記従来技術の方法によりα−PbO2を生成させる
が、生成量が非常に少量で部分的であり十分な量が得ら
れないため充電立ち上がり性が十分良好であるとは言え
ない。
Problems to be Solved by the Invention Generally, a positive electrode plate after being left over-discharged or self-discharged has a drawback that charge rising property is poor because PbSO 4 film which is a high resistance substance or PbO which is a lower oxide is formed at a lattice interface. is there.
Therefore, α-PbO 2 is produced by the above-mentioned method of the prior art, but it cannot be said that the charge rising property is sufficiently good because the amount of production is very small and partial and a sufficient amount cannot be obtained.

また従来技術の方法では化成後さらに工程を必要とした
り作業上手間がかかりコストも高くなる、さらに電池を
高容量化させると一般に放電が内部まで進み充電立ち上
り性能は一層悪くなる等の欠点を有している。
In addition, the method of the prior art has drawbacks such as requiring additional steps after chemical formation, increasing work cost and cost, and further increasing the capacity of the battery generally causes discharge to the inside and deteriorates charging start-up performance. is doing.

課題を解決するための手段 本発明は、上記の問題を解決するためになされたもの
で、格子にPbOのペーストを充填後、硫酸溶液に浸漬し
て極板の表面から内部へ厚みの1/3以上の表面層をPbSO4
化すると共に、残り内部の中心層はPbOのままとし、次
に通常の熟成を行ない、つづいて中性の硫酸塩水溶液中
で化成をして前記PbSO4をβ−PbO2に変化させてα−PbO
2とβ−PbO2のX線回折ピーク比をα/β≦0.5とし、前
記PbOをα−PbO2リッチに変化させた後、この極板を用
い所定の工程を経て製造することにより、極板の表面か
ら内部へ厚みの1/3以上の表面層の活物質はα−PbO2
β−PbO2のX線回折ピーク比がα/β≦0.5で、残り内
部の中心層の活物質はα−PbO2リッチとしたことを特徴
とするものである。
Means for Solving the ProblemsThe present invention has been made to solve the above-mentioned problems, and after filling the lattice with a paste of PbO, it is immersed in a sulfuric acid solution to dip it from the surface of the electrode plate to 1 / thickness of the inside. 3 or more surface layers with PbSO 4
As a result, the remaining inner central layer is left as PbO and then subjected to ordinary aging, followed by formation in a neutral sulfate aqueous solution to change PbSO 4 to β-PbO 2 and α. −PbO
The X-ray diffraction peak ratio of 2 and β-PbO 2 was α / β ≦ 0.5, and after changing the PbO to α-PbO 2 rich, the electrode plate was manufactured through a predetermined process to produce an electrode. From the surface of the plate to the inside, the active material of the surface layer having a thickness of 1/3 or more has an X-ray diffraction peak ratio of α-PbO 2 and β-PbO 2 of α / β ≦ 0.5, and the remaining active material of the inner central layer. Is characterized by being rich in α-PbO 2 .

作用 本発明は上記の特徴を有することにより、次の様な作用
が起こる。格子にPbOのペーストを充填後、まず硫酸溶
液に浸漬すると、次の反応が起こる。PbO+H2SO4→PbSO
4+H2Oこの時の反応は極板表面から内部へ進み、極板両
表面より1/3以上に進行させる。次に、通常の熟成を行
ない、つづいて化成を中性の硫酸塩水溶液中で行なう
と、極板両表面より内部へ1/3の活物質(ここでは、PbS
O4)は電気化学反応に活性なβ−PbO2となる。しかも、
この部分は未化成極板状態でPbSO4化させているため活
物質が体積膨張し、化成後はPbO2化するため多孔度が増
加する。また中心層の残り内部活物質(ここではPbO)
は、電気化学反応に乏しく導電性のあるα−PbO2層が生
成する。
Action Due to the features of the present invention, the following actions occur. After filling the grid with PbO paste, first immersing it in a sulfuric acid solution causes the following reaction. PbO + H 2 SO 4 → PbSO
4 + H 2 O The reaction at this time proceeds from the surface of the electrode plate to the inside and proceeds to 1/3 or more from both surfaces of the electrode plate. Next, normal aging is carried out, and then chemical formation is carried out in a neutral sulfate aqueous solution, so that 1/3 of the active material (here, PbS
O 4 ) becomes β-PbO 2 active in the electrochemical reaction. Moreover,
Since this part is converted to PbSO 4 in the unformed electrode plate state, the active material expands in volume, and after formation, it becomes PbO 2 and the porosity increases. In addition, the remaining internal active material in the center layer (here, PbO)
Produces an α-PbO 2 layer which has poor electrochemical reaction and conductivity.

一般に、放電反応は表面より内部へ進み、活物質利用率
は20〜40%程度である。したがって放電反応分布におい
ても極板両表面より内部へ厚み1/3までで反応が終了す
る。したがって、極板両表面より内部へ厚み1/3未満の
表面層にβ−PbO2を生成させると放電容量が減少する。
Generally, the discharge reaction proceeds from the surface to the inside, and the active material utilization rate is about 20 to 40%. Therefore, even in the discharge reaction distribution, the reaction ends from the both surfaces of the electrode plate to a thickness of 1/3. Therefore, when β-PbO 2 is generated in the surface layer having a thickness of less than 1/3 from both surfaces of the electrode plate, the discharge capacity decreases.

以上のようにして得られた極板は、極板両表面から内部
へ厚み1/3以上の活物質は、多孔度が増加し、β−PbO2
リッチであるため、容量が増加するが、これより内部の
中心層の活物質はα−PbO2リッチであり、電気化学反応
にあまり関与しないため、格子近傍にはPbSO4やPbOが生
成せず、高容量化した鉛蓄電池においても過放電放置後
や自己放電後の充電立ち上がり性能がより向上する。
The electrode plate obtained as described above, active material having a thickness of 1/3 or more from both surfaces of the electrode plate, the porosity increases, β-PbO 2
Since it is rich, the capacity increases, but the active material in the central layer inside it is rich in α-PbO 2 and does not participate in the electrochemical reaction so much, so PbSO 4 and PbO do not form near the lattice. Even in a high capacity lead storage battery, the charge start-up performance after being left over-discharged or after self-discharge is further improved.

実施例 本発明の一実施例を説明する。Example An example of the present invention will be described.

まず、鉛合金格子に鉛酸化物のペーストを充填し、1mol
/の硫酸溶液に20時間浸漬して次の反応を起こさせ
る。
First, fill the lead alloy grid with lead oxide paste and
Dip in the sulfuric acid solution of / for 20 hours to cause the next reaction.

PbO+H2SO4→PbSO4+H2O この時、極板表面から1/3の表面層活物質はほとんどPbS
O4が生成していた。次に通常の熟成を行ない、つづいて
1mol/のNa2SO4溶液中で化成を行った。
PbO + H 2 SO 4 → PbSO 4 + H 2 O At this time, almost 1/3 of the surface layer active material from the electrode plate surface is PbS
O 4 was being produced. Next, perform normal aging and continue
Chemical conversion was performed in a 1 mol / Na 2 SO 4 solution.

このようにして得られた極板は、極板両表面より内部へ
厚み1/3の表面層の活物質がα/β=0.25で残り1/3の中
心層の活物質はα/β=3.21であった。第1図は過放電
放置後の充電立ち上がり性について示したものである。
図中の従来品Aとは、ペースト充填→熟成→化成→低濃
度の硫酸中の放置で得られた極板を用いた鉛蓄電池、従
来品Bとは、ペースト充填→熟成後、中性の硫酸溶液を
極板中に含浸させた後、硫酸中で化成した鉛蓄電池であ
る。
In the electrode plate thus obtained, the active material in the surface layer having a thickness of 1/3 is α / β = 0.25 and the active material in the center layer having a thickness of 1/3 is α / β = inward from both surfaces of the electrode plate. It was 3.21. FIG. 1 shows the charge rising property after standing for over-discharge.
The conventional product A in the figure is a lead-acid battery using a plate obtained by filling paste → aging → chemical formation → leaving in low concentration sulfuric acid, and conventional product B is paste filling → neutralizing after aging. This is a lead acid battery in which a sulfuric acid solution is impregnated in an electrode plate and then formed in sulfuric acid.

電池は4Ah−4V型の密閉型鉛蓄電池を用い、0.53Ω抵抗
で24時間放電し、次に開路状態とし25±1℃雰囲気中で
1ケ月放置した。そして制限電流1.2Aカット、4.9Vの定
電圧充電した時の電流を測定した。これからもわかるよ
うに本発明品は、従来品A,Bに比べ非常に充電立ち上が
り性が向上している。
A 4Ah-4V sealed lead-acid battery was used as the battery, which was discharged with a resistance of 0.53Ω for 24 hours and then left open for one month in an atmosphere of 25 ± 1 ° C. Then, the current when the limiting current was cut by 1.2 A and the battery was charged at a constant voltage of 4.9 V was measured. As can be seen from the above, the product of the present invention has much improved charge rising property as compared with the conventional products A and B.

次に第2図は、本発明品と従来品A,Bとの自己放電後の
回復容量比を示したものであり、電池は6V−1.2Ah型の
密閉型鉛蓄電池を用い60℃雰囲気で1ケ月放置し、放電
前の5時間率容量を100とした時の放置後と回復充電後
の5時間率容量の比較である。以上のように本発明品は
従来品A,Bに比べ容量の回復性が非常によい。
Next, FIG. 2 shows a recovery capacity ratio after self-discharge of the product of the present invention and the conventional products A and B. The battery is a 6V-1.2Ah type sealed lead acid battery in an atmosphere of 60 ° C. It is a comparison of the 5-hour rate capacity after leaving for 1 month and after the 5 hours rate capacity before discharge was set to 100 and after the recovery charge. As described above, the product of the present invention has much better capacity recovery than the conventional products A and B.

次に第3図は、化成後の極板両表面から内部への表面層
の活物質(α/β≦0.5)の厚みと電池容量の関係を示
したものである。電池は4Ah−4V型の密閉型鉛蓄電池
で、放電条件は1CAの定電流放置で終止電圧2.8Vまで放
電した。雰囲気温度は25±1℃である。これより極板両
表面より内部へ厚み1/3未満では容量は低下するが、そ
れ以上では一定値を示す。
Next, FIG. 3 shows the relationship between the battery capacity and the thickness of the active material (α / β ≦ 0.5) in the surface layer from both surfaces of the electrode plate after chemical conversion. The battery was a sealed lead-acid battery of 4Ah-4V type, and the discharge condition was that it was discharged to a final voltage of 2.8V by leaving it at a constant current of 1CA. The ambient temperature is 25 ± 1 ℃. As a result, the capacity decreases inward from both surfaces of the electrode plate when the thickness is less than 1/3, but at a value higher than that, it shows a constant value.

第4図は、本発明品と従来品A,Bの各放電々流での容量
を示したものである。電池は4Ah−4V型の密閉型鉛蓄電
池を用い、雰囲気温度は25±1℃、放電終止電圧は2.8V
である。第4図より明らかなように本発明品が従来品A,
Bより放電持続時間が長く、特に高率放電において顕著
である。
FIG. 4 shows the capacities of the product of the present invention and the conventional products A and B in each discharge flow. The battery is a 4Ah-4V sealed lead acid battery, the ambient temperature is 25 ± 1 ℃, and the discharge end voltage is 2.8V.
Is. As is apparent from FIG. 4, the product of the present invention is the conventional product A,
The discharge duration is longer than that of B, and is particularly noticeable in high-rate discharge.

第5図は、本発明品と従来品A,Bとのサイクル寿命特性
の比較図である。電池はいずれも4Ah−4V型の密閉型鉛
蓄電池で、雰囲気温度25±1℃のもとで充電条件は4.9V
の定電圧充電で制限電流が1.2Aで充電時間が4時間であ
る。また放電条件は4Aの定電流放電で終止電圧2.8Vまで
の放電である。
FIG. 5 is a comparison diagram of the cycle life characteristics of the product of the present invention and the conventional products A and B. The batteries are all 4Ah-4V sealed lead-acid batteries, and the charging condition is 4.9V under an ambient temperature of 25 ± 1 ℃.
With constant voltage charging, the limiting current is 1.2A and the charging time is 4 hours. The discharge condition is a constant current discharge of 4A and a final voltage of 2.8V.

図より、従来品A,Bよりも本発明品は高容量かつ長寿命
であることがわかる。
From the figure, it can be seen that the product of the present invention has higher capacity and longer life than the conventional products A and B.

発明の効果 上述したように、本発明によれば高容量化した鉛蓄電池
においても、過放電放置後の立ち上り性および自己放電
後の回復性が向上する。
EFFECTS OF THE INVENTION As described above, according to the present invention, even in a lead storage battery having a high capacity, the start-up property after being left overdischarge and the recovery property after self-discharge are improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は過放電放置後の充電立ち上がり性能比較特性
図、第2図は自己放電性能比較特性図、第3図は化成後
の極板表面層の活物質(α/β≦0.5)の厚みと電池容
量の関係を示す曲線図、第4図は各放電々流での持続時
間の比較特性図、第5図はサイクル寿命の比較特性図で
ある。
Fig. 1 is a characteristic diagram of charge start-up performance after over-discharging, Fig. 2 is a characteristic diagram of self-discharge performance comparison, and Fig. 3 is the thickness of active material (α / β ≤ 0.5) of the electrode plate surface layer after chemical formation. Is a curve diagram showing the relationship between the battery capacity and the battery capacity, FIG. 4 is a comparative characteristic diagram of the duration of each discharge current, and FIG. 5 is a comparative characteristic diagram of the cycle life.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】極板の表面から内部へ厚みの1/3以上の表
面層の活物質はα−PbO2とβ−PbO2のX線回折ピーク比
がα/β≦0.5とし、残り内部の中心層の活物質はα−P
bO2リッチとした極板を用いたことを特徴とする鉛蓄電
池。
1. The active material of the surface layer having a thickness of 1/3 or more from the surface of the electrode plate to the inside has an X-ray diffraction peak ratio of α-PbO 2 and β-PbO 2 of α / β ≦ 0.5, and the remaining inside The active material of the central layer of α-P
A lead acid battery characterized by using a bO 2 rich electrode plate.
【請求項2】格子にPbOのペーストを充填後、硫酸溶液
に浸漬して極板の表面から内部へ厚みの1/3以上の表面
層をPbSO4化すると共に、残り内部の中心層はPbOのまま
とし、次に通常の熟成を行ない、つづいて中性の硫酸塩
水溶液中で化成をして前記PbSO4をβ−PbO2に変化させ
てα−PbO2とβ−PbO2のX線回折ピーク比をα/β≦0.
5とし、前記PbOをα−PbO2リッチに変化させた後、この
極板を用い所定の工程を経て得ることを特徴とする鉛蓄
電池の製造法。
2. The grid is filled with PbO paste, and then immersed in a sulfuric acid solution to convert the surface layer from the surface of the electrode plate to 1/3 or more of the thickness to PbSO 4 , and the remaining inner central layer is PbO 4. Then, normal aging is carried out, followed by chemical conversion in a neutral sulfuric acid aqueous solution to change the PbSO 4 into β-PbO 2 to obtain α-PbO 2 and β-PbO 2 X-rays. The diffraction peak ratio is α / β ≦ 0.
5. A method for manufacturing a lead storage battery, which is obtained by changing the PbO to α-PbO 2 rich and then using this electrode plate through predetermined steps.
JP63132166A 1988-05-30 1988-05-30 Lead acid battery and manufacturing method thereof Expired - Lifetime JPH0793135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132166A JPH0793135B2 (en) 1988-05-30 1988-05-30 Lead acid battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132166A JPH0793135B2 (en) 1988-05-30 1988-05-30 Lead acid battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01302661A JPH01302661A (en) 1989-12-06
JPH0793135B2 true JPH0793135B2 (en) 1995-10-09

Family

ID=15074910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132166A Expired - Lifetime JPH0793135B2 (en) 1988-05-30 1988-05-30 Lead acid battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0793135B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084858A1 (en) * 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538864B2 (en) * 1999-05-31 2010-09-08 新神戸電機株式会社 Lead acid battery and manufacturing method thereof
JP5283429B2 (en) * 2008-05-29 2013-09-04 古河電池株式会社 Sealed lead acid battery
CN112670455B (en) * 2020-12-25 2022-09-06 天能电池集团股份有限公司 Positive plate of lead storage battery and lead storage battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730264A (en) * 1980-07-29 1982-02-18 Shin Kobe Electric Mach Co Ltd Positive plate for lead storage battery using pb-ca system alloy substrate
JPS5979969A (en) * 1982-10-29 1984-05-09 Shin Kobe Electric Mach Co Ltd Method for manufacturing positive electrode for lead storage battery
JPS61142668A (en) * 1984-12-14 1986-06-30 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery
JPS62281266A (en) * 1986-05-30 1987-12-07 Shin Kobe Electric Mach Co Ltd Formation of lead storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730264A (en) * 1980-07-29 1982-02-18 Shin Kobe Electric Mach Co Ltd Positive plate for lead storage battery using pb-ca system alloy substrate
JPS5979969A (en) * 1982-10-29 1984-05-09 Shin Kobe Electric Mach Co Ltd Method for manufacturing positive electrode for lead storage battery
JPS61142668A (en) * 1984-12-14 1986-06-30 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery
JPS62281266A (en) * 1986-05-30 1987-12-07 Shin Kobe Electric Mach Co Ltd Formation of lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084858A1 (en) * 2014-11-27 2016-06-02 日立化成株式会社 Lead storage cell

Also Published As

Publication number Publication date
JPH01302661A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
JPH0793135B2 (en) Lead acid battery and manufacturing method thereof
US4230779A (en) Battery plate
JPS58197662A (en) Pasted positive electrode for lead storage battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JPH0414758A (en) Lead-acid accumulator
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPS58154171A (en) Lead-acid battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JPH04345756A (en) Manufacture of lead storage battery electrode
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JPS62145664A (en) Manufacture of sealed lead storage battery
US4295940A (en) Method for battery plate
JP2000149932A (en) Lead-acid battery and its manufacture
JP2913482B2 (en) Lead storage battery
JPH10134810A (en) Manufacture of lead-acid battery
JP2553598B2 (en) Sealed lead acid battery
JP2002203589A (en) Cylindrical secondary battery
JP3040718B2 (en) Lead storage battery
JP3018879B2 (en) Chemical formation method of paste-type cadmium anode
JPH0559549B2 (en)
JPS607059A (en) Manufacture of positive plate for sealed lead storage battery
JP3427402B2 (en) Method for manufacturing electrode plate for lead-acid battery
JPH10223211A (en) Lead-acid battery and manufacture therefor
JPH05151987A (en) Manufacture of sealed type lead acid battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13