JPS60244044A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60244044A
JPS60244044A JP59099238A JP9923884A JPS60244044A JP S60244044 A JPS60244044 A JP S60244044A JP 59099238 A JP59099238 A JP 59099238A JP 9923884 A JP9923884 A JP 9923884A JP S60244044 A JPS60244044 A JP S60244044A
Authority
JP
Japan
Prior art keywords
groove
substrate
semiconductor device
film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59099238A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59099238A priority Critical patent/JPS60244044A/en
Publication of JPS60244044A publication Critical patent/JPS60244044A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to reduce the junction leakage current by a method wherein an inversion preventing layer is formed on the stepped part of one side of the sidewalls of a groove through an element isolation material buried in the interior of the groove. CONSTITUTION:An etching is performed on the main surface of a substrate 21 to the exfent of 0.3mum using a CVD oxide film 22 as a mask, whereby a stepping is formed on only one side of the mutually opposing sidewalls of a groove 27 in the substrate 21. Then, a CVD oxide film 30 is buried in the interior of the groove 27 and P<-> type field inversion preventing layers 31 are formed. As the P<-> type inversion preventing layer 31 is being formed on one side (the side of the N channel MOS transistor) of the mutually opposing sidewalls of the groove 27 through the CVD oxide film (element isolation material) 30 buried in the interior of the groove 27 in such a way, that is, in the vicinit of the junction point of the N<+> type source and drain regions 34 and 35 and the P type silicon substrate 21, the junction leakage current between both regions holding the groove between them can be reduced and the element characteristics can be improved.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は半導体装置及びその製造方法に関し、特に相補
型MO8半導体装置の素子分動に使用されるものである
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a semiconductor device and a method for manufacturing the same, and is particularly used for element segmentation of a complementary MO8 semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体装置の素子分離法どしては窒化シリコン膜
をIVIJn化性マスクとしで利用ずろ選択酸化法(L
OCO8法)が最も一般的に使用されている。しかし、
この方法はバースビーク、ボヮイ1へリボンの発生等の
欠点を有することがら将来の高集積半導体装置の素子分
離には不適当である。
Conventionally, in the element isolation method of semiconductor devices, a selective oxidation method (L
OCO8 method) is the most commonly used. but,
This method has drawbacks such as generation of birth beaks and ribbons in the void 1, and is therefore unsuitable for element isolation of future highly integrated semiconductor devices.

特に、CMO8半導体装置においては、素子分離酸化膜
の幅を大きくしなければラッチアップを防止する効果が
ほとんどないため、高集積化を妨げる原因となっている
In particular, in CMO8 semiconductor devices, there is little effect in preventing latch-up unless the width of the element isolation oxide film is increased, which is a cause of hindering high integration.

そこで、第1図に示されるような埋込み型の素子分離技
術(ドレンチアインレージョン)が注目されている。第
1図において、例えばP型シリコン基板1の主面には溝
が形成され、この溝の内部には素子分離材2が埋設され
ている。この素子分離材2によりP型ウェル領域3とウ
ェル領域3以外の基板1とが分離されている。ウェル領
域3以外の基板1上にはグー1〜酸化III 4を介し
てゲート電極5が形成され、ゲート電極5の両側方の基
板1表面にはP+型ソース、ドレイン領域6.7が形成
されてP’J−tネルM O81〜ランジスタが構成さ
れている。一方、ウェル領域3上にはゲート酸化膜4を
介してグー1〜電極5が形成され、ゲート電(犯5の両
側方の基板1表面にはN++ソース、ドレイン領域8.
9が形成されてNヂャネルMO$1〜ランジスタが構成
されている。
Therefore, a buried type element isolation technique (drench inlay) as shown in FIG. 1 is attracting attention. In FIG. 1, for example, a groove is formed in the main surface of a P-type silicon substrate 1, and an element isolation material 2 is buried inside the groove. The element isolation material 2 separates the P-type well region 3 from the substrate 1 other than the well region 3. A gate electrode 5 is formed on the substrate 1 other than the well region 3 through goo 1 to oxide III 4, and P+ type source and drain regions 6.7 are formed on the surface of the substrate 1 on both sides of the gate electrode 5. The P'J-t channel MO81 to transistor are configured. On the other hand, electrodes 1 to 5 are formed on the well region 3 via a gate oxide film 4, and N++ source and drain regions 8.
9 is formed to constitute an N channel MO$1~ transistor.

上述した埋込み型素子分離技術では基板1の主面が平坦
化され、微細な配線の断線を防止できるうえにON・I
O8におけるラッチアップも有効に防止できるという利
点かある。
In the above-mentioned buried element isolation technology, the main surface of the substrate 1 is flattened, and not only can minute interconnections be prevented from breaking, but also ON/I
This has the advantage that latch-up at O8 can also be effectively prevented.

しかし、従来の埋め込み型素子分離技術では溝の内部の
素子力Ru材を介して互いに対向する基板の側壁の一方
にのみ反転防止用の拡散層を形成することができないの
で、素子力Fil +Jに接してPN接合を形成するど
、接合リーク電流(図中矢印で表示)が大きくなるとい
う欠点がある。特に、N+型抵拡散層例えば第2図に示
す如くN++ソース、ドレイン領域8.9を形成した場
合には素子力all tJ2に)0っだ接合リーク電流
が顕著どなる。
However, with the conventional buried type element isolation technology, it is not possible to form a diffusion layer for preventing inversion only on one side wall of the substrate facing each other via the element force Ru material inside the groove. When they are in contact to form a PN junction, there is a drawback that the junction leakage current (indicated by an arrow in the figure) increases. In particular, when an N+ type resistive diffusion layer, for example, an N++ source and drain region 8.9 as shown in FIG.

(発明の目的〕 本発明は上記事情に鑑みてなされたちのであり、埋込み
型素子分離技術を用いた場合の接合リーク電流を低減し
得る半導体装置及びそのような半導体装置を簡便に製造
しくワる方法を提供しようとするものである。
(Object of the Invention) The present invention has been made in view of the above circumstances, and provides a semiconductor device that can reduce junction leakage current when using embedded element isolation technology, and a method for easily manufacturing such a semiconductor device. It is intended to provide a method.

〔発明の概要) 本願第1の発明の半導体装置は、埋込み型素子分離技術
を用いた半導体装置において、溝の内部で素子分離材を
介して互いに対向する基板の側壁の少なくとも一方が段
差を有し、かつ基板の段差部近傍に反転防止層を設けた
ことを特数とするものである。
[Summary of the Invention] A semiconductor device according to the first invention of the present application is a semiconductor device using a buried element isolation technique, in which at least one side wall of a substrate facing each other with an element isolation material in between has a step. A special feature is that an anti-inversion layer is provided near the stepped portion of the substrate.

このような半導体装置によれば、溝の内部の素子分離材
を介して互いに対向する基板のffl!IIの少なくと
も一方の段差部に反転防止層を設けることができ、素子
分離材に沿った接合リーク電流を有効に防止することが
できる。特に、反転防止層を接合リーク電流の顕著なN
+型抵拡散層P型つニ5− ル領域又はP型シリコン基板との接合点近傍に設けた場
合に接合リーク電流を低減する効果が大きい。
According to such a semiconductor device, ffl! of the substrates facing each other with the element isolation material inside the groove interposed therebetween. An anti-inversion layer can be provided on at least one step portion of II, and junction leakage current along the element isolation material can be effectively prevented. In particular, the anti-inversion layer is
When the +-type resistive diffusion layer is provided in the P-type single region or in the vicinity of the junction with the P-type silicon substrate, it is highly effective in reducing junction leakage current.

また、本願第2の発明の半導体装置の製造方法は、半導
体基板上に間口部を有する第1の被膜を形成する工程ど
、前記開口部内の前記第1の被膜の側壁に互いに対向す
るように第2の被膜を形成する工程と、対向して形成さ
れた前記第2の被膜の一方を選択的にエツチングする工
程と、前記第1の被膜及び残存した第2の被膜をマスク
として異方性エツチングにより基板をエツチングし、溝
を形成する工程と、前記残存した第2の被膜を除去した
後、前記第1の被膜をマスクどじで異方性エツチングに
より基板をエツチングし、前記溝の内部で互いに対向す
る基板の側壁の一方に段差を形成する■稈と、前記第1
の被膜をマスクとして不純物をイオン注入することによ
り基板の段差部近傍に反転防止層を形成する工程と、前
記第1の被膜を除去した後、前記溝の内部に素子分離材
を埋設する■稈と、該素子分離材以外の素子領域に6− 半導体素子を形成する工程とを具備したことを特数とす
るものである。
Further, in the method for manufacturing a semiconductor device according to the second invention of the present application, in the step of forming a first film having a frontage portion on a semiconductor substrate, side walls of the first film within the opening portion are formed so as to face each other. a step of forming a second film; a step of selectively etching one of the second films formed oppositely; and anisotropic etching using the first film and the remaining second film as a mask. A step of etching the substrate by etching to form a groove, and after removing the remaining second coating, etching the substrate by anisotropic etching using a mask, etching the inside of the groove. a culm forming a step on one side wall of the substrate facing each other;
forming an inversion prevention layer near the stepped portion of the substrate by ion-implanting impurities using the first film as a mask, and burying an element isolation material inside the groove after removing the first film. A special feature of the present invention is that it comprises the steps of 6-- forming a semiconductor element in an element region other than the element isolation material.

このような方法によれば、本願第1の発明の半導体装置
を簡便な工程で形成することができる。
According to such a method, the semiconductor device of the first invention of the present application can be formed through a simple process.

〔発明の実施例) 以下、本発明をc xi o sデバイスに適用した実
施例を第3図(a)〜(0)に示す製造方法を(l−1
記して説明する。
[Embodiments of the Invention] Hereinafter, an embodiment in which the present invention is applied to a cxios device will be described using a manufacturing method shown in FIGS.
Write and explain.

まず、P型シリコン基板21上にウェル分離用の溝を形
成する際のエツチングマスク材どなる膜厚1pnのCV
D酸化膜(第1の被膜)22をjlt積した後、その一
部を選択的にエツチング1ノでfiIt的な溝分離幅を
有する開口部23を形成する。次に、全面にウェル分離
用の溝を形成する際のエツチングマスク材となる窒化シ
リコン膜を堆積した後、異方性エツチングによりエツチ
ングし、開口部23内のCVD酸化膜22の側壁に窒化
シリコンI!(第2の被III)24を残存させる(第
3図(a)図示)。つづいて、Nチャネルの素子領域を
ホトレジストパターン25で覆った後、Nウェル形成用
のリンをイオン注入し、リンドープ層2Gを形成する。
First, when forming grooves for well isolation on the P-type silicon substrate 21, an etching mask material with a film thickness of 1 pn is used.
After the D oxide film (first film) 22 is deposited, a portion thereof is selectively etched to form an opening 23 having a trench separation width of fiIt. Next, after depositing a silicon nitride film to serve as an etching mask material when forming well isolation trenches on the entire surface, etching is performed by anisotropic etching to form a silicon nitride film on the side wall of the CVD oxide film 22 in the opening 23. I! (Second target III) 24 is left (as shown in FIG. 3(a)). Subsequently, after covering the N-channel device region with a photoresist pattern 25, ions of phosphorus for forming an N-well are implanted to form a phosphorus-doped layer 2G.

つづいて、ホトレジストパターン25をマスクとして残
存している窒化シリコン膜24のうちPチャネルの素子
領tJ(Nウェル領域)側にある部分を選択的にエツチ
ング除去する(同図(b)図示)。つづいて、前記ボ1
−レジス]−パ゛ターン25を除去した後、CVD酸化
!II 22及び開口部23内のNチャネルの素子領域
側のCV D酸化II! 22の側壁に残存している窒
化シリコン膜24をマスクとして異方性エツチングによ
り基板21の主面をエツチングし、深さ4 、51++
rノのウェル分離用のtg 27を形成する(同図(C
)図示)。
Subsequently, using the photoresist pattern 25 as a mask, a portion of the remaining silicon nitride film 24 on the P channel element region tJ (N well region) side is selectively removed by etching (as shown in FIG. 3B). Next, the above-mentioned button 1
-Resist] - After removing pattern 25, CVD oxidation! CVD oxidation II on the N-channel device region side in II 22 and opening 23! Using the silicon nitride film 24 remaining on the side walls of the substrate 22 as a mask, the main surface of the substrate 21 is etched by anisotropic etching to a depth of 4,51++.
Form a tg 27 for well separation of the r no.
).

次いで、残存している窒化シリコン膜24を除去した後
、再びCVD酸化膜22をマスクとして基板21の主面
を0.3μ、n程度エツチングする。この結果、)筒2
7内の基板21の互いに対向する側壁は一方(Nチャネ
ルの素子領域側)にのみ段差が形成される。つづいて、
1200’Cで高温熱処理を行ない、前記リンイオン注
入層26のリンを拡散させて深さ4 pmのN型ウェル
領域28を形成する(同図(d)図示)。つづいて、C
V D 酸化[!22をマスクとして3 X 10” 
cJn−20ドース量でボロンをイオン注入し溝27内
の基板21の底部及び段差部にボロンイオン注入層29
.29を形成する(同図(e)図示)。
Next, after removing the remaining silicon nitride film 24, the main surface of the substrate 21 is etched by about 0.3μ, n using the CVD oxide film 22 as a mask again. As a result, ) cylinder 2
A step is formed only on one side (on the N-channel element region side) of the mutually opposing side walls of the substrate 21 in the substrate 7 . Continuing,
A high-temperature heat treatment is performed at 1200'C to diffuse phosphorus in the phosphorus ion-implanted layer 26 to form an N-type well region 28 with a depth of 4 pm (as shown in FIG. 4(d)). Continuing, C
V D Oxidation [! 3 x 10” with 22 as a mask
Boron is ion-implanted at a dose of cJn-20 to form a boron ion-implanted layer 29 at the bottom and step portions of the substrate 21 within the groove 27.
.. 29 (as shown in FIG. 2(e)).

次いで、前記CVD酸化膜22をエツチング除去した後
、全面に素子分離材であるCVD酸化膜を堆積し、更に
全面エッチバックを行なうことにより溝26の内部にC
VD酸化膜30を埋設する。
Next, after removing the CVD oxide film 22 by etching, a CVD oxide film serving as an element isolation material is deposited on the entire surface, and by further etching back the entire surface, carbon is formed inside the trench 26.
A VD oxide film 30 is buried.

つづいて、熱処理を行ない、前記ボロンイオン注入層2
9.29を活性化させてP−型フィールド反転防止層3
1を形成する(同図(f)図示)。
Subsequently, heat treatment is performed to form the boron ion implanted layer 2.
9.29 is activated to form the P-type field inversion prevention layer 3.
1 (as shown in FIG. 1(f)).

つづいて、ウェル領域28以外の基板21上及びウェル
領ti128上にゲート酸化膜32.32を介してゲー
ト電極33.33を形成する。つづいて、ゲート電極3
3をマスクとしてウェル領域28以外の基板21に選択
的にヒ素をイオン注入することにより深さ0.4trm
程度のN+型ソース、ドレイン領域34.35を形成す
る。つづいて、ゲート電極33をマスクとしてウェル領
域28に選択9− 的にボロンをイオン注入することによりP+型ソース、
トレイン領t*36.37を形成する。つづいて、仝而
に層間絶縁膜38をjff積した後、コンタクトホール
を開孔し、更に全面に配線金属を蒸着した後、パクーニ
ングして配線39、・・・を形成し、0MO8を製造す
る(同図(0)図示)。
Subsequently, gate electrodes 33.33 are formed on the substrate 21 other than the well region 28 and on the well region ti128 via the gate oxide film 32.32. Next, gate electrode 3
3 as a mask, arsenic is selectively implanted into the substrate 21 other than the well region 28 to a depth of 0.4 trm.
N+ type source and drain regions 34 and 35 are formed. Next, by selectively implanting boron ions into the well region 28 using the gate electrode 33 as a mask, a P+ type source is formed.
A train region t*36.37 is formed. Subsequently, after depositing the interlayer insulating film 38, contact holes are opened, and wiring metal is further deposited on the entire surface, and then the wiring 39, etc. are formed by puncturing, and 0MO8 is manufactured. (Illustrated in (0) of the same figure).

しかして第3図(0)図示のc v o sは、溝の内
部のCVDI化膜(素子分離材)30を介して互いに対
向する基板21の側壁の一方(NチャネルM OS l
−ランジスタ側)の段差部、すなわちN+型ソース、ド
レイン領11t34.35とP型シリコン基板21との
接合点近傍にP−型反転防止層31が形成されているの
で、両者の間の接合リーク電流を低減することができ、
素子特性を向上することができる。
Therefore, the cv o s shown in FIG.
- Since the P- type inversion prevention layer 31 is formed near the step portion of the N+ type source/drain region 11t34.35 and the P type silicon substrate 21 (on the transistor side), there is no junction leakage between the two. can reduce the current,
Device characteristics can be improved.

また、上記実施例で用いた方法では異方性エツチングを
利用することにより従来の方法に写真蝕刻法を追加する
ことなく、セルファラインで溝の内部のCVDI化膜3
0を介して互いに対向する基板21の側壁の一方の段差
部にP−型反転防止10− 層31を形成することができるので、極めて簡便な工程
で上)ホしたようなリーク電流を低減しiりる素子特性
の良好なCN=I OSを製造することができる。
Furthermore, in the method used in the above embodiment, by using anisotropic etching, the CVDI film 3 inside the groove can be etched with self-alignment without adding photolithography to the conventional method.
Since the P-type inversion prevention layer 31 can be formed on one stepped portion of the side walls of the substrates 21 that face each other through the P-type inversion prevention layer 31, the leakage current as described in (a) above can be reduced with an extremely simple process. It is possible to manufacture a CN=IOS with good element characteristics.

なお、上記実施例ではNチャネルM OS I−ラン°
ジスタ側の基#i21側壁にのみ段差部を形成したが、
第4図に示すようにPヂャネルMO8t−ランジスタ側
の基板21側壁にも段差部を形成し、その段差部近傍に
P−型反転防止層40を設(づ、N型ウェル領域28と
P型シリコン基板21どの間のリーク電流を防止するよ
うにしてもよい。なお、第4図図示のようなCM OS
はシリコン基1反のエツチング詩にエツチングマスクと
なる第1及び第2の被膜以外に第3の被膜を形成してお
くことにより容易に製造することができる。
Note that in the above embodiment, the N-channel MOS I-run °
Although a step portion was formed only on the side wall of base #i21 on the register side,
As shown in FIG. 4, a stepped portion is also formed on the side wall of the substrate 21 on the side of the P channel MO8t transistor, and a P-type inversion prevention layer 40 is provided near the stepped portion. The leakage current between the silicon substrates 21 may be prevented.
can be easily manufactured by forming a third coating in addition to the first and second coatings that serve as an etching mask on a single silicon base film.

また、上記実施例では溝の内部にCVDI化膜を埋設し
たが、これに限らず溝の内部表面に熱酸化膜を形成した
後、多結晶シリコンを埋設してもよい。
Further, in the above embodiment, the CVDI film is buried inside the groove, but the present invention is not limited to this, and polycrystalline silicon may be buried after forming a thermal oxide film on the inner surface of the groove.

〔発明の効果〕〔Effect of the invention〕

11− 絶縁膜、39・・・配線、40・・・P−型反転防止層
11- Insulating film, 39... Wiring, 40... P- type inversion prevention layer.

以上詳述した如く本発明に」−れば、埋込み型素子分離
技術を用いた場合に接合リーク電流を有効に防止し得る
半導体装置及びそのような半導体装置を容易に製造し1
9る方法を提供できるものである。
As detailed above, the present invention provides a semiconductor device that can effectively prevent junction leakage current when using a buried element isolation technique, and a method for easily manufacturing such a semiconductor device.
9.

【図面の簡単な説明】[Brief explanation of drawings]

紹1図は従来の埋込み型素子弁H1技術を用いて製造さ
れたc h=+ o sの断面図、第2図は同CMO8
の欠点を示すx+1明図、第3図(a ) −=−(0
)は本発明の実施例におけるC M OSを得るための
製造■稈を示す断面図、第4図は本発明の他の実施例に
おけるC〜10Sの断面図である。 21・・・P型シリコン基板、22・・・CV D醸化
膜、23・・・開口部、24・・・窒化シリコン膜、2
5・・・ホ[・レジストパクーン、26・・・リンドー
プ層、27・・・溝、28・・・N型ウェル領域、29
・・・ボロンドープ層、30・・・CV D M’l化
膜、31・・・P−型反転防止層、32・・・グーl−
酸化膜、33・・・グー1〜電極、34.35・・・N
+型ソース、ドレイン領域、36.37・・・P+型ソ
ース、ドレイン領域、38・・・層間=12− 出願人代理人 弁理士 鈴江武彦 −13−1
Introduction Figure 1 is a cross-sectional view of ch = + o s manufactured using the conventional embedded element valve H1 technology, and Figure 2 is a cross-sectional view of the same CMO8.
x+1 clear diagram showing the defects in Figure 3 (a) -=-(0
) is a cross-sectional view showing a culm manufactured to obtain CMOS in an embodiment of the present invention, and FIG. 4 is a cross-sectional view of C to 10S in another embodiment of the present invention. DESCRIPTION OF SYMBOLS 21... P-type silicon substrate, 22... CVD fermentation film, 23... Opening part, 24... Silicon nitride film, 2
5... Resist pattern, 26... Phosphorus doped layer, 27... Groove, 28... N-type well region, 29
...Boron doped layer, 30...CV D M'l film, 31...P- type inversion prevention layer, 32...Glue l-
Oxide film, 33...Goo 1~electrode, 34.35...N
+ type source, drain region, 36. 37...P+ type source, drain region, 38... interlayer = 12- Applicant's agent Patent attorney Takehiko Suzue -13-1

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板の主面に形成された溝の内部に埋設さ
れた素子分離材と、該素子分離材以外の素子領域に形成
された半導体素子とを有する半導体装置において、前記
溝の内部の素子分前4イを介して互いに対向するM板の
側壁の少なくとも一方が段差を有し、かつ基板の段差部
近傍に反転防止層を設けたことを特徴とする半導体装置
(1) In a semiconductor device having an element isolation material buried inside a groove formed in the main surface of a semiconductor substrate, and a semiconductor element formed in an element region other than the element isolation material, the inside of the groove is 1. A semiconductor device characterized in that at least one of the side walls of the M-plates facing each other with an element width 4a in between has a step, and an inversion prevention layer is provided in the vicinity of the step portion of the substrate.
(2) 半導体基板の主面に形成された溝の内部に埋設
された素子分離材を相補型MO8半導体装置のウェル領
域の分離に用いる特許請求の範囲第1項記載の半導体装
置。
(2) A semiconductor device according to claim 1, in which an element isolation material buried inside a groove formed in a main surface of a semiconductor substrate is used to isolate a well region of a complementary MO8 semiconductor device.
(3)反転防止層をN+型抵拡散層P型ウェル領域又は
P型シリコンN板との接合点近傍に設ける特許請求の範
囲第2項記載の半導体装置。
(3) The semiconductor device according to claim 2, wherein the inversion prevention layer is provided in the vicinity of the junction between the N+ type resistive diffusion layer P type well region or the P type silicon N plate.
(4) 半導体基板上に開口部を有する第1の被膜を形
成する工程と、前記開口部内の前記第1の被膜の劃−壁
に亙いに対向するように第2の液賎を形成する工程と、
対向して形成された前記第2の被膜の一方を選択的にエ
ツチングする工程と、前記第1の被膜及び残存した第2
の被Ii髪をマスクどして異方性エツチングにより雄板
をエツチングし、溝を形成する工程と、前記残存した第
2の?i!j INを除去した後、前記第1の被膜をン
スクとして異方性エツチングによりM板をエツチングし
、前記溝の内部でnいに対向する基板の側壁の一方に段
差を形成する工程と、前記第1の被膜をマスクどして不
純物をイオン注入することにより基板の段差部近傍に反
転防止層を形成する工程と、前記第1の被膜を除去した
後、前記)背の内部に素子分l1llI材を埋設する工
程と、該素子分離材以外の素子iii′i域に半導体素
子を形成する工程とを川幅したことを特1敦とする半導
体装置の製造方法。
(4) Forming a first film having an opening on a semiconductor substrate, and forming a second liquid droplet so as to face the wall of the first film within the opening. process and
a step of selectively etching one of the second coatings formed opposite to each other; and a step of etching the first coating and the remaining second coating.
etching the male plate by anisotropic etching using the masked hair of Ii to form a groove; and a step of forming a groove on the remaining second hair. i! After removing the IN, etching the M plate by anisotropic etching using the first film as a mask to form a step on one of the side walls of the substrate facing each other inside the groove; A step of forming an inversion prevention layer near the stepped portion of the substrate by ion-implanting impurities using the first film as a mask, and after removing the first film, forming an element layer inside the back A method of manufacturing a semiconductor device characterized in that the step of embedding a material and the step of forming a semiconductor element in an element iii'i region other than the element isolation material are separated.
JP59099238A 1984-05-17 1984-05-17 Semiconductor device and manufacture thereof Pending JPS60244044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099238A JPS60244044A (en) 1984-05-17 1984-05-17 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099238A JPS60244044A (en) 1984-05-17 1984-05-17 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS60244044A true JPS60244044A (en) 1985-12-03

Family

ID=14242106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099238A Pending JPS60244044A (en) 1984-05-17 1984-05-17 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS60244044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612242A (en) * 1996-03-11 1997-03-18 United Microelectronics Corp. Trench isolation method for CMOS transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612242A (en) * 1996-03-11 1997-03-18 United Microelectronics Corp. Trench isolation method for CMOS transistor

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US4945070A (en) Method of making cmos with shallow source and drain junctions
KR870006676A (en) Process for fabricating bipolar transistors and complementary MOS transistors on shared substrates
US6800528B2 (en) Method of fabricating LDMOS semiconductor devices
EP0164737A2 (en) A method of fabricating self-aligned regions in a substrate
JP2730535B2 (en) Method for manufacturing semiconductor device
JP2002246464A (en) Semiconductor device and its manufacturing method
JPS60244044A (en) Semiconductor device and manufacture thereof
JPH0738095A (en) Semiconductor device and its manufacturing method
JPS60244043A (en) Manufacture of complementary semiconductor device
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JP3850965B2 (en) Well formation method for semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JP4062799B2 (en) Semiconductor device and manufacturing method thereof
JP2658027B2 (en) Method for manufacturing semiconductor device
JP2544806B2 (en) Method for manufacturing semiconductor device
JPH079974B2 (en) Manufacturing method of complementary semiconductor device
JPS60244037A (en) Semiconductor device and manufacture thereof
JPH0355850A (en) Manufacture of semiconductor device
JP2830267B2 (en) Method for manufacturing semiconductor device
JP2864593B2 (en) Method for manufacturing semiconductor device
JPH06204244A (en) Manufacture of semiconductor device
JPS5940563A (en) Manufacture of semiconductor device
JPH09223747A (en) Manufacture of semiconductor device
JPS60226168A (en) Complementary mos semiconductor device