JPS60226168A - Complementary mos semiconductor device - Google Patents

Complementary mos semiconductor device

Info

Publication number
JPS60226168A
JPS60226168A JP59083120A JP8312084A JPS60226168A JP S60226168 A JPS60226168 A JP S60226168A JP 59083120 A JP59083120 A JP 59083120A JP 8312084 A JP8312084 A JP 8312084A JP S60226168 A JPS60226168 A JP S60226168A
Authority
JP
Japan
Prior art keywords
substrate
well layer
parts
type well
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59083120A
Other languages
Japanese (ja)
Inventor
Nobuaki Hotta
堀田 信昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59083120A priority Critical patent/JPS60226168A/en
Publication of JPS60226168A publication Critical patent/JPS60226168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76237Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials introducing impurities in trench side or bottom walls, e.g. for forming channel stoppers or alter isolation behavior
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to prevent punch-through and latch-up from generating even though the distances between the diffusion layers are shortened and to upgrade the integration degree of the titled device by a method wherein the device is constituted so that insulating layers deeper than the well layer exist in the boundary parts between the substrate and the well layer and insulating layers deeper than the diffusion layers exist in the element isolation region as well. CONSTITUTION:Boron is ion-implanted in an N type silicon substrate 21 and a P type well layer 22 is formed. A resist pattern 23, from which element isolation regions are being removed, is formed on the substrate 21 and the P type well layer 22, etching parts 24, which are deeper than the diffusion layers in the element region, are formed in parts of the surfaces of the substrate 21 and the P type well layer 22, where are being exposed. The pattern 23 is removed and a resist pattern 25, is parts of which the boundary parts between the substrate 21 and the P type well layer 22 are being removed, is anew formed on the substrate 21 and the P type well layer 22. After that, etching parts 26, which are deeper than the P type well layer 22, ard formed in the exposing boundary parts between the substrate 21 and the P type well layer 22, phosphorus is implanted, and ion-implanted layers 27 are formed on the bottoms of the etching parts 26. The pattern 25 is removed, and after that, the interiors of the etching parts 24 and 26 are respectively filled with an insulating layer consisting of a thermal oxide film 28 and an oxide film 21. The manufacturing process passes through the prescribed processes thereafter and a complementary MOS semiconductor device is completed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、相補型MO8O8半導体装置し1%に集積度
を向上できる分離構造を有する相補型MO8半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a complementary MO8O8 semiconductor device having an isolation structure capable of increasing the degree of integration to 1%.

〔従来技術〕[Prior art]

従来の相補型MOS半導体装置(以下CMO8と称すン
は1通常第1図に示すよ5KN型シリコン基板1に選択
的KP型タウエルを形成し、該N型基板1およびP型ウ
ェル2上に選択的にフィールド酸化膜3を形成し、該N
型基板1およびP型ウェル2上にゲート酸化膜5.およ
び6を介して的えは多結晶シリコンからなるゲート電極
7および8を形成し、該ゲート電極7および8で自己整
合法によシ、P型拡散層であるソース轡ドレイン領域9
,10.11およびN型拡散層であるソース・ドレイン
領域12.13.14を形成した構造になっている。
In a conventional complementary MOS semiconductor device (hereinafter referred to as CMO8), a selective KP type well is formed on a 5K N type silicon substrate 1 as shown in FIG. A field oxide film 3 is formed, and the N
A gate oxide film 5. is formed on the type substrate 1 and the P-type well 2. Gate electrodes 7 and 8 made of polycrystalline silicon are formed through the gate electrodes 7 and 6, and the source and drain regions 9, which are P-type diffusion layers, are formed by a self-alignment method using the gate electrodes 7 and 8.
, 10.11 and source/drain regions 12, 13, and 14, which are N-type diffusion layers, are formed.

しかしながら、従来の0MO8ではN型拡散層であるソ
ース・ドレイン領域12.1’3.14とN型シリコン
基板1の間、およびP型ウェル2とP型拡散層であるソ
ースドレイン領域9,10゜1】の間の各々におけるパ
ンチヌル−やラッチアップによる異常な消費電流の増加
、および製造工程におけるマスク合せの余裕をもたせる
ために。
However, in the conventional 0MO8, between the source/drain region 12.1'3.14, which is an N-type diffusion layer, and the N-type silicon substrate 1, and between the P-type well 2 and the source-drain regions 9, 10, which are P-type diffusion layers, In order to prevent an abnormal increase in current consumption due to punch nulls and latch-up in each case between ゜1], and to provide margin for mask alignment in the manufacturing process.

N型シリコン基板10P型拡散−11とP型ウェル2の
N型拡散層14との距離を10μm以上とらなければな
らず、その結果集積度が低くなるという欠点があった。
The distance between the N-type silicon substrate 10P-type diffusion -11 and the N-type diffusion layer 14 of the P-type well 2 must be at least 10 .mu.m, which has the disadvantage of lowering the degree of integration.

また、NiMシリコン基板1内の能動素子領域1o、i
t間の絶縁分離の為に、選択酸化法によりフィールド酸
化膜3を厚く形成してフィールド領域の基板表面での反
転防止を行なっているが。
In addition, active element regions 1o and i in the NiM silicon substrate 1
In order to insulate and separate the area between t and t, a thick field oxide film 3 is formed by a selective oxidation method to prevent inversion of the field region on the substrate surface.

選択酸化法では、フィールド酸化膜を厚くすればするほ
どフィールド酸化膜の横方向への拡がりも大きくなって
素子領域部が減少することになるので、設計上あらかじ
めその減少量を考慮して、素子領域幅を大きくとらなけ
ればならず、その結果集積度が低くなるという欠点があ
った。これは。
In the selective oxidation method, the thicker the field oxide film is, the more the field oxide film spreads in the lateral direction, reducing the device area. This has the disadvantage that the area width must be increased, resulting in a lower degree of integration. this is.

Pウェル内の素子領域12.14間の絶縁分離について
も同様である。さらに、素子領域間の基板表面の反転防
止効果を強化する為1c、フィールド領域下部に基板濃
度より高い濃度め拡散層を設けることがある。第1図で
はP型つェル内のフィールド領域下部に、P型ウェルよ
シ高濃度のP十拡散層4を設けた例を示している。この
場合、素子領域内に設けられたMOSトランジスタのチ
ャンネル幅が狭くなるに従い、フィールド領域下部の高
濃度拡散層の横方向への拡がシが無視できなくなシ、狭
チャンネル効果と言われるMOS)ランジスタのしきい
値電圧が高くなる欠点が生じる為MO8)ランジスタの
チャンネル幅をある程度太きくしなければならず、その
結果集積度が低くなるという欠点があった。
The same applies to the insulation isolation between the element regions 12 and 14 in the P-well. Furthermore, in order to strengthen the effect of preventing inversion of the substrate surface between the element regions, a diffusion layer with a concentration higher than the substrate concentration may be provided below the field region 1c. FIG. 1 shows an example in which a P-type diffusion layer 4 with a higher concentration than the P-type well is provided below the field region in the P-type well. In this case, as the channel width of the MOS transistor provided in the element region becomes narrower, the lateral expansion of the highly doped diffusion layer at the bottom of the field region becomes impossible to ignore, which is called the narrow channel effect. ) Since the threshold voltage of the transistor becomes high, MO8) The channel width of the transistor must be increased to some extent, which results in a low degree of integration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を除去し、素子分離領域を改
善し、拡散層間距離を短くしてもパンチスルーやラッチ
アップを防止でき、集積度を向上できる相補型MOS半
導体装置を提供することにある。
It is an object of the present invention to provide a complementary MOS semiconductor device that eliminates the above-mentioned drawbacks, improves the element isolation region, prevents punch-through and latch-up even when the distance between diffusion layers is shortened, and improves the degree of integration. It is in.

〔発明の構成〕[Structure of the invention]

本発明の相補型MOS半導体装置は、第1導電型の半導
体基板と、該基板上に設けられた第2導電型の半導体領
域と、前記基板上に設けられた第2導電型のウェル領域
と、該ウェル領域に設けられた第1導電型の半導体領域
とからなる相補型MOS半導体装置において、前記基板
と前記ウェル領域の境界部分には該ウェル領域の深さよ
シ深い第1の溝を有し、少なくとも前記ウェル領域内の
前記第1導電型の半導体領域間の素子分離領域部分には
前記第1導電型の半導体領域の深さよシ深く前記ウェル
領域の深さより浅い第2の溝を有し前記第1および第2
の溝は絶縁物層で埋めこまれていることによシ構成され
る。
A complementary MOS semiconductor device of the present invention includes a semiconductor substrate of a first conductivity type, a semiconductor region of a second conductivity type provided on the substrate, and a well region of a second conductivity type provided on the substrate. , a complementary MOS semiconductor device comprising a semiconductor region of a first conductivity type provided in the well region, a boundary portion between the substrate and the well region having a first groove deeper than the depth of the well region. At least in the element isolation region portion between the semiconductor regions of the first conductivity type in the well region, a second groove deeper than the depth of the semiconductor region of the first conductivity type and shallower than the depth of the well region is provided. and said first and second
The grooves are constructed by being filled with an insulating layer.

〔実施例〕〔Example〕

次VC,本発明の実施例について、図面を参照して説明
する。
Next, embodiments of the present invention will be described with reference to the drawings.

第2図は本発明の一実施例の断面図である。第2図にお
いて1.21はN型シリコン基板、22はPIウェル層
、30け基板21とウェル層22との境界部分にウェル
層よシ深く形成された絶縁物層、27は、前記境界部分
の絶縁物層30下部に形成された基板21よシ高濃度の
N型拡散層で。
FIG. 2 is a sectional view of one embodiment of the present invention. In FIG. 2, 1.21 is an N-type silicon substrate, 22 is a PI well layer, 30 is an insulating layer formed deeper than the well layer at the boundary between the substrate 21 and the well layer 22, and 27 is the boundary portion. An N-type diffusion layer with a higher concentration than the substrate 21 is formed below the insulator layer 30.

31は基板21およびP型ウェル層22Vcおける素子
分離領域部分に素子領域となるPおよびN型拡散層よシ
深く形成された絶縁物層% 34は基板21上に形成さ
れたゲート酸化膜、35はP型ウェル層22上に形成さ
れたゲート酸化膜、36はゲート酸化膜34を介して基
板21上に形成された多結晶シリコンからなるゲート電
極、37はゲート酸化膜35を介してP型ウェル層22
上に形成された多結晶シリコンからなるゲート霜゛、極
31 is an insulating layer formed deeper than the P- and N-type diffusion layers which become element regions in the element isolation region of the substrate 21 and the P-type well layer 22Vc; 34 is a gate oxide film formed on the substrate 21; 35 is a gate oxide film formed on the P-type well layer 22, 36 is a gate electrode made of polycrystalline silicon formed on the substrate 21 through the gate oxide film 34, and 37 is a P-type well layer formed on the gate oxide film 35. Well layer 22
A gate frost made of polycrystalline silicon is formed on top of the electrode.

38.39.40はゲート電極36で自己整合法により
形成されたP型拡散啼であるソース・ドレイン領域、4
1,42.43はゲート電極37で自己整合法により形
成されたN型拡散層であるソース・ドレイン領域である
38, 39, and 40 are source/drain regions, which are P-type diffusion regions formed by the self-alignment method in the gate electrode 36;
1, 42, and 43 are source/drain regions which are N-type diffusion layers formed by the self-alignment method in the gate electrode 37.

ここで重要なことは、N型基板21とP型ウェル層22
との境界に形成された絶縁物層30は、P型ウェル層2
2より十分に深いこと、および素予分離領域に形成され
た絶縁物層31は、ソース・ドレイン領域であるP型お
よびN型拡散層38゜39.40,41,42.43よ
シ十分に深いことである。これらの絶縁物層が深く形成
されていることにより、素子領域間の距離を縮めても、
ラッチアップやパンチスルーの発生を防止できるので集
積度の高い0MO8となる。
What is important here is that the N type substrate 21 and the P type well layer 22
The insulating layer 30 formed at the boundary with the P-type well layer 2
2, and that the insulating layer 31 formed in the preliminary isolation region is sufficiently deeper than the P-type and N-type diffusion layers 38° 39.40, 41, 42.43, which are the source/drain regions. It's a deep thing. Because these insulator layers are formed deeply, even if the distance between element regions is shortened,
Since the occurrence of latch-up and punch-through can be prevented, 0MO8 has a high degree of integration.

また1本実施例構造によれば、フィールド領域の反転防
止の為に用いられるフィールド領域下部の基板濃度よシ
高濃度の拡散層は、素子領域内に設けられたMOS)ラ
ンジスタのチャンネル部より十分遠く離れることになり
、そのためチャンネル幅を狭くしていっても狭チャンネ
ル効果が生じないという利点も得られる。
Furthermore, according to the structure of this embodiment, the diffusion layer at the lower part of the field region, which is higher in concentration than the substrate concentration and used to prevent inversion of the field region, has a higher concentration than the channel part of the MOS transistor provided in the element region. Since they are far apart, there is also the advantage that narrow channel effects do not occur even if the channel width is narrowed.

次に上記第2図に示した本実施例の作成方法を説明する
Next, a method of creating the present embodiment shown in FIG. 2 above will be explained.

第3図(a)〜(2))は本発明の一実施例の作成方法
を説明するために工程順に示した断面図である。
FIGS. 3(a) to 3(2) are cross-sectional views shown in the order of steps to explain the manufacturing method of an embodiment of the present invention.

まず、第3図(a)に示すように、N型シリコン基板2
11C基板21と逆導電型の不純物であるホウ素を選択
的にイオン注入して深さ6μmのPウェル層22を形成
する。
First, as shown in FIG. 3(a), an N-type silicon substrate 2
A P well layer 22 having a depth of 6 μm is formed by selectively implanting ions of boron, which is an impurity of a conductivity type opposite to that of the 11C substrate 21.

次に、第3図(b)に示すように、シリコン基板21及
びPウェル層22上に光蝕刻技術によシ素子分離領域が
除去されたレジストパターン23(耐エツチング性マス
ク材)を形成し1反応性イオンエツチングによシレジス
トパターン23がら露出するシリコン基板21及びPウ
ェル層22表面を異方性エツチングして、深さがこの後
形成される素子領域の拡散層よりも2.5μm深い3μ
mのエツチング部24を形成する。なおレジストパター
ン23の除去部の巾は、従来の素子分離領域中よりも狭
い2μmにした。
Next, as shown in FIG. 3(b), a resist pattern 23 (etching-resistant mask material) from which the isolation region has been removed is formed on the silicon substrate 21 and the P-well layer 22 by photolithography. 1. The surfaces of the silicon substrate 21 and P well layer 22 exposed through the resist pattern 23 are anisotropically etched by reactive ion etching to a depth of 2.5 μm deeper than the diffusion layer of the element region to be formed later. 3μ
An etched portion 24 of m is formed. Note that the width of the removed portion of the resist pattern 23 was set to 2 μm, which is narrower than that in the conventional element isolation region.

次に第3図(e)に示すように、レジストパターン23
を除去して新たにシリコン基板21及びPウェル層22
上に光蝕刻技術にょシ、シリコン基板21とPウェル層
22の境界部分が除去されたレジストパターン25(耐
エツチング性マスク材)を形成し、その後反応性イオン
エツチングによシレジストパターン25から露出するシ
リコン基板21及びPウェル層22の境界部公金異方性
エツチングして、深さがPウェル層22よシ3μm深い
9μmのエツチング部26を形成し、フィールド反転防
止用のリンをイオン注入して、エツチング部26の底に
イオン注入層27を形成した。なおレジストパターン2
5の除去部の幅は、従来の素子分離領域幅よりも狭い2
μmにした。
Next, as shown in FIG. 3(e), the resist pattern 23
is removed and a new silicon substrate 21 and P well layer 22 are formed.
A resist pattern 25 (etching-resistant mask material) is formed on the silicon substrate 21 and the P-well layer 22 by a photoetching technique, and then exposed from the resist pattern 25 by reactive ion etching. The boundary between the silicon substrate 21 and the P-well layer 22 is anisotropically etched to form an etched portion 26 with a depth of 9 μm, which is 3 μm deeper than the P-well layer 22, and phosphorus is ion-implanted to prevent field reversal. Then, an ion implantation layer 27 was formed at the bottom of the etched portion 26. Furthermore, resist pattern 2
The width of the removed portion 5 is narrower than the width of the conventional element isolation region 2.
It was set to μm.

次に、第3図(d)に示すように、レジストパターン2
5を除去した後、950℃のスチーム雰囲気中で熱酸化
を施し約1000人の熱酸化膜28を形成し、さらに気
相成長法による醇化膜29を1μm堆積して、前記エツ
チング部24および26内を熱酸化膜28及び気相成長
法による酸化膜29からなる絶縁物層で埋めつくした。
Next, as shown in FIG. 3(d), the resist pattern 2
After removing 5, thermal oxidation is performed in a steam atmosphere at 950° C. to form a thermal oxide film 28 of approximately 1000 layers, and a 1 μm thick liquefied film 29 is deposited by vapor phase growth to form the etched portions 24 and 26. The inside was completely filled with an insulating layer consisting of a thermal oxide film 28 and an oxide film 29 formed by vapor phase growth.

次に、第3図(e)に示すように、弗化アンモニウム液
による全面エツチングで、シリコン基板21及びPウェ
ル層22上の酸化物膜の厚さ分だけエツチングし、素子
分離領域30及び31を形成し。
Next, as shown in FIG. 3(e), the entire surface is etched using an ammonium fluoride solution, and the oxide film on the silicon substrate 21 and the P well layer 22 is etched by the thickness of the oxide film, and the element isolation regions 30 and 31 are etched. form.

その後、従来法によりN型シリコン基板21及びPウェ
ル層22の上面にゲート酸化膜32を形成し、さらに多
結晶シリコン層33を形成した。
Thereafter, a gate oxide film 32 was formed on the upper surfaces of the N-type silicon substrate 21 and the P-well layer 22 by a conventional method, and a polycrystalline silicon layer 33 was further formed.

次に、第3図(f)vc示すように、N型シリコン基板
21及びPウェル層22の上面にそれぞれゲート酸化膜
34.35を介して多結晶シリコンからなるゲート電極
36.37を形成し、さらにイオン注入法によシN型シ
リコン基板21上にはソースΦドレイン領域となるP型
拡散層領域38 、39゜40をPウェル層22上には
、ソース・ドレイン領域となるN型拡散層領域41,4
2.43を形成した。拡散層深さは、それぞれ0.5μ
mである。
Next, as shown in FIG. 3(f)vc, gate electrodes 36 and 37 made of polycrystalline silicon are formed on the upper surfaces of the N-type silicon substrate 21 and the P well layer 22 through gate oxide films 34 and 35, respectively. Furthermore, by ion implantation, P-type diffusion layer regions 38 and 39° 40, which will become source/drain regions, are formed on the N-type silicon substrate 21, and N-type diffusion layer regions 38 and 39° 40, which will become source/drain regions, are formed on the P-well layer 22. Layer regions 41, 4
2.43 was formed. The depth of the diffusion layer is 0.5μ each.
It is m.

次に、第3図(g)に示すように、気相成長法によシリ
ンガラス層44を全面に被着し、Pチャンネル、Nチャ
ンネル側のゲート、ソース、ドレインと接続する取出し
電極45を形成すると相補型MO8半導体装置が完成す
る。
Next, as shown in FIG. 3(g), a silicone glass layer 44 is deposited on the entire surface by vapor phase growth, and lead-out electrodes 45 are formed to connect to the gate, source, and drain on the P-channel and N-channel sides. Once formed, a complementary MO8 semiconductor device is completed.

なお、上記実施例ではN型半導体基板KPウェル層を形
成する場合について説明したが、P型半導体基板にNウ
ェル層を形成する場合にも適用することができる。
In the above embodiments, the case where a KP well layer is formed on an N-type semiconductor substrate has been described, but the present invention can also be applied to a case where an N-well layer is formed on a P-type semiconductor substrate.

また、上記実施例では、絶縁分離用の絶縁分離用の絶縁
物層として、シリコン酸化膜を用いたが絶縁物はこれV
C′、限定されず、窒化膜やノンドープのシリコン層や
リンガラス層などを適用してもよい。
In addition, in the above embodiment, a silicon oxide film was used as an insulator layer for insulation isolation, but this insulator was
C' is not limited, and a nitride film, a non-doped silicon layer, a phosphorus glass layer, or the like may be applied.

さらに、上記実施例では、フィールド反転防止用の拡散
層を、基板とウェル層の境界部分に設けられた絶縁物下
部のみに設けたが、素子分離領域に設けられた絶縁物層
下部に設けてもよい。
Furthermore, in the above embodiment, the diffusion layer for preventing field reversal was provided only under the insulator provided at the boundary between the substrate and the well layer, but it was also provided under the insulator layer provided in the element isolation region. Good too.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおシ、本発明により得られた相補型MO
8半導体装置は、半導体基板とウェル層の境界部にウェ
ル層よシも深い絶縁物層が存在するばかシでなく、素子
分離領域にも素子として使用される拡散層よりも深い絶
縁物層が存在する構造となっているので、拡散層間距離
を従来より著しく短くしても、パンチスルーやラッチア
ップを防止できるため、集積度を向上させることができ
る。
As explained above, complementary MO obtained by the present invention
8 Semiconductor devices do not simply have an insulating layer deeper than the well layer at the boundary between the semiconductor substrate and the well layer, but also have an insulating layer deeper than the diffusion layer used as the element in the element isolation region. Because of this structure, punch-through and latch-up can be prevented even if the distance between the diffusion layers is made significantly shorter than in the past, and the degree of integration can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の相補型MO8半導体装置の断面図、第2
図は本発明の一実施例の断面図、第3図(a)〜(g>
は第2図の本発明の一実施例の製造方法を説明するため
に工程順に示した断面図である。 1・・・・・・N型シリコン基板、2・・・・・・P型
ウェル、3・・・・・・フィールド酸化膜、4・・・・
・・P 拡散層、5゜6・・・・・・ゲート酸化膜、7
,8・・・・・・ゲート電極、9゜10.11・・・・
・・P型拡散層のソース・ドレイン領域、、12,13
.14・・・・・・N型拡散層のソース・ドレイン、2
1・・・・・・N型シリコン基板、22・・・・・・P
ウェル、23・−・・・・レジメトパターン、24・・
・・・・エツチング部、25・・・・・・レジストパタ
ーン、26・・・・・・エツチング部、27・・・・・
・反転防止用のイオン注入層、28・・・・・・熱酸化
膜、29・・・・・・気相成長酸化膜、30.31・・
・・・・素子分離領域、32・・・・・・ゲート酸化膜
、33・・・・・・多結晶シリコン層、34゜35・・
・・・・ゲート酸化膜、36.37・・・・・・ゲート
電極、38.39,40・・・・・・P型拡散層である
ソース・ドレイン、41,42,43・・・・・・N型
拡散層であるソース・ドレイン、44・・・・・・リン
ガラス層。 45・・・・・・電極金属。 警1耐 殆2圀
Figure 1 is a sectional view of a conventional complementary MO8 semiconductor device, Figure 2 is a cross-sectional view of a conventional complementary MO8 semiconductor device;
The figure is a sectional view of one embodiment of the present invention, and FIGS. 3(a) to (g>
3A and 3B are cross-sectional views shown in the order of steps for explaining the manufacturing method of the embodiment of the present invention shown in FIG. 2. FIG. 1... N-type silicon substrate, 2... P-type well, 3... field oxide film, 4...
...P diffusion layer, 5゜6...gate oxide film, 7
, 8... Gate electrode, 9°10.11...
・Source/drain region of P-type diffusion layer, 12, 13
.. 14... Source/drain of N-type diffusion layer, 2
1...N-type silicon substrate, 22...P
Well, 23... Regimen pattern, 24...
...Etching part, 25...Resist pattern, 26...Etching part, 27...
- Ion implantation layer for preventing reversal, 28... thermal oxide film, 29... vapor phase growth oxide film, 30.31...
...Element isolation region, 32...Gate oxide film, 33...Polycrystalline silicon layer, 34°35...
...Gate oxide film, 36.37... Gate electrode, 38.39, 40... Source/drain which is P type diffusion layer, 41, 42, 43... . . . Source/drain which is an N-type diffusion layer, 44 . . . Phosphorous glass layer. 45... Electrode metal. Police 1 hours almost 2 hours

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板と、該基板上に設けられた第2
導電型の半導体領域と、前記基板上に設けられた第2導
電型のウェル領域と、該ウェル領域に設けられた第1導
電型の牛纏体飴域とからなる相補型MO8#−碑体装置
において、前記基板と前記ウェル領域の境界部分には該
ウェル領域の深さよシ深い第1の溝を有し、少なくとも
前記ウェル領域内の前記第14電型の半導体領域間の素
子分離領域部分には、前記第1導電型の半導体領域の深
さよシ深く前記ウェル領域の深さよシ浅い第2の溝を有
し、前記第1および第2の溝は絶縁物層で埋めこまれて
いることを特徴とする相補型MO8半導体装置。
a first conductivity type semiconductor substrate; a second conductivity type semiconductor substrate provided on the substrate;
Complementary type MO8#- monument consisting of a conductivity type semiconductor region, a second conductivity type well region provided on the substrate, and a first conductivity type cow wrap area provided in the well region. In the device, a first groove deeper than the depth of the well region is provided at a boundary between the substrate and the well region, and at least a portion of an element isolation region between the semiconductor regions of the fourteenth voltage type in the well region is provided. has a second trench that is deeper than the depth of the semiconductor region of the first conductivity type and shallower than the depth of the well region, and the first and second trenches are filled with an insulating layer. A complementary MO8 semiconductor device characterized by the following.
JP59083120A 1984-04-25 1984-04-25 Complementary mos semiconductor device Pending JPS60226168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59083120A JPS60226168A (en) 1984-04-25 1984-04-25 Complementary mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59083120A JPS60226168A (en) 1984-04-25 1984-04-25 Complementary mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS60226168A true JPS60226168A (en) 1985-11-11

Family

ID=13793341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59083120A Pending JPS60226168A (en) 1984-04-25 1984-04-25 Complementary mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS60226168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434333B1 (en) * 2002-06-28 2004-06-04 주식회사 하이닉스반도체 method for manufacturing semiconductor device and the same
JP2012160652A (en) * 2011-02-02 2012-08-23 Fujitsu Semiconductor Ltd Semiconductor device and method of manufacturing the same
US20150279879A1 (en) * 2013-03-12 2015-10-01 Taiwan Semiconductor Manufacturing Company, Ltd. Varied STI Liners for Isolation Structures in Image Sensing Devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434333B1 (en) * 2002-06-28 2004-06-04 주식회사 하이닉스반도체 method for manufacturing semiconductor device and the same
JP2012160652A (en) * 2011-02-02 2012-08-23 Fujitsu Semiconductor Ltd Semiconductor device and method of manufacturing the same
US20150279879A1 (en) * 2013-03-12 2015-10-01 Taiwan Semiconductor Manufacturing Company, Ltd. Varied STI Liners for Isolation Structures in Image Sensing Devices
US10008531B2 (en) * 2013-03-12 2018-06-26 Taiwan Semiconductor Manufacturing Company, Ltd. Varied STI liners for isolation structures in image sensing devices

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US4637124A (en) Process for fabricating semiconductor integrated circuit device
JP2002076287A (en) Semiconductor device and its manufacturing method
JPH0351108B2 (en)
JP5060002B2 (en) Manufacturing method of semiconductor device
JPH11284178A (en) Insulating gate transistor, its manufacture and semiconductor integrated circuit device
JPH01130542A (en) Semiconductor device having interelement isolation region and manufacture thereof
JPS60226168A (en) Complementary mos semiconductor device
JPH0621445A (en) Semiconductor device and manufacture thereof
JP2673384B2 (en) Semiconductor device and manufacturing method thereof
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPH0485968A (en) Mos semiconductor device and manufacture thereof
JPS5846648A (en) Manufacture of semiconductor device
JPS5986263A (en) Manufacture of semiconductor device
JPH05291573A (en) Semiconductor device and manufacture thereof
JPH0444432B2 (en)
JPS6039868A (en) Manufacture of semiconductor device
JP2808620B2 (en) Method for manufacturing semiconductor device
JPS60150642A (en) Complementary semiconductor device and manufacture thereof
JPS60244037A (en) Semiconductor device and manufacture thereof
JPS5940563A (en) Manufacture of semiconductor device
JP2674568B2 (en) Method for manufacturing semiconductor device
JPS63228662A (en) Manufacture of complementary type mos semiconductor device
JPS63300564A (en) Manufacture of semiconductor device
JPH11224945A (en) Semiconductor device