JPS6043145A - Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine - Google Patents

Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine

Info

Publication number
JPS6043145A
JPS6043145A JP15082983A JP15082983A JPS6043145A JP S6043145 A JPS6043145 A JP S6043145A JP 15082983 A JP15082983 A JP 15082983A JP 15082983 A JP15082983 A JP 15082983A JP S6043145 A JPS6043145 A JP S6043145A
Authority
JP
Japan
Prior art keywords
engine
injection
asynchronous
intake pipe
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15082983A
Other languages
Japanese (ja)
Inventor
Yukio Yoshioka
吉岡 幸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15082983A priority Critical patent/JPS6043145A/en
Publication of JPS6043145A publication Critical patent/JPS6043145A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/105Introducing corrections for particular operating conditions for acceleration using asynchronous injection

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To effect appropriate asynchronous injection of fuel at the time of accelerating an engine, by providing a process of detecting change of the pressure in an intake pipe or the quantity of intake air, a process of detecting an asynchronism judging level, and a process of effecting asynchronous injection of fuel. CONSTITUTION:The fuel injection control method of this invention includes a process of detecting change of the pressure in an intake pipe or the quantity of intake air, a process of detecting an asynchronism judging level that is raised at the time of low-speed, high-load operation of an engine from at least either one of the vehicle speed, pressure in the intake pipe or quantity of intake air, and a process of effecting asynchronous injection of fuel when the change of pressure in the intake pipe or the quantity of intake air becomes higher than the asynchronism judging level. By employing such a method, it is enabled to prevent degradation of the engine performance due to engine stall or the like and to effect appropriate asynchronous injection of fuel at the time of accelerating the engine.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、電子制御燃料噴射式エンジンの加速時非同期
噴射制御方法に係り、特に、電子制御燃料l1ji躬装
置を崗えた自動車用エンジンに用いるのに好適な、エン
ジン回転と同期して定期的に行われる同期噴射に加えて
、吸気管圧力又は吸入空気量の変化量が大である加速時
は非同期噴射を行うようにした電子制御燃料噴射式エン
ジンの加速時非同期噴射制御方法の改良に関する。
The present invention relates to a method for controlling asynchronous injection during acceleration of an electronically controlled fuel injection engine, and is particularly suitable for use in an automobile engine equipped with an electronically controlled fuel injection device. The present invention relates to an improvement in a method for controlling asynchronous injection during acceleration of an electronically controlled fuel injection engine, in which, in addition to synchronous injection, asynchronous injection is performed during acceleration when the amount of change in intake pipe pressure or intake air amount is large.

【従来技術) 自動車用エンジン等の内燃機関の燃焼至に所定空燃比の
混合気を供給する方法の1つに、電子制御燃料噴6’l
 H置を用いるものがある。これは、エンジン内に燃料
を噴射するためのインジェクタを、例えばエンジンの吸
気マニホルドにエンジン気筒数個配設し、該インジェク
タの開弁時間をエンジンの運転状態、例えば吸気管圧力
又はエンジン1回転当りの吸入空気量から検知されるエ
ンジン回転とエンジン回転速泣等に応じて制御すること
により、所定の空燃比の混合気がエンジン燃焼苗に供給
されるようにづるものである。 このような電子制御燃料Ill射装置を備えた自動車用
エンジンにおいでは、通常、エンジン回転に同期1して
定期的に行われる同期噴射だけでは、加速時に燃料が不
足し、空燃比が一時的にオーバーリーンとなって、息付
きやもだつぎ等の加速不良が発生するため、吸気管圧力
又は吸入空気量の変化量が非同期判定レベルより大であ
る加速時は、前記同期噴射に加えて、エンジンのクラン
ク角度に拘わらず所定量の燃料を噴射する、所謂非同期
噴射を行って、加速時の運転性を確保するようにしてい
る。 しかしながら、吸気管圧力又は吸入空気量は、吸気脈動
により、定常運転時においても変化してd5す、加速時
の運転性から決めた一定の非同期判定レベルを常時用い
た場合には、登板時のような低速・高負荷時に、前記変
化量が非同期判定レベルを越えて非同期噴射が実行され
てしまい、空燃比がオーバーリッチとなって、エンジン
ストールの発生等により運転性能が悪化する場合があっ
た。 このような問題点を解消するべく、非同期判定レベルを
一律に大とづることも考えられるが、その場合には、通
常の加速時における非同期判定が遅れ、適切な非同期噴
射が行われなくなる恐れがあった。 【発明の目的】 本発明は、前記従来の問題点を解消するべくなされたも
ので、運転状態に応じた適切な非同期判定を行うことが
でき、従って、エンジンの要求に合った非同期噴射を行
うことができる電子制御ill燃料噴射式エンジンの加
速時非同期噴射制御方法を提供することを目的とする。
[Prior art] One method of supplying a mixture at a predetermined air-fuel ratio to combustion in an internal combustion engine such as an automobile engine is an electronically controlled fuel injection system.
Some use the H position. In this method, injectors for injecting fuel into the engine are arranged in several engine cylinders, for example, in the intake manifold of the engine, and the valve opening time of the injectors is determined based on the operating state of the engine, such as the intake pipe pressure or one revolution of the engine. The system is designed to supply a mixture with a predetermined air-fuel ratio to the engine-combusted seedlings by controlling the engine speed and engine speed detected from the intake air amount. In automobile engines equipped with such electronically controlled fuel injection devices, synchronous injection, which is performed periodically in synchronization with engine rotation, usually results in a fuel shortage during acceleration, causing the air-fuel ratio to temporarily change. Over lean, which causes poor acceleration such as breathing and lagging, occurs. Therefore, during acceleration when the amount of change in intake pipe pressure or intake air amount is greater than the asynchronous determination level, in addition to the synchronous injection, A so-called asynchronous injection, in which a predetermined amount of fuel is injected regardless of the crank angle of the engine, is performed to ensure drivability during acceleration. However, the intake pipe pressure or intake air amount changes d5 due to intake pulsation even during steady operation. At low speeds and high loads, the amount of change exceeds the asynchronous judgment level and asynchronous injection is executed, resulting in the air-fuel ratio becoming overrich and causing deterioration in driving performance due to engine stalling, etc. . In order to solve this problem, it may be possible to uniformly set the asynchronous determination level to a high level, but in that case, the asynchronous determination during normal acceleration will be delayed, and there is a risk that appropriate asynchronous injection will not be performed. there were. OBJECT OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and is capable of appropriately determining asynchrony according to the operating condition, and therefore performs asynchronous injection that meets the requirements of the engine. An object of the present invention is to provide a method for controlling asynchronous injection during acceleration of an electronically controlled ill fuel injection engine.

【発明の構成】[Structure of the invention]

本発明は、エンジン回転と同期して定期的に行われる同
期噴射に加えて、吸気管圧力又は吸入空気量の変化すが
大である加速時は非同期噴射を行うようにした電子制御
燃料噴射式エンジンの加速時非同期噴射制御方法におい
て、第1図にその要旨を示す如く、吸気管圧力又は吸入
空気量の変化量をめる手順と、エンジンが搭載された車
両の走行速tα、吸気管圧力又は吸入′空気蓋の少くと
もいずれか1つに応じて、低速高負荷時に大となる非同
期判定レベルをめる手順と、前記変化量が前記非同期判
定レベルより大となった時に非同期噴射を実行する手順
と、を含むことにより、前記目的を達成したものである
。 又、本発明の実施態様は、前記変化量を、吸気管圧力又
は吸入空気量の2階微分値として、より適確な非同期判
定が行われるようにしたものである。 (発明の作用] 本発明においては、非同期判定レベルを、エンジンが搭
載された車両の走行速度、吸気管圧力又は吸入空気量の
少くともいずれか1つに応じて、低速高負荷時に大とな
るようにしたので、低速高負荷時に誤って非同期噴Ωl
が行われることがなくなり、運転性能の悪化を防ぎつつ
、加速時に適正な非同期噴射を行うことかできる。
The present invention provides an electronically controlled fuel injection system in which, in addition to synchronous injection performed periodically in synchronization with engine rotation, asynchronous injection is performed during acceleration when there is a large change in intake pipe pressure or intake air amount. In the asynchronous injection control method during engine acceleration, as shown in Fig. 1, there are steps to calculate the amount of change in intake pipe pressure or intake air amount, the running speed tα of the vehicle in which the engine is mounted, and the intake pipe pressure. or a procedure for setting an asynchronous judgment level that becomes large at low speed and high load according to at least one of the intake air lids, and executing asynchronous injection when the amount of change becomes larger than the asynchronous judgment level. The above object has been achieved by including the following steps. Further, in an embodiment of the present invention, the amount of change is set as a second-order differential value of the intake pipe pressure or intake air amount, so that a more accurate asynchrony determination can be performed. (Function of the Invention) In the present invention, the asynchronization determination level is set to be high at low speed and high load depending on at least one of the traveling speed of the vehicle in which the engine is mounted, the intake pipe pressure, or the intake air amount. As a result, asynchronous injection Ωl could be caused by mistake at low speed and high load.
As a result, appropriate asynchronous injection can be performed during acceleration while preventing deterioration of driving performance.

【実施例】【Example】

以下図面を一参照して、本発明に係る電子制御燃料噴射
式エンジンの加速時非同期噴射制御方法が採用された、
吸気管圧力感知式の電子制御燃料噴射装置を崗えた自動
車用エンジンの実施例を詳に@□に説明づる。 本実施例は、第2図に示す如く、外部から吸入される吸
入空気の温度を検出するための吸気温センサ12と、ス
ロットルボディ14に配設された、アクセルペダル(図
示省略)と連動して吸入空気の流量を制御づるスロット
ル弁16の開度を検出するためのスロットルセンサ18
と、吸気干渉を防止づるサージタンク2o内の吸入空気
の圧力を検出覆るだめの吸気管圧力センサ22と、吸気
マニホルド24に配設された、エンジン1oの各気筒の
吸気ポートに向けて、加圧燃料を間欠的に噴射ツるため
のインジェクタ26と、エンジン燃焼”f10A内に導
入された混合気に着火するための点火プラグ28と、排
気マニホルド3oと、点火コイル32で発生された高圧
の点火2法化号をエンジン10の各気筒の点火プラグ2
8に配電するデストリピユータ34に内蔵された、デス
トリピユータ1M34Aの回転状態からエンジン10の
回転状態を検知Jるためのクランク角度センサ36と、
エンジン10のシリンダブロック10Bに配設された、
エンジン冷却水温を検知づるための水温センサ38と、
変速機40の出力軸の回転速度から、エンジン10が搭
載された自動車の歩行速度、即ち、車速を検出するため
の車速センサ42ど、前記吸気管圧力センサ22出力か
ら検知されるエンジン負荷や前記クランク角度センサ3
6出力からめられるエンジン回転速度等に応じて同11
1]噴則徂を計算し、ニレジン回転と同期して定期的に
前記インジェクタ26に開弁時間信号を出力して同期噴
射を行うとともに、吸気管圧力の2階微分1自が非1f
i1期判定レベルLVLを越えたことから検知される加
速時は非同期噴射を行うための電子制御1−ツl−(以
下ECUと称づる)44と、から構成されている。 前記ECU44は、第3図に詳細に示す如く、各種演算
処理を行うための、例えばマイクロプロセッサからなる
中央処理ユニット(以下cPUと称する)44Aと、制
(卸プログラムや各種データ等を記憶するためのリード
オンリーメモリ(jズ下ROM ト称−=j ル> 4
4 B ト、前記C,PU44Aにおける演紳データ等
を一時的に記憶づるためのランダムアクセスメモリ(以
下RAMと称する)44Cと、前記吸気温センサ12、
吸気管圧力センサ22、水温センサ38等から入力され
るアナログ信号をデジタル信号に変換して順次取込むノ
;めの、マルチプレクサ機能を備えたアナログ−デジタ
ル変換器(以下A 7 Dコンバータと称する)44E
と、前記スロットルセンサ18、クランク角1哀センサ
36、車速センサ42等から入力されるデジタル信号を
取込むとともに、CPU44Aの演紳結呆に応じて、前
記インジェクタ26等に制御信号を出力するための、バ
ッファ機能を備えた入出力ボート(以下I10ボートと
称する)44Fと、前記各構成機器間を接続して、デー
タや命令を転送づるためのコモンバス4″4Gと、から
構成されている。 以下作用を説明する。 本実施例における加速時の非同期噴射は、第4図に承り
ような、所定時間毎の割込みルーチンに従って実行され
る。即ち、所定時間経過毎にステップ110に進み、前
記吸気管圧力センサ22の出力からめられる吸気管圧力
P Mを読込む。次いでステップ112に進み、例えば
次式の関係を用いて、吸気管圧力PMの2階微分値DD
PMを算出Jる。 D D P M = (P tvl i −P M t
−+ )(P M ;−+ P M 1−2)・・・(
1)ここで、PMiは今回入力された吸気管圧力、PM
 i−+ 3よ前回入力された吸気管圧力、PMi−2
はIil′J々回に入力された吸気管圧力である。 次いでステップ114に進み、吸気管圧力PMが判定値
Aを越えているか否かを判定する。判定結果が正である
時にはステップ116に進み、前記スロットルセンサ1
8のアイドル接点LLがオンとなっているか否かを判定
する。判定結果が否である場合にはステップ118に進
み、同じくスロットル2センサ18のパター接点VLが
オンとなっているか否かを判定する。判定結果が否であ
る場合、即ち、吸気管圧力P Mが判定値Aより大であ
り、且つ、アイドル接点LL、パワー接点VLのいずれ
もオフであり、加速状態にあると判断される時には、ス
テップ120に進み、前記車速セ・ンサ42の出力に応
じて車速SPDを読込む。次いぐステップ122に進み
、車速SPDが判定値V b以上であるか否かを判定り
る。判定結果が正である場合には、ステップ124に進
み、非同期判定レベルLVLとして、通常の加速時に見
合った比較的低い値りを入れる。一方、前出ステップ1
22の判定結果が否である場合には、ステップ126に
進み、非同期判定レベルLVLとして、比較的大ぎな値
H(>L)を入れる。 前出ステップ124又は126終了後、ステップ128
に進み、前出ステップ112で韓出された吸気管圧力の
211i!i微分値DDPMが、非同期判定レベルL 
V 1以上であるか否かを判定する。判定結果が正であ
る場合、即ち、非同期噴射を実行する必要があると判断
される時、には、ステップ130に進み、その時のエン
ジン運転状態に応じて非同期嗅8J Iを締出するゎ次
いでステップ132に進み、非同期噴射を実行して、こ
のルーチンを終了づる。 一方、前出ステップ114の判定結果が否であるか、ス
テップ116.118の判定結果か正であり、加速状態
にないと判断される詩、又は、前出ステップ128の判
定P果が否であり、非同期嗅64を行うへきでないと判
断される時には、非同期噴射を行うことなく、このルー
チンを終了する。 本実施例における、低速走行時の吸気管圧力の2階微分
値D D P Mと非同期判定レベルLVL(−H)の
関係を第5図に、同じく高速走行時の吸気管圧力の2階
微分値DDPMと非同期判定レベルLVL (−L)の
関係を第6図に示す。第5図及び第6図から明らかな如
く、本実施例においては、低速走行時に非同期判定レベ
ルLVLが大とな値Hとされるので、吸気管脈動により
吸気管圧力の2階微分値DDPMの変動が大となってい
るにも拘わらず、急加速により高負荷に移行したことを
正確に判定することができる。これに対して、高速走行
時の判定値りをそのまま用いた場合には、緩加速時にも
誤った非同期判定が行われ、不通切な非同期噴射が行わ
れて、空燃比がオーバーリッチとなっていたものである
。 本実施例においては、吸気管圧力PMの2階微分値D 
D P Ivlに応じて非同期判定を行うようにしてい
たので、非同期判定がより適確に行われる。 なお、非同期判定を行う方法にこれに限定されず、吸入
空気量の2南微分値や、吸気管圧力又は吸入空気量の1
階微分値に応じて非同期判定を行うようにすることも可
能である。 なお前記実施例においては、非同期判定レベルLVLを
、車速SPDに応じて変化させるようにしていたが、非
同期判定レベルを変化させる方法はこれに限定されず、
例えば、エンジン回転速度、吸気管圧力又は吸入空気量
や、その組み合わせに応じて変化させることが可能であ
る。 Mit記実施例においては、本発明が、吸気管圧力感知
式の電子制御I燃料11*射装置を備えた自8車用エン
ジンに適用されていたが、本発明の適用範囲はこれに限
定されず、吸入空気囚感知式の電子制御燃料噴射装置を
備えた自動車用エンジンや、一般の電子制!lI燃料@
剖式エンジンCも同イ采に適用できることは明らかであ
る。 【発明の効果] 以上説明した通り、本発明によれば、低速高負荷時の吸
気脈動を誤って加速と判定することがない。従って、不
要な非同期@剣が行われることがなくなり、オーバーリ
ッチによるエンジンストール等の運転性能の悪化を防ぎ
つつ、加速時に適正な非同期噴射を行うことができると
いう優れた効果を有Jる。
With reference to the drawings below, the method for controlling asynchronous injection during acceleration of an electronically controlled fuel injection engine according to the present invention is adopted.
An example of an automobile engine equipped with an electronically controlled fuel injection device that senses intake pipe pressure will be described in detail in @□. As shown in FIG. 2, this embodiment includes an intake air temperature sensor 12 for detecting the temperature of intake air taken in from the outside, and an accelerator pedal (not shown) disposed on a throttle body 14. a throttle sensor 18 for detecting the opening degree of a throttle valve 16 that controls the flow rate of intake air;
The intake pipe pressure sensor 22 detects the pressure of the intake air in the surge tank 2o, which prevents intake interference. An injector 26 for intermittently injecting pressurized fuel, a spark plug 28 for igniting the air-fuel mixture introduced into the engine combustion engine f10A, an exhaust manifold 3o, and a high-pressure pump generated by the ignition coil 32. Connect the ignition number 2 to the spark plug 2 of each cylinder of the engine 10.
A crank angle sensor 36 for detecting the rotational state of the engine 10 from the rotational state of the destroyer 1M34A, which is built in the destroyer 34 that distributes power to the engine 8;
disposed in the cylinder block 10B of the engine 10,
a water temperature sensor 38 for detecting engine cooling water temperature;
A vehicle speed sensor 42 detects the walking speed of the automobile in which the engine 10 is mounted, that is, the vehicle speed, from the rotational speed of the output shaft of the transmission 40, the engine load detected from the output of the intake pipe pressure sensor 22, and the Crank angle sensor 3
6.11 depending on the engine speed etc. determined from the output.
1] Calculate the injection rule and periodically output a valve opening time signal to the injector 26 in synchronization with the rotation of the resin to perform synchronous injection, and ensure that the second derivative of the intake pipe pressure is not 1f.
It is comprised of an electronic control unit (hereinafter referred to as ECU) 44 for performing asynchronous injection during acceleration detected because the i1 period determination level LVL has been exceeded. As shown in detail in FIG. 3, the ECU 44 includes a central processing unit (hereinafter referred to as cPU) 44A consisting of, for example, a microprocessor for performing various arithmetic processes, and a control unit (for storing wholesale programs, various data, etc.). read-only memory (lower ROM)
4B, C, a random access memory (hereinafter referred to as RAM) 44C for temporarily storing performance data, etc. in the PU 44A, and the intake temperature sensor 12;
An analog-to-digital converter (hereinafter referred to as A7D converter) equipped with a multiplexer function that converts analog signals input from the intake pipe pressure sensor 22, water temperature sensor 38, etc. into digital signals and sequentially captures them. 44E
and to receive digital signals input from the throttle sensor 18, crank angle 1 sensor 36, vehicle speed sensor 42, etc., and output control signals to the injector 26, etc. in accordance with the operation of the CPU 44A. It is comprised of an input/output boat (hereinafter referred to as I10 boat) 44F with a buffer function, and a common bus 4''4G for connecting each of the component devices and transferring data and instructions. The operation will be explained below.The asynchronous injection during acceleration in this embodiment is executed according to the interrupt routine at predetermined time intervals as shown in FIG. The intake pipe pressure PM determined from the output of the pipe pressure sensor 22 is read.Then, the process proceeds to step 112, and the second-order differential value DD of the intake pipe pressure PM is calculated using, for example, the following equation.
Calculate PM. D D P M = (P tvl i - P M t
−+ )(P M ;-+ P M 1-2)...(
1) Here, PMi is the intake pipe pressure input this time, PM
i-+3 is the intake pipe pressure input last time, PMi-2
is the intake pipe pressure inputted every time Iil'J. Next, the process proceeds to step 114, where it is determined whether the intake pipe pressure PM exceeds the determination value A. When the determination result is positive, the process proceeds to step 116, and the throttle sensor 1
It is determined whether the idle contact LL of No. 8 is on. If the determination result is negative, the process proceeds to step 118, where it is similarly determined whether or not the putter contact VL of the throttle 2 sensor 18 is turned on. If the determination result is negative, that is, if the intake pipe pressure P M is greater than the determination value A, and both the idle contact LL and the power contact VL are off, and it is determined that the engine is in an acceleration state, Proceeding to step 120, the vehicle speed SPD is read in accordance with the output of the vehicle speed sensor 42. The process then proceeds to step 122, where it is determined whether the vehicle speed SPD is equal to or greater than the determination value Vb. If the determination result is positive, the process proceeds to step 124, where a relatively low value suitable for normal acceleration is set as the asynchronous determination level LVL. On the other hand, step 1 mentioned above
If the determination result in step 22 is negative, the process proceeds to step 126, and a relatively large value H (>L) is entered as the asynchronous determination level LVL. After completing step 124 or 126, step 128
Proceed to 211i of the intake pipe pressure determined in step 112 above! The i differential value DDPM is the asynchronous determination level L
Determine whether V is greater than or equal to 1. If the determination result is positive, that is, if it is determined that it is necessary to execute asynchronous injection, the process proceeds to step 130, and the asynchronous injection 8J is shut out according to the engine operating state at that time. Proceeding to step 132, asynchronous injection is performed and the routine ends. On the other hand, if the judgment result of step 114 is negative, the judgment result of step 116 or 118 is positive, and the poem is judged not to be in an acceleration state, or the judgment P result of step 128 is negative. If it is determined that there is no time to perform the asynchronous injection 64, this routine is ended without performing the asynchronous injection. In this example, the relationship between the second-order differential value D D P M of the intake pipe pressure during low-speed running and the asynchronization determination level LVL (-H) is shown in FIG. 5, and the second-order differential value of the intake pipe pressure during high-speed running FIG. 6 shows the relationship between the value DDPM and the asynchronous determination level LVL (-L). As is clear from FIGS. 5 and 6, in this embodiment, the non-synchronization determination level LVL is set to a large value H during low-speed running, so the second differential value DDPM of the intake pipe pressure is reduced due to the intake pipe pulsation. Even though the fluctuation is large, it is possible to accurately determine that the load has shifted to high due to sudden acceleration. On the other hand, if the judgment values used during high-speed driving were used as they were, incorrect asynchronous judgments would be made even during slow acceleration, resulting in interrupted asynchronous injection and an over-rich air-fuel ratio. It is something. In this embodiment, the second-order differential value D of the intake pipe pressure PM
Since the asynchronous determination is made according to the D P Ivl, the asynchronous determination can be made more accurately. Note that the method for determining asynchrony is not limited to this, and may be performed using the 2 south differential value of the intake air amount, the 1/2 south differential value of the intake pipe pressure, or the intake air amount.
It is also possible to perform the asynchronous determination according to the order differential value. In the above embodiment, the asynchrony determination level LVL was changed according to the vehicle speed SPD, but the method of changing the asynchrony determination level is not limited to this.
For example, it is possible to change it according to the engine rotation speed, intake pipe pressure, intake air amount, or a combination thereof. In the embodiment described in Mit, the present invention was applied to an engine for a Japanese car equipped with an electronically controlled I fuel 11* injection device that senses intake pipe pressure, but the scope of application of the present invention is limited to this. First, automobile engines equipped with an electronically controlled fuel injection device that detects intake air, and general electronic control! lI fuel @
It is clear that autopsy engine C can also be applied to the same system. [Effects of the Invention] As explained above, according to the present invention, intake pulsation at low speed and high load is not erroneously determined as acceleration. Therefore, unnecessary asynchronous injection is not performed, and there is an excellent effect that proper asynchronous injection can be performed during acceleration while preventing deterioration of driving performance such as engine stall due to over-richness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る電子制御燃料噴射式エンジンの
加速時非同期噴射制御方法の要旨を示す流れ図、第2図
は、本発明が採用されlζ、吸気管圧力!認知式、の電
子制御燃料IJi4剣装置を伽えた自動車用エンジン切
実施例を示す、一部ブロック線図を含む断面図、第3図
は、前記実施−例で用いられている゛重子制御ユニット
の構成を示すブロック線図、第4図は、同じく、加速時
の非同期噴射を行うためのルーチンを示づ流れ図、第5
図は、前記実施例にお(プる、低速走行時の吸気管圧力
の2階微分値と非同期判定レベルの関係の例を示′51
′線図、第伊図は、同じく、高速走行時の吸気管圧力の
2階微分値と非同期判定レベルの関係の例を示す線図(
ある。 P M・・・吸気管圧力、 D D I” M・・・吸気室圧力の2階微分値、SP
D・・・車速、LVL・・・非同期判定レベル、1−0
・・・エンジン、22・・・吸気管圧力センサ、26・
・・インジェクタ、 36・・・クランク角度センサ、 42・・・車速センサ、 44・・・電子制御ユニット(ECU)。 代理人 高 矢 論 (ほか1名) 第1図 第4図
FIG. 1 is a flowchart showing the gist of the asynchronous injection control method during acceleration of an electronically controlled fuel injection type engine according to the present invention, and FIG. FIG. 3 is a sectional view including a partial block diagram showing an embodiment of an automobile engine cut-off system equipped with a recognition type electronically controlled fuel IJi 4-sword device. FIG. 4 is a block diagram showing the configuration of the system, and FIG. 5 is a flow chart showing the routine for performing asynchronous injection during acceleration.
The figure shows an example of the relationship between the second-order differential value of the intake pipe pressure and the asynchronization determination level during low-speed running.
' Diagram and Diagram No. 1 are also diagrams showing an example of the relationship between the second-order differential value of intake pipe pressure and the asynchronization determination level during high-speed driving (
be. P M...Intake pipe pressure, D D I'' M...Second-order differential value of intake chamber pressure, SP
D...Vehicle speed, LVL...Asynchronous judgment level, 1-0
...Engine, 22...Intake pipe pressure sensor, 26.
...Injector, 36...Crank angle sensor, 42...Vehicle speed sensor, 44...Electronic control unit (ECU). Agent Takaya Ron (and 1 other person) Figure 1 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)エンジン回転と同期して定期的に行われる同期噴
射に加えで、吸気管圧力又は吸入空気量の変化量が大で
ある加速時は非同期噴射を行うようにした電子制御燃料
噴射式エンジンの加速時非同期噴射制御方法において、
吸気管圧力又は吸入空気量の変化mlをめる手順と、エ
ンジンが搭載された車両の走行速度、吸気管圧力又は吸
入空気量の少くともいずれか1つに応じて、低速高負荷
時に大となる非同期判定レベルをめる手順と、前記変化
線が前記非同期判定レベルより大となった時に非同期噴
射を実行する手順と、を含むことを特徴とづる電子制御
燃料噴射式エンジンの加速時非同期噴射制御方法。
(1) An electronically controlled fuel injection engine that performs asynchronous injection during acceleration when the amount of change in intake pipe pressure or intake air amount is large, in addition to synchronous injection performed periodically in synchronization with engine rotation. In the acceleration asynchronous injection control method,
The procedure for calculating the change in intake pipe pressure or intake air volume (ml), and the traveling speed of the vehicle in which the engine is installed, intake pipe pressure, or intake air volume, depending on at least one of the following: Asynchronous injection during acceleration of an electronically controlled fuel injection type engine, characterized in that the method includes the steps of: determining an asynchronous determination level such that the change line becomes greater than the asynchronous determination level; and executing asynchronous injection when the change line becomes greater than the asynchronous determination level. Control method.
(2)前記変化量を、吸気管圧力又は吸入空気量の2階
微分値とした特許請求の範囲第1項記載の電子制御燃料
噴射式エンジンの加速時非同期噴射制御方法。
(2) The asynchronous injection control method during acceleration of an electronically controlled fuel injection type engine according to claim 1, wherein the amount of change is a second order differential value of intake pipe pressure or intake air amount.
JP15082983A 1983-08-18 1983-08-18 Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine Pending JPS6043145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15082983A JPS6043145A (en) 1983-08-18 1983-08-18 Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15082983A JPS6043145A (en) 1983-08-18 1983-08-18 Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine

Publications (1)

Publication Number Publication Date
JPS6043145A true JPS6043145A (en) 1985-03-07

Family

ID=15505299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15082983A Pending JPS6043145A (en) 1983-08-18 1983-08-18 Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine

Country Status (1)

Country Link
JP (1) JPS6043145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182555A (en) * 1988-01-11 1989-07-20 Fujitsu Ten Ltd Method for detecting acceleration or deceleration of internal combustion engine
US6763903B2 (en) 2000-12-18 2004-07-20 Suzuki Motor Corporation Automatic stop/ start-up controlling device of an engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182555A (en) * 1988-01-11 1989-07-20 Fujitsu Ten Ltd Method for detecting acceleration or deceleration of internal combustion engine
US6763903B2 (en) 2000-12-18 2004-07-20 Suzuki Motor Corporation Automatic stop/ start-up controlling device of an engine

Similar Documents

Publication Publication Date Title
JPH0465227B2 (en)
JPS6043145A (en) Method of controlling asynchronous injection of fuel at the time of accelerating electronically controlled fuel injection type engine
US4520784A (en) Method of and apparatus for controlling fuel injection
JPS5963330A (en) Method of controlling electrically controlled internal- combustion engine
JPH05141293A (en) Air fuel ratio correcting method
JPH0573907B2 (en)
JPH0512538B2 (en)
JPH0480218B2 (en)
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JPH0429855B2 (en)
JP3720200B2 (en) Damage detection device for intake manifold of internal combustion engine
JPS6065249A (en) Fuel injection method of internal-combustion engine
JPS58150049A (en) Electronically controlled fuel injection method of internal-combustion engine
JPS593134A (en) Control of idle revolution number of internal- combustion engine
JPS6053644A (en) Acceleration fuel increasing method of electronically controlled fuel injection engine
JPS5996446A (en) Non-synchronous fuel injection method for internal- combustion engine under acceleration
JPH0475382B2 (en)
JPH0323738B2 (en)
JPS6138140A (en) Fuel injection control device in internal-combustion engine
JPS6125944A (en) Fuel-injection controller of internal-combustion engine
JPH03217629A (en) Fuel cut controller of internal combustion engine for vehicle
JPS63109256A (en) Fuel injection method for internal combustion engine
JPH0536624B2 (en)
JPS6022053A (en) Air-fuel ratio feedback control method for electronically controlled fuel injection engine
JPH04272461A (en) Egr device