JPS5940563A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5940563A
JPS5940563A JP57150960A JP15096082A JPS5940563A JP S5940563 A JPS5940563 A JP S5940563A JP 57150960 A JP57150960 A JP 57150960A JP 15096082 A JP15096082 A JP 15096082A JP S5940563 A JPS5940563 A JP S5940563A
Authority
JP
Japan
Prior art keywords
film
substrate
well
forming
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57150960A
Other languages
Japanese (ja)
Other versions
JPH0481339B2 (en
Inventor
Sunao Shibata
直 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57150960A priority Critical patent/JPS5940563A/en
Publication of JPS5940563A publication Critical patent/JPS5940563A/en
Publication of JPH0481339B2 publication Critical patent/JPH0481339B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to form a small well with good accuracy and to prevent the generation of latch up, etc. by a method wherein grooves are provided between the well and a substrate or a well, and insulation films are buried into these grooves. CONSTITUTION:A film consisting of an SiO2 film 12 and an Si3N4 film 13 is formed on the n type Si substrate 11. Next, photo resist film 14 are selectively formed, and the films 13 and 12 are removed with the resists 14 as the mask. Then, an SiO2 film 15 is formed over the entire surface. The films 14 are removed, and the films 15 on the films 14 are removed. The groove parts 16 are formed with the films 13 and the remnant film 15 as the mask. After removing the film 15, the groove parts 16 are filled by depositing an SiO2 film 7 over the entire surface. When the film 17 is removed, the groove parts 16 become in the structure of being filled with the film 17. With the films 13 and 17 as the mask, e.g. B<+> is diffused, resulting in the formation of the p-well 18. The films 13 and 12 are removed, and accordingly a C-MOS inverter is manufactured. This structure enables to regulate the transverse direction of the well by means of the film 17 and securely isolate between each element.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法に係υ、特にCMO8
型半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device, particularly a CMO8
The present invention relates to a method for manufacturing a type semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

CMO8型半導体装置は、消費電力が小さく大きなノイ
ズマージンが得られる等の特長を有し、将来の超LSI
形成のための重要な技術として注目されている。しかし
、この装置では1つのチップの上にn型の基板とp型の
基板金持ち、それぞれの基板に形成されたpチャネル及
びnチャネルトランジスタを相互に接続して回路が構成
されるため、高集積化には解決すべき数々の問題が残っ
ている。特に問題となるのは、ウェルの形成方法とその
分離であシ、ウェルの微細化が困難であるばかシか、ウ
ェル境界部近くに形成するとPnPnの寄生構造でのス
イッチング(所謂ラッチアッフ0現象)が生じ、回路が
破壊される等の不都合があった。
The CMO8 type semiconductor device has features such as low power consumption and large noise margin, and will be used in future VLSIs.
It is attracting attention as an important technology for formation. However, in this device, a circuit is constructed by interconnecting an n-type substrate and a p-type substrate on one chip, and interconnecting p-channel and n-channel transistors formed on each substrate, so it is highly integrated. There are still many problems that need to be resolved. Particular problems arise in the method of forming wells and their separation.Not only is it difficult to miniaturize the well, but if it is formed near the well boundary, switching occurs due to the PnPn parasitic structure (the so-called latch-up phenomenon). This caused problems such as damage to the circuit.

以下、この問題’i CMOSインバータを例にとり説
明する。第1図(a)〜(c)は従来のCMOSインバ
ータ製造工程を示す断面図である。まず、第1図(8)
に示す如く、n型半導体基板1上に5102膜からなる
マスク層2を形成し、その開口部を通してポロ/(B)
を、例えば100〔kv〕の加速電圧、2〜3xto[
cm:]のドーズ量でイオン注入する。ここで、図中3
がイオン注入領域である。次いで1200〔℃〕約8時
間の熱処理を行い、第1図(b)に示す如くポロンを拡
散させ、接合深さが5〜6〔μm〕となるようにする。
This problem will be explained below using an example of a CMOS inverter. FIGS. 1(a) to 1(c) are cross-sectional views showing a conventional CMOS inverter manufacturing process. First, Figure 1 (8)
As shown in FIG. 1, a mask layer 2 consisting of a 5102 film is formed on an n-type semiconductor substrate 1, and a Porro/(B) film is formed through the opening of the mask layer 2.
For example, an accelerating voltage of 100 [kv], 2 to 3xto[
Ion implantation is performed at a dose of cm:]. Here, 3 in the figure
is the ion implantation region. Next, a heat treatment is performed at 1200° C. for about 8 hours to diffuse the poron as shown in FIG. 1(b), so that the bonding depth becomes 5 to 6 μm.

このようにして形成されたP型拡散層p−ウェル4であ
る。
This is the P-type diffusion layer p-well 4 formed in this manner.

次に、上記マスク層2f:、除去し、第1図(c)に示
す如くフィールド酸化膜5、ダート酸化膜6 a。
Next, the mask layer 2f is removed, and a field oxide film 5 and a dirt oxide film 6a are formed as shown in FIG. 1(c).

6b、ダート電極7a 、7bを形成し、さらにソース
・ドレインとなるP拡散層8*、9g及びN+拡散層s
 b t 9b等を形成し、p−チャネルトランジスタ
10a及びn−チャネルトランジスタ10bを形成する
。その後、絶縁膜を介してAtの配線等を形成し、必要
な電気的接続を施すことによって、CMOSインバータ
が作成されることになる。
6b, dirt electrodes 7a, 7b are formed, and P diffusion layers 8*, 9g and N+ diffusion layer s, which become sources and drains.
p-channel transistor 10a and n-channel transistor 10b are formed. Thereafter, a CMOS inverter is created by forming At wiring and the like through an insulating film and making necessary electrical connections.

このような従来の方法によると、イオン注入されたゾロ
ンを熱拡散させ5〜6〔μm〕の接合深さを持つp−ウ
ェル4を形成する際、ポロンが+1へ方向にも約4〜5
〔μm〕拡散するため、pウニ、領域も横方向に拡がる
。しだがって、小さなエルを精度よく形成することは困
難であった。
According to such a conventional method, when the p-well 4 having a junction depth of 5 to 6 [μm] is formed by thermally diffusing the ion-implanted zolon, the poron also spreads in the +1 direction by about 4 to 5 μm.
[μm] Due to the diffusion, the p region also expands laterally. Therefore, it has been difficult to form small ells with high precision.

また、第1図(c)に示したようにpチャネルトランジ
スタ10aのドレイン9a% n型基板1、p−ウェル
4及びnチャネルトランジスタ10bのソー78bの間
にpnpnの寄生構造が形成され、これが回路動作中に
ONすると回路が破壊されるという、所謂ラッチ・アッ
プ現象が生じる。これを防止するためには1層9a(ド
レイン)と一層8b(ソース)との間隔を十分に離す必
要があシ、これがCMO8ICの微細化を妨げる大きな
要因となっていた。なお、上述した問題はCMOSイン
バータに限らず各種のCMO8型半導体装置についても
同様に云えることである。
Further, as shown in FIG. 1(c), a pnpn parasitic structure is formed between the drain 9a% of the p-channel transistor 10a, the n-type substrate 1, the p-well 4, and the source 78b of the n-channel transistor 10b. If turned on during circuit operation, a so-called latch-up phenomenon occurs in which the circuit is destroyed. In order to prevent this, it is necessary to provide a sufficient distance between the first layer 9a (drain) and the first layer 8b (source), and this has been a major factor hindering the miniaturization of CMO8 ICs. Note that the above-mentioned problem is not limited to CMOS inverters, but also applies to various CMO8 type semiconductor devices.

〔発明の目的〕 本発明の目的は、小さなウェルを精度良く形成すること
ができ、かつラッチ・アップ等の発生を未然に防止する
ことができ、CMO8型半導体装置の微細化及び信頼性
向上に害毒し得る半導体装置の製造方法を提供すること
にある。
[Object of the Invention] An object of the present invention is to be able to form small wells with high precision, to prevent latch-up, etc., and to contribute to the miniaturization and reliability improvement of CMO8 type semiconductor devices. An object of the present invention is to provide a method for manufacturing a semiconductor device that can be harmful.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、ウェルと基板との間或いはウェル間に
溝を設け、この溝に絶縁膜を埋め込むことにある。
The gist of the present invention is to provide a groove between a well and a substrate or between wells, and to fill this groove with an insulating film.

すなわち本発明は、半導体基板上の一部に該基板と逆導
電型のウェルを形成し、このウェル及び基板上にそれぞ
れ能動素子を形成して半導体装置を製造するに際し、上
記基板上のウェル形成領域外に1層以上の第1の被膜を
形成したのち、この被膜の周辺部の基板を選択エツチン
グして溝部を形成し、次いで上記溝部に絶縁膜を埋め込
み、しかるのち上記被膜及び絶縁膜をマスクとし前記基
板に該基板と逆導電型の不純物をドーピングするように
した方法である。
That is, the present invention provides a method for manufacturing a semiconductor device by forming a well of a conductivity type opposite to that of the substrate in a part of the semiconductor substrate, and forming active elements on the well and the substrate, respectively. After forming one or more layers of the first coating outside the area, selectively etching the substrate around the coating to form a groove, filling the groove with an insulating film, and then removing the coating and the insulating film. In this method, the substrate is doped with an impurity of a conductivity type opposite to that of the substrate using a mask.

また本発明は、半導体基板上に第1導電型の第1ウエル
及び第2導電型の第2ウエルを形成し、これらのウェル
上にそれぞれ能動素子を形成して半導体装置を製造する
に際し、上記基板の第2ウエル形成領域上に1層以上の
第1の被膜を形成したのち、この被膜の周辺部の基板全
選択エツチングして溝部を形成し、次いで上記溝部に絶
縁膜を埋め込み、次いで上記第1の被膜及び絶縁膜をマ
スクとして第1ウエル形成領域上に第1導電型の不純物
をドーピングし、次いで上記第1ウエル形成領域上に第
3の被膜を形成し、次いで前記第1の被膜を除去し、し
かるのち上記第3の被膜をマスクとして前記第2ウエル
形成領域上に第2導電型の不純物をドーピングするよう
にした方法である。
Further, the present invention provides a method for manufacturing a semiconductor device by forming a first well of a first conductivity type and a second well of a second conductivity type on a semiconductor substrate, and forming active elements on these wells, respectively. After forming one or more first layers on the second well formation region of the substrate, etching the entire substrate around the periphery of this film to form a groove, then filling the groove with an insulating film, and then A first conductivity type impurity is doped onto the first well formation region using the first film and the insulating film as a mask, and then a third film is formed on the first well formation region, and then the first film is doped with a first conductivity type impurity. In this method, the second conductive type impurity is doped onto the second well formation region using the third film as a mask.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溝部に埋め込んだ絶縁膜によりウェル
の横方向の拡がシが規定されるため、小さなウェルを精
度良く形成することができる。
According to the present invention, since the lateral expansion of the well is defined by the insulating film embedded in the trench, a small well can be formed with high precision.

さらに、溝部に埋め込んだ絶縁膜によシ各素子間が確実
に分離されるため、ラッチアップ現象等を招くこともな
い。したがって、CMO8半導体装置の微細化及び信頼
性向上に絶大なる効果を発揮する。
Furthermore, since each element is reliably isolated by the insulating film embedded in the groove, latch-up phenomena and the like are not caused. Therefore, it is extremely effective in miniaturizing and improving reliability of CMO8 semiconductor devices.

〔発明の実施例〕[Embodiments of the invention]

第2図(a)〜(h)は本発明の第1の実施例に係わる
CMOSインバータ製造工程を示す断面図である。
FIGS. 2(a) to 2(h) are cross-sectional views showing the CMOS inverter manufacturing process according to the first embodiment of the present invention.

まず、第2図(、)に示す如くn型シリコン基板(半導
体基板)1ノ上に、熱酸化膜(5in2膜)12及びS
 i 、N4膜13からなる第1の被膜をそれぞれ例え
ば1000[X)形成する。続いて、例えばフォトレジ
スト14を選択的に形成し、とのレジスト14をマスク
として81.N4膜13及び5in2膜12をエツチン
グ除去する。次いで、第2図(b)に示す如く全面に例
えばプラズマ5102膜(第2の被膜)15を約10〔
μm〕形成する。その後この試料を例えばNH4Fで約
20〜30秒エツチングし、第2図(c)に示す如く段
差部においてのみグラズマ5in215をエツチング除
去する。
First, as shown in FIG. 2(,), a thermal oxide film (5in2 film) 12 and an S
i, and a first film consisting of the N4 film 13 is formed at a thickness of, for example, 1000 [X]. Subsequently, for example, a photoresist 14 is selectively formed, and the resist 14 is used as a mask to form 81. The N4 film 13 and the 5in2 film 12 are removed by etching. Next, as shown in FIG. 2(b), for example, a plasma 5102 film (second coating) 15 is applied over the entire surface for about 10 minutes.
[μm] is formed. Thereafter, this sample is etched with, for example, NH4F for about 20 to 30 seconds, and the glazma 5in215 is etched away only at the stepped portion, as shown in FIG. 2(c).

次に、フォトレジスト膜14を除去すると共にレジスト
14上のプラズマ810□膜15をリフトオフによシ除
去する。次いで、第2図(d)に示す如くSi3H4膜
13及び残置されたプラズマ5102膜15をマスクと
して、シリコン基板11を方向性エツチング法により選
択エツチングし、前記第1の被膜のパターン周辺に溝部
16を5〜10〔μm〕の深さに形成する。続いて、プ
ラズマ810□膜15をエツチング除去したのち、第2
図(、)に示す如く全面に例えばCvDSI02膜(絶
縁膜)17を約2000[X)堆積させ、前記溝部16
を埋めると同時に全面を覆う。次いで、方向性エツチン
グ法によシ全面エツチングを施し、SiO2膜17全1
7000[X]除去すると第2図(f)に示す如く、溝
部16が5IO2膜17で充填された構造となる。続い
て、S i 3N4膜13及び5lo2膜17をマスク
として、ボロ7(B)を拡散しpウェル18を形成する
。ここで、上記ポロンの拡散はポロンナイトライドを用
いた気相拡散で吃よいし、ポロンのイオン注入とドライ
ブイン拡散とを組み合わせたものでもよい。
Next, the photoresist film 14 is removed and the plasma 810□ film 15 on the resist 14 is removed by lift-off. Next, as shown in FIG. 2(d), using the Si3H4 film 13 and the remaining plasma 5102 film 15 as masks, the silicon substrate 11 is selectively etched by a directional etching method to form grooves 16 around the pattern of the first film. is formed to a depth of 5 to 10 [μm]. Subsequently, after removing the plasma 810□ film 15 by etching, the second
As shown in FIG.
Fill in the area and cover the entire surface at the same time. Next, the entire surface of the SiO2 film 17 is etched using a directional etching method.
When 7000[X] is removed, the groove 16 is filled with the 5IO2 film 17, as shown in FIG. 2(f). Subsequently, using the S i 3N4 film 13 and the 5lo2 film 17 as a mask, the boro 7 (B) is diffused to form a p-well 18. Here, the diffusion of poron may be accomplished by vapor phase diffusion using poron nitride, or may be achieved by a combination of poron ion implantation and drive-in diffusion.

次に、第2図(g)に示す如くSi3H4膜13及び5
in2膜12′t−除去する。そして、第2図(h)に
示す如くフィールド酸化膜19、ケ゛−ト酸化膜20m
120b、ダート電極21 a * 2 l b −ソ
ース・ドレインとなるP拡散層22 a 、 23m及
びN拡散層22b、23b等全形成する。その後、従来
方法と同様に層間絶縁膜やAt配線等を形成することに
よってCMOSインバータが作製されることになる。
Next, as shown in FIG. 2(g), the Si3H4 films 13 and 5
in2 film 12't-removed. Then, as shown in FIG. 2(h), a field oxide film 19 and a gate oxide film 20m are formed.
120b, the dirt electrode 21a*2lb - P diffusion layers 22a, 23m which will become the source/drain, and N diffusion layers 22b, 23b, etc. are all formed. Thereafter, a CMOS inverter is manufactured by forming an interlayer insulating film, At wiring, etc. in the same manner as in the conventional method.

かくして本実施例方法によれば、nウェル18を形成す
るだめの拡散工程に際し、両側が5lo2膜17で囲ま
れているためポロンは横方向には拡散しない。このため
、微細なp−ウェル領域を容易に形成することができる
。また、pチャネルトランジスタのソース若しくはドレ
イン23g及びnチャネルトランジスタのソース若しく
はドレイン22bf:第2図(h)に示した如く近接さ
せても、溝部16に充填された5102膜17によって
各トランジスタが隔られているため、ラッチアップ現象
を、従来法によって十分能した構造をとった場合と同じ
かそれ以上に起こし難くすることができる。したがって
、CMOSインバータの微細化を極めて容易に実現する
ことができた。なお、前述した溝部16を形成すること
によって、ウェルの分離を実現する方法はこれまでにも
いろいろ試みられているが、溝を形成するだめのマスク
形成工程とpウェル拡散を行うためのマスク形成工程が
それぞれ別々に行われていたため、工程も複雑になシ、
さらに微細なp−ウェルを形成することにおいても不利
であった。これに対し、本実施例では溝を形成するため
のマスク形成工程をセルファラインで行うことができ、
さらにpウェル拡散のだめのマスクを溝形成のだめのマ
スクとしても用いているので、その工程が極めて容易に
なる等の利点もある。
Thus, according to the method of this embodiment, during the diffusion step for forming the n-well 18, poron does not diffuse laterally because both sides are surrounded by the 5lo2 film 17. Therefore, a fine p-well region can be easily formed. Furthermore, even if the source or drain 23g of the p-channel transistor and the source or drain 22bf of the n-channel transistor are placed close to each other as shown in FIG. Therefore, the latch-up phenomenon can be made as difficult as or more difficult to occur than in the case of a structure that is sufficiently effective by the conventional method. Therefore, miniaturization of the CMOS inverter could be realized extremely easily. Various methods have been tried to achieve well isolation by forming the trenches 16 described above, but the mask formation process for forming the trenches and the mask formation for p-well diffusion are difficult. The process was complicated because each process was performed separately.
Furthermore, it was disadvantageous in forming a fine p-well. In contrast, in this embodiment, the mask forming process for forming the groove can be performed on the self-line,
Furthermore, since the mask for p-well diffusion is also used as a mask for trench formation, there is an advantage that the process becomes extremely easy.

第3図(a)、(b)は第2の実施例に係わる工程断面
図である。この実施例が先に説明した第1の実施例と異
なる点は、前記半導体基板としてπ型基板31を用いた
ことにある。すなわち、π型基板31を用い前記第2図
(f)までは先の実施例と同様の工程とし、その後51
3N4膜13をマスクとして選択酸化を行い第3図(、
)に示す如く酸化膜(5tO2膜)32を形成する。次
いで、St N膜13及びSiO2膜12全12したの
ち、4 第3図(b)に示す如くヒ素(As )等のn型の不純
物を選択酸化によって形成された5io21摸(第3の
被膜)32をマスクに基板3ノに導入しnウェル33を
形成する。これによシ、π型基板31上にn−ウェル3
3及びp−ウェル18を同時に形成することができ、か
つこれらf:5io2膜32で分離した構造が実現され
ることになる。
FIGS. 3(a) and 3(b) are process cross-sectional views relating to the second embodiment. This embodiment differs from the first embodiment described above in that a π-type substrate 31 is used as the semiconductor substrate. That is, using the π-type substrate 31, the steps up to the step shown in FIG.
Selective oxidation is performed using the 3N4 film 13 as a mask as shown in FIG.
), an oxide film (5tO2 film) 32 is formed. Next, after removing the StN film 13 and the SiO2 film 12, a 5io21 sample (third film) formed by selective oxidation of n-type impurities such as arsenic (As) is formed as shown in FIG. 3(b). 32 is introduced into the substrate 3 using a mask to form an n-well 33. With this, the n-well 3 is placed on the π-type substrate 31.
3 and p-well 18 can be formed at the same time, and a structure separated by these f:5io2 films 32 is realized.

したがって、この実施例によっても先の第1の実施例と
同様の効果が得られるのは勿論のことである。なお、前
記pウェルとnウェルとの形成順序は逆に行ってもよい
。また、基板として先の実施例と同じくn型の基板11
を用いて酸化膜32をマスクに行うイオン注入を、例え
ばn型基板1ノにおけるフィールド反転防止及びチャネ
ル部の閾値コントロールを目的に行ってもよい。この場
合、例えばAsのイオン注入が用イられ50kv〜10
0Kvで、5×1♂1〜1o13の範囲のドーズ景で・
イオン注入すればよい。
Therefore, it goes without saying that this embodiment also provides the same effects as the first embodiment. Note that the formation order of the p-well and n-well may be reversed. Also, as a substrate, an n-type substrate 11 is used as in the previous embodiment.
Ion implantation using the oxide film 32 as a mask may be performed, for example, for the purpose of preventing field inversion in the n-type substrate 1 and controlling the threshold value of the channel portion. In this case, for example, As ion implantation is used to
At 0Kv, with a dose range of 5×1♂1 to 1o13.
All you need to do is implant ions.

第4図は第3図の実施例に係わる工程断面図である。こ
の実施例は先の第1の実施例の改良であシ、前記第2図
(d)の段階で溝部16の底部にn型の不純物をイオン
注入し、n型不純物の高濃度不純物層41をn型基板1
1内に形成した場合を示す。この様な構造をとるとp−
ウェル18の界面における空気層のn基板1ノ側におけ
る空気層の形状は第4図中に破線で示す如くなっている
。すなわち、空気層の拡がシが高濃度層41によってお
きかとられるため、ラッチアップやパンチスルーの耐圧
をさらに筒くすることができる。
FIG. 4 is a cross-sectional view of the process related to the embodiment of FIG. 3. This embodiment is an improvement on the first embodiment, in which n-type impurity ions are implanted into the bottom of the trench 16 in the step shown in FIG. The n-type substrate 1
1 is shown. With this structure, p-
The shape of the air layer on the n-substrate 1 side of the air layer at the interface of the well 18 is as shown by the broken line in FIG. That is, since the expansion of the air layer is prevented by the high concentration layer 41, the withstand pressure for latch-up and punch-through can be further increased.

なお、本発明は上述した各実施例に限定されるものでは
ない。前記第1の本実施例では、プラズマ5102膜1
5をリフト・オフによって除去してからシリコン基板1
1の選択エツチングを行ったが、これは必ずしも行わな
くてもよい。
Note that the present invention is not limited to the embodiments described above. In the first embodiment, the plasma 5102 film 1
5 is removed by lift-off, and then silicon substrate 1 is removed.
1 selective etching was performed, but this need not necessarily be performed.

すなわち、第2図(c)の状態でシリコン基板11のエ
ツチングを行うようにしてもよい。また、前記溝部への
絶縁膜の充填としてCvDSIO2膜15の堆積全15
たが、この代シに熱酸化を行ってもよい。さらに、残置
されたプラズマ5102膜17を除去してから溝部16
への絶縁物の充填を行っているが、5i02膜15の除
去前、すなわち第2図(d)の段階で行ってもよい。ま
た、前記第1の被膜としてレジスト/513N4/5I
O2を用いて説明したが、これ以外のいかなる組合せで
もよい。例えばレジストのかわりにAtを用いてもよい
し、5tO2膜或いはS i 3N、膜単独であっても
よい。また、段差部でのエツチング速度が平坦部でのエ
ツチング速度よシも速い膜としてプラズマ5102膜の
場合についてのみ述べたが、これ以外のもの例えばプラ
ズマ813N4、プラズマPSG膜或いはスパッタリン
グで堆積されたSi0  、81.N4. PSG膜等
でもよい。さらに、Atの蒸着を用いて段差部で薄くな
った膜を等方エツチングで除去して、残った)、ttJ
?タンを用いても同様の効果が得られる。また、このよ
うな性質の膜を一切用いずマスク合せ工程を用いてマヌ
ク材を第2図(d)に示す如く残置しても本発明の主旨
を逸脱するものではない。また、第2図(h)では図示
されたnチャネルトランジスタとドチャネルトランジス
タとの分離はウェルの分離用酸化膜17をそのまま用い
てい、るが、これに加えフィールド酸化膜で分離を行っ
てもよい。
That is, the silicon substrate 11 may be etched in the state shown in FIG. 2(c). In addition, a CvDSIO2 film 15 is deposited to fill the trench with an insulating film.
However, thermal oxidation may be performed instead. Furthermore, after removing the remaining plasma 5102 film 17, the groove portion 16
Although the insulator is filled with the insulator, it may be filled with the insulator before the removal of the 5i02 film 15, that is, at the stage shown in FIG. 2(d). Further, as the first coating, resist/513N4/5I
Although the explanation has been made using O2, any other combination may be used. For example, At may be used instead of the resist, or a 5tO2 film, a Si 3N film, or a film alone may be used. In addition, only the case of the plasma 5102 film has been described as a film in which the etching rate at the stepped portion is faster than the etching rate at the flat portion, but other films such as plasma 813N4, plasma PSG film, or Si0 deposited by sputtering are also used. , 81. N4. A PSG film or the like may also be used. Furthermore, by using At vapor deposition, the film that became thinner at the step part was removed by isotropic etching, and the remaining), ttJ
? A similar effect can be obtained using tongue. Further, it does not depart from the spirit of the present invention even if the mask-aligning process is used without using any film having such properties and the manuku material is left as shown in FIG. 2(d). In addition, in FIG. 2(h), the illustrated n-channel transistor and do-channel transistor are separated using the isolation oxide film 17 of the well as is, but in addition to this, isolation may be performed using a field oxide film. good.

さらに、フィールド酸化膜の形成はいかなる方法を用い
て形成してもよく、いわゆる従来のLOCO8法、埋め
込み酸化膜による方法など何を用いてもよいことは言う
までもない。要するに本発明は、その要旨を逸脱しない
範囲で、種々変形して実施することができる。
Furthermore, it goes without saying that the field oxide film may be formed using any method, including the so-called conventional LOCO8 method, a buried oxide film method, and the like. In short, the present invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(、)〜(c)は従来のCMOSインバータ製工
程を示す断面図、第2図(、)〜(h)は本発明の第1
の実施例に係わるCMOSインバータ製造工程を示す断
面図、第3図(、)〜(b)は第2の実施例に係わる工
程断面図、第4図は第3の実施例に係わる工程断面図で
ある。 11・・・n型シリコン基板、12・・・熱酸化膜(S
102膜)、13・・・513N4膜、14・・・レジ
スト、15・・・グラズマSiO□膜、16・・・溝部
、17・・・CVD 5i02膜(絶縁膜)、1 B 
・・・ウェル、20a。 20 b ・・・ダート酸化膜、21 a 、 2 l
 b −ダート電極、22 a 、 22 b 、 2
.9 a 、 23 b−’ソース・ドレイン、3 J
’・・・π型基板、32・・・酸化膜(SIO2膜)、
33・・・nウェル、41・・・高濃度不純物層。 出願人代理人  弁理士 鈴 江 武 彦第2図 IQ     II 第3図 第4図 305−
Figures 1 (,) to (c) are cross-sectional views showing the conventional CMOS inverter manufacturing process, and Figures 2 (,) to (h) are
3(a) to (b) are process sectional views of the second embodiment, and FIG. 4 is a process sectional view of the third embodiment. It is. 11... N-type silicon substrate, 12... Thermal oxide film (S
102 film), 13...513N4 film, 14...Resist, 15...Grazma SiO□ film, 16...Groove portion, 17...CVD 5i02 film (insulating film), 1 B
...Well, 20a. 20 b...dirt oxide film, 21 a, 2 l
b - dart electrode, 22 a , 22 b , 2
.. 9 a, 23 b-' source/drain, 3 J
'...π-type substrate, 32... Oxide film (SIO2 film),
33...n well, 41...high concentration impurity layer. Applicant's agent Patent attorney Takehiko Suzue Figure 2 IQ II Figure 3 Figure 4 305-

Claims (5)

【特許請求の範囲】[Claims] (1)  半導体基板上の一部に該基板と逆導電型のウ
ェルを形成し、このウェル及び上記基板上にそれぞれ能
動素子を形成する半導体装置の製造方法において、前記
基板上のウェル形成領域外に1層以上の第1の被膜含形
成する工程と、上記被膜の周辺部の基板を選択エツチン
グして溝部を形成する工程と、上記溝部に絶縁膜を埋め
込む工程と、上記被膜及び絶縁膜をマスクとし前記基板
に該基板と逆導電型の不純物をドーピングする工程とを
具備したことを特徴とする半導体装置の製造方法。
(1) In a method for manufacturing a semiconductor device, in which a well of a conductivity type opposite to that of the substrate is formed in a part of a semiconductor substrate, and active elements are formed respectively on this well and the substrate, the area outside the well formation area on the substrate is a step of forming a first coating of one or more layers on the substrate; a step of selectively etching the substrate in a peripheral area of the coating to form a groove; a step of embedding an insulating film in the groove; 1. A method of manufacturing a semiconductor device, comprising the step of doping the substrate with an impurity of a conductivity type opposite to that of the substrate, using the substrate as a mask.
(2)前記基板を選択エツチングして溝部を形成する工
程は、前記被膜が形成された基板上の全面に段差部にお
けるエツチング速度が平坦部におけるエツチング速度よ
り速い第2の被膜を形成したのち、全面エツチングを施
し上記第2の被膜の段差部を除去し、次いで残存した第
2の被膜をマスクの一部として前記基板を選択エツチン
グすることである特許請求の範囲第1項記載の半導体装
置の製造方法。
(2) The step of forming grooves by selectively etching the substrate includes forming a second coating on the entire surface of the substrate on which the coating is formed, the etching rate of which is higher in the stepped portions than in the flat portions; The semiconductor device according to claim 1, wherein the entire surface is etched to remove the stepped portion of the second film, and then the remaining second film is used as a part of a mask to selectively etch the substrate. Production method.
(3)半導体基板上に第1導電型の第1ウエル及び第2
導電型の第2ウエルを形成し、これらのウェル上にそれ
ぞれ能動素子を形成する半導体装置の製造方法において
、前記基板の第2ウエル形成領域上に1層以上の第1の
被膜を形成する工程と、上記第1の被膜の周辺部の基板
を選択エツチングして溝部を形成する工程と、上記溝部
に絶縁膜を埋め込む工程と、上記第1の被膜及び絶縁膜
をマスクとして第1ウエル形成領域上に第1導電型の不
純物をドーピングする工程と、上記第1ウエル形成領域
上に第3の被膜を形成する工程と、次いで前記第1の被
膜全除去する工程と、次いで上記第3の被膜をマスクと
して前記第2ウエル形成領域上に第2導電型の不純物を
ドーピングする工程とを具備したことを特徴する半導体
装置の製造方法。
(3) A first well of the first conductivity type and a second well of the first conductivity type on the semiconductor substrate.
In a method of manufacturing a semiconductor device in which second wells of a conductive type are formed and active elements are formed on these wells, a step of forming one or more layers of a first film on a second well formation region of the substrate. a step of forming a groove by selectively etching the substrate in a peripheral area of the first coating; a step of embedding an insulating film in the groove; and a step of forming a first well forming region using the first coating and the insulating film as a mask. a step of doping an impurity of a first conductivity type on the top, a step of forming a third film on the first well formation region, a step of completely removing the first film, and then a step of removing the third film. A method of manufacturing a semiconductor device, comprising the step of doping an impurity of a second conductivity type onto the second well formation region using as a mask.
(4)前記基板を選択エツチングして溝部を形成する工
程は、前記第1の被膜が形成された基板上の全面に段差
部におけるエツチング速度が平坦部におけるエツチング
速度よシ速い第2の被膜を形成したのち、全面エツチン
グを施し上記第2の被膜の段差部を除去し、次いで残存
した第2の被膜をマスクの一部として前記基板を選択エ
ツチングすることである特許請求の範囲第3項記載の半
導体装置の製造方法。
(4) The step of selectively etching the substrate to form grooves includes etching a second film on the entire surface of the substrate on which the first film is formed, the etching speed of which is faster in the step portions than in the flat portions. After forming the second film, the entire surface is etched to remove the stepped portion of the second film, and then the remaining second film is used as a part of a mask to selectively etch the substrate. A method for manufacturing a semiconductor device.
(5)前記第3の被膜は前記基板の選択酸化によって形
成されたものであシ、前記第1の被膜は耐酸化性膜を含
むものである特許請求の範囲第3項又は第4項記載の半
導体装置の製造方法。
(5) The semiconductor according to claim 3 or 4, wherein the third coating is formed by selective oxidation of the substrate, and the first coating includes an oxidation-resistant film. Method of manufacturing the device.
JP57150960A 1982-08-31 1982-08-31 Manufacture of semiconductor device Granted JPS5940563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57150960A JPS5940563A (en) 1982-08-31 1982-08-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57150960A JPS5940563A (en) 1982-08-31 1982-08-31 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5940563A true JPS5940563A (en) 1984-03-06
JPH0481339B2 JPH0481339B2 (en) 1992-12-22

Family

ID=15508191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57150960A Granted JPS5940563A (en) 1982-08-31 1982-08-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5940563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500140A (en) * 1983-10-11 1986-01-23 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor circuits including complementary metal-oxide-semiconductor devices
JPS6252957A (en) * 1985-09-02 1987-03-07 Toshiba Corp Cmos semiconductor device
US4656730A (en) * 1984-11-23 1987-04-14 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating CMOS devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148466A (en) * 1979-05-10 1980-11-19 Nec Corp Cmos semiconductor device and its manufacture
JPS55154748A (en) * 1979-05-23 1980-12-02 Toshiba Corp Complementary mos semiconductor device
JPS55154770A (en) * 1979-05-23 1980-12-02 Toshiba Corp Manufacture of complementary mos semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148466A (en) * 1979-05-10 1980-11-19 Nec Corp Cmos semiconductor device and its manufacture
JPS55154748A (en) * 1979-05-23 1980-12-02 Toshiba Corp Complementary mos semiconductor device
JPS55154770A (en) * 1979-05-23 1980-12-02 Toshiba Corp Manufacture of complementary mos semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61500140A (en) * 1983-10-11 1986-01-23 アメリカン テレフオン アンド テレグラフ カムパニ− Semiconductor circuits including complementary metal-oxide-semiconductor devices
US4656730A (en) * 1984-11-23 1987-04-14 American Telephone And Telegraph Company, At&T Bell Laboratories Method for fabricating CMOS devices
JPS6252957A (en) * 1985-09-02 1987-03-07 Toshiba Corp Cmos semiconductor device

Also Published As

Publication number Publication date
JPH0481339B2 (en) 1992-12-22

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
TWI445161B (en) Semiconductor device and fabrication method thereof
KR19980084215A (en) Method of manufacturing transistor of semiconductor device
US6774016B2 (en) Silicon-on-insulator (SOI) substrate and method for manufacturing the same
JPH0351108B2 (en)
JPH05865B2 (en)
JPS59208851A (en) Semiconductor device and manufacture thereof
JPS5940563A (en) Manufacture of semiconductor device
KR100361764B1 (en) A method for forming a field oxide of a semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JP2770484B2 (en) Method for manufacturing semiconductor device
JP2713940B2 (en) Semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JPH09139382A (en) Manufacture of semiconductor device
JPH0334656B2 (en)
JPH0794721A (en) Semiconductor device and manufacture thereof
KR100321718B1 (en) Method for forming gate electrode of cmos transistor
JPH021377B2 (en)
KR20020082283A (en) Method of trench type device isolation in semiconductor device fabrication
JPS60226168A (en) Complementary mos semiconductor device
JP2001257346A (en) Semiconductor integrated circuit device
JP2674568B2 (en) Method for manufacturing semiconductor device
JPS60244037A (en) Semiconductor device and manufacture thereof
JPH1187530A (en) Semiconductor device and its manufacture
JPS61135135A (en) Semiconductor device