JPH04127544A - Manufacture of semiconductor crystal and semiconductor manufacturing device therefor - Google Patents

Manufacture of semiconductor crystal and semiconductor manufacturing device therefor

Info

Publication number
JPH04127544A
JPH04127544A JP24935690A JP24935690A JPH04127544A JP H04127544 A JPH04127544 A JP H04127544A JP 24935690 A JP24935690 A JP 24935690A JP 24935690 A JP24935690 A JP 24935690A JP H04127544 A JPH04127544 A JP H04127544A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor crystal
compound semiconductor
crystal layer
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24935690A
Other languages
Japanese (ja)
Inventor
Kosaku Yamamoto
山本 功作
Tamotsu Yamamoto
保 山本
Kazuo Ozaki
尾崎 一男
Tetsuya Kawachi
哲也 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24935690A priority Critical patent/JPH04127544A/en
Publication of JPH04127544A publication Critical patent/JPH04127544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To prevent a substrate from being warped in a cooling process subsequent to the end of a liquid phase epitaxial growth by a method wherein a second compound semiconductor crystal layer, which is constituted of the same constituent element as that of a first compound semiconductor crystal layer and has almost the same thickness as that of the first compound semiconductor crystal layer, is formed on the rear of the substrate at the time of a liquid phase epitaxial growth process. CONSTITUTION:A second compound semiconductor crystal layer 13, which is constituted of the same constituent element as that of a first compound semiconductor crystal layer 12 on the surface of a substrate 11 and has almost the same thickness as that of the layer 12, is grown also on the rear of the substrate 11. Accordingly, when the substrate is cooled up to room temperatures, a warpage stress in the substrate, which is caused by a difference between the thermal expansion coefficient of the layer 12 grown on the surface of the substrate 11 and the thermal expansion coefficient of the substrate 11, can be negated by a warpage stress in the substrate, which is caused by a difference between the thermal expansion coefficient of the substrate 11 and the thermal expansion coefficient of the layer 13. As small holes are provided in the bottom of a substrate holder or the sizes of paths for gas are set, a vapor growth on the substrate rear, which is positioned at the bottom of the substrate 11, can be promoted.

Description

【発明の詳細な説明】 〔概要〕 液相エピタキシャル成長法にて赤外線検知器用化合物半
導体結晶を製造する方法及びそれに用いる製造装置に関
し、 成長終了後の冷却過程において基板が反らないようにす
ることを目的とし、 基板の表面上に液相エピタキシャル成長法にて第1の化
合物半導体結晶層を形成する半導体結晶の製造方法にお
いて、前記第1の化合物半導体結晶層と同一の構成元素
で、かつ、略同じ厚さの第2の化合物半導体結晶層を、
液相エピタキシャル成長工程時に前記基板の裏面に形成
するよう構成する。
[Detailed Description of the Invention] [Summary] Regarding a method of manufacturing a compound semiconductor crystal for an infrared detector by a liquid phase epitaxial growth method and a manufacturing apparatus used therefor, the present invention aims to prevent the substrate from warping during the cooling process after the completion of growth. A method for manufacturing a semiconductor crystal in which a first compound semiconductor crystal layer is formed on the surface of a substrate by a liquid phase epitaxial growth method, wherein the first compound semiconductor crystal layer has the same constituent elements and is substantially the same as the first compound semiconductor crystal layer. A second compound semiconductor crystal layer with a thickness of
The structure is such that it is formed on the back surface of the substrate during a liquid phase epitaxial growth process.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体結晶の製造方法及びそれに用いる製造装
置に係り、特に液相エピタキシャル成長法にて赤外線検
知器用化合物半導体結晶層を製造する方法及びそれに用
いる製造装置に関する。
The present invention relates to a method of manufacturing a semiconductor crystal and a manufacturing apparatus used therein, and more particularly to a method of manufacturing a compound semiconductor crystal layer for an infrared detector by a liquid phase epitaxial growth method and a manufacturing apparatus used therein.

赤外線検知器にはエネルギーバンドギャップが狭い化合
物半導体結晶、例えば水銀・カドミウム・テルル(Hg
+−xcd工Te)結晶が光導電素子として用いられる
。このようなHg +イCd。
Infrared detectors use compound semiconductor crystals with narrow energy band gaps, such as mercury, cadmium, and tellurium (Hg).
A +-xcd (Te) crystal is used as a photoconductive element. Such Hg + ICd.

Te結晶を製造するに際しては、例えば閉管チッピング
式の液相エピタキシャル成長(LPE:Liquid 
Phase Bpitaxy)装置が使用されるが、表
面ができるだけ平坦なHg+−x Cdx Te結晶を
基板上にエピタキシャル成長させることが重要となる。
When manufacturing a Te crystal, for example, liquid phase epitaxial growth (LPE) using a closed tube chipping method is used.
It is important to epitaxially grow a Hg+-x Cdx Te crystal with a surface as flat as possible on the substrate.

(従来の技術〕 第8図は従来の半導体結晶製造装置の一例の構成図を示
す。同図中、lは円筒状の石英管(アンプル)で、その
内部に基板ホルダ2.CdTe基板3.エピタキシャル
結晶成長メルト4が配置されている。また、5は炉心管
、6は例えばカーボンよりなるヒートシンクブロック、
7はヒータ、8は回転装置、9は回転装置8からの回転
力をアンプルlに伝達する回転軸である。
(Prior Art) Fig. 8 shows a configuration diagram of an example of a conventional semiconductor crystal manufacturing apparatus. In the figure, l is a cylindrical quartz tube (ampule), and inside thereof there are a substrate holder 2, a CdTe substrate 3, and a cylindrical quartz tube (ampule). An epitaxial crystal growth melt 4 is arranged.Furthermore, 5 is a furnace tube, 6 is a heat sink block made of carbon, for example,
7 is a heater, 8 is a rotating device, and 9 is a rotating shaft that transmits the rotational force from the rotating device 8 to the ampoule l.

次に、この従来の製造装置の動作について、第8図中、
IX−IX線に沿う断面図を示す第9図と共に説明する
。メルト4はHg、Cd、Teを所定の比重で混合後溶
融した飽和状態の溶液で、まず回転装置8により第8図
に示した状態からアンプルlを180°回転して第9図
(A)に示す如くCdTe基板3の表面をメルト4に接
触させて所定温度で所定時間保持させ、CdTe基板3
上に所望の厚さのHgCdTe層をエピタキシャル成長
させる。
Next, regarding the operation of this conventional manufacturing equipment, in Fig. 8,
This will be explained with reference to FIG. 9, which shows a cross-sectional view taken along line IX-IX. Melt 4 is a saturated solution in which Hg, Cd, and Te are mixed and melted at a predetermined specific gravity. First, the ampoule 1 is rotated 180 degrees from the state shown in FIG. As shown in the figure, the surface of the CdTe substrate 3 is brought into contact with the melt 4 and held at a predetermined temperature for a predetermined period of time.
A HgCdTe layer of desired thickness is epitaxially grown on top.

続いて、回転装置8により第9図(B)に示す如くアン
プル1を再び180°回転し、基板2とメルト4とが接
触しないようにした状態を所定時間保持し、炉中冷却を
行なう。
Subsequently, the ampoule 1 is rotated 180° again by the rotating device 8 as shown in FIG. 9(B), and a state in which the substrate 2 and the melt 4 do not come into contact is maintained for a predetermined period of time to perform cooling in the furnace.

このようにして、従来はLPE法によりCdTe基板2
の表面に第1O図(A)に10で示す如<Hg+−x 
Cdx Te1t oを成長させていた。
In this way, conventionally, the CdTe substrate 2 is
on the surface of <Hg+-x as shown by 10 in Fig.
I was growing Cdx Te1to.

なお、CdTe基板2は、サファイア、シリコン(St
)又はGaAs等の異種基板上にCdTe層が形成され
たCdTe/異種基板を用いてもよい。
Note that the CdTe substrate 2 is made of sapphire, silicon (St
) or a CdTe/different substrate in which a CdTe layer is formed on a different substrate such as GaAs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、上記の従来方法では、成長温度(500℃)
においては、HgCdTe層10とCdTe基板2との
間には応力は働いていないか、両者には熱膨張率に差か
あるため(HgCdTe  :4.3  X  1 0
− @deg  −+、   CdTe  :5.5 
 x] 0−’deg −’) 、室温まで冷却すると
一般には熱膨張率が大きなCdTe基板2の方がHgC
dTe層IOよりも大きく収縮し、その結果、第10図
(B)に示す如<HgCdTe層lOが凸状に反ってし
まう。また、HgCdTeJiil 0の表面が平坦で
ないと、マスク合わせ等の工程で高精度に合わせできな
いという問題がある。
However, in the above conventional method, the growth temperature (500°C)
In this case, either there is no stress acting between the HgCdTe layer 10 and the CdTe substrate 2, or there is a difference in thermal expansion coefficient between the two (HgCdTe: 4.3 x 10
- @deg -+, CdTe: 5.5
x] 0-'deg-'), when cooled to room temperature, the CdTe substrate 2, which has a larger coefficient of thermal expansion, generally has a higher coefficient of HgC.
It contracts more than the dTe layer IO, and as a result, the HgCdTe layer IO warps in a convex shape as shown in FIG. 10(B). Further, if the surface of HgCdTeJil 0 is not flat, there is a problem that high precision alignment cannot be performed in a process such as mask alignment.

なお、上記の反りの防止のため、CdTe基板2の裏面
にSt層を予め形成することも知られているが、この方
法は成長温度付近でStを蒸着するため、工数がかかり
、また汚染の原因にもなるという問題がある。
In order to prevent the above-mentioned warping, it is known to form an St layer on the back surface of the CdTe substrate 2 in advance, but this method requires a lot of man-hours because St is evaporated near the growth temperature, and it also reduces the risk of contamination. There is also the problem of being the cause.

本発明は以上の点に鑑みなされたもので、成長終了後の
冷却過程において基板が反らないようにできる半導体結
晶の製造方法及びそれに用いる半導体製造装置を提供す
ることを目的とする。
The present invention has been made in view of the above points, and it is an object of the present invention to provide a semiconductor crystal manufacturing method that can prevent a substrate from warping during the cooling process after the completion of growth, and a semiconductor manufacturing apparatus used therein.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図を示す。本発明方法は第1
図(A)に示す如く、基板11の表面上に液相エピタキ
シャル成長法にて第1の化合物半導体結晶層12を形成
するに際し、第1の化合物半導体結晶層12と同一の構
成元素で、かつ、略同じ厚さの第2の化合物半導体結晶
層13を、液相エピタキシャル成長工程時に基板11の
裏面に形成するようにしたものである。
FIG. 1 shows a diagram explaining the principle of the present invention. The method of the present invention is the first
As shown in Figure (A), when forming the first compound semiconductor crystal layer 12 on the surface of the substrate 11 by the liquid phase epitaxial growth method, the first compound semiconductor crystal layer 12 is made of the same constituent elements as the first compound semiconductor crystal layer 12, and A second compound semiconductor crystal layer 13 having substantially the same thickness is formed on the back surface of the substrate 11 during a liquid phase epitaxial growth process.

また、本発明装置では、閉管チッピング方式の液相エピ
タキシャル成長装置において、基板ホルダの底部に小孔
を設けるか、又は基板表面へのエピタキシャル結晶成長
用メルトの通路をメルトが通過できる最小の大きさに設
定したものである。
In addition, in the apparatus of the present invention, in a liquid phase epitaxial growth apparatus using a closed tube tipping method, a small hole is provided at the bottom of the substrate holder, or a hole is formed in the minimum size that allows the melt to pass through the passage for epitaxial crystal growth to the substrate surface. This is the setting.

〔作用〕[Effect]

本発明方法では、基板11の裏面にも、表面と同じ構成
元素で、かつ、略同じ厚さの第2の化合物半導体層13
が成長されるので、室温まで冷却した際に基板11の表
面に成長された第1の化合物半導体層12と基板11と
の間の熱膨張率の差に基づく反り応力を、第1図(B)
に示す如く基板11と第2の化合物半導体層13との間
の熱膨張率の差に基づく反り応力で打ち消すことができ
る。
In the method of the present invention, a second compound semiconductor layer 13 is also formed on the back surface of the substrate 11, which has the same constituent elements as the front surface and has approximately the same thickness.
is grown, the warpage stress based on the difference in thermal expansion coefficient between the first compound semiconductor layer 12 grown on the surface of the substrate 11 and the substrate 11 when the substrate 11 is cooled to room temperature is calculated as shown in FIG. )
As shown in FIG. 2, this can be canceled out by the warping stress based on the difference in thermal expansion coefficient between the substrate 11 and the second compound semiconductor layer 13.

また、本発明装置では基板ホルダ底部に小孔を設けたり
、あるいは前記通路の大きさを設定しているため、基板
11の底部に位置する基板裏面に対する気相成長を促進
できる。
Furthermore, in the apparatus of the present invention, a small hole is provided at the bottom of the substrate holder or the size of the passage is set, so that vapor phase growth on the back surface of the substrate located at the bottom of the substrate 11 can be promoted.

〔実施例〕〔Example〕

第2図は本発明方法の第1実施例の説明図を示す。本実
施例は前記した第8図に示すLPE装置と基本的には同
様の構成によって液相エピタキシャル成長を行なうが、
本実施例では等温気相成長も行なう点で従来方法と大き
く異なる。
FIG. 2 shows an explanatory diagram of a first embodiment of the method of the present invention. In this example, liquid phase epitaxial growth is performed using basically the same configuration as the LPE apparatus shown in FIG. 8 described above.
This embodiment differs greatly from the conventional method in that isothermal vapor phase growth is also performed.

まず、第2図(A)に示す状態で等温気相成長を行なう
。同図中、アンプル20内では基板ホルダ21に保持さ
れたエピタキシャル成長用基板22(前記基板11に相
当)が、エピタキシャル結晶成長用メルト23と非接触
の状態とされており、基板22の裏面が基板ホルダ21
を介してメルト23に対向するように位置している。こ
こで基板22はバルクCdTe、あるいは異種基板(サ
ファイア、Si、GaAs等)の両面にCdTeを成長
したCdTe/異種基板/ Cd T eである。
First, isothermal vapor phase growth is performed in the state shown in FIG. 2(A). In the figure, in the ampoule 20, an epitaxial growth substrate 22 (corresponding to the substrate 11) held by a substrate holder 21 is in a non-contact state with an epitaxial crystal growth melt 23, and the back surface of the substrate 22 is in contact with the epitaxial crystal growth melt 23. Holder 21
It is located so as to face the melt 23 via. Here, the substrate 22 is bulk CdTe or CdTe/different substrate/CdTe in which CdTe is grown on both sides of a different substrate (sapphire, Si, GaAs, etc.).

また、エピタキシャル結晶成長用メルト23は所謂Te
リッチメルトと称されるもので(Hg+−z Cdz 
)l−y Tey  (yは0.5以上)で表わされる
、Hg原子とCd原子の和の原子数よりもTe原子の個
数が多い融液である。
Further, the epitaxial crystal growth melt 23 is made of so-called Te.
It is called rich melt (Hg+-z Cdz
)ly Tey (y is 0.5 or more), which is a melt in which the number of Te atoms is greater than the total number of Hg atoms and Cd atoms.

等温気相成長は例えば本出願人が特願平l−18799
0号にて提案した成長法で、第2図(A)に示す状態で
、アンプル20内の温度を昇温し、エピタキシャル結晶
成長用メルト23の液相化温度TL以上の所定の温度で
長時間基板22を保持することで行なわれる。上記の液
相化温度TL以上の所定温度では、メルト23.雰囲気
ガス及び基板22で構成される三相が平衡状態となり、
基板22の表面と裏面の各CdTe層には、メルト23
より析出する固相のHg、−x Cdz T6の結晶の
X値と等しい値に、X値が到達するまでHgとTeが輸
送されることにより、Hg +−x Cd xTe結晶
層が形成されると共に、CdTe層内部ではこのHg 
+−x Cd x T e結晶層と相互拡散を起こす。
Isothermal vapor phase growth is described, for example, in Japanese Patent Application No. 1-18799 by the present applicant.
In the growth method proposed in No. 0, the temperature inside the ampoule 20 is raised in the state shown in FIG. This is done by holding the time board 22. At a predetermined temperature above the liquidus temperature TL, the melt 23. The three phases composed of the atmospheric gas and the substrate 22 are in equilibrium,
A melt 23 is applied to each CdTe layer on the front and back surfaces of the substrate 22.
A Hg +-x Cd xTe crystal layer is formed by transporting Hg and Te until the X value reaches a value equal to the X value of the solid phase Hg, -x Cdz T6 crystal, which precipitates more. At the same time, this Hg inside the CdTe layer
+-x Cd x Te Interdiffusion occurs with the crystal layer.

その結果、基板22の表面と裏面の各CdTe層は、H
g+−x Cdx Te結晶層に変換される。
As a result, each CdTe layer on the front and back surfaces of the substrate 22 has H
g+-x Cdx is converted into a Te crystal layer.

このときのHg +−エCdxTe結晶層の厚みは、予
め形成したCdTe層の厚さ及びHg +−x Cdx
TeのX値によって定まる値になり、ここでは後述のL
PE成長によって基板22の表面に形成されるHg+−
x Cdx Te層の厚さに等しい値に設定される。な
お、基板22は基板ホルダ21に保持されているが、基
板ホルダ21と基板22との隙間を介して、上記のHg
1−ウCdx Te結晶層の気相成長が基板22の裏面
に対しても行なわれる。
The thickness of the Hg +-x CdxTe crystal layer at this time is the thickness of the previously formed CdTe layer and the Hg +-x Cdx
The value is determined by the X value of Te, and here L
Hg+- formed on the surface of the substrate 22 by PE growth
x Cdx is set equal to the thickness of the Te layer. Note that although the substrate 22 is held by the substrate holder 21, the above-mentioned Hg
1-U Vapor phase growth of a Cdx Te crystal layer is also performed on the back surface of the substrate 22.

次にアンプル20内の温度を降温しながら、前記液相化
温度T1以上の所定の成長開始温度でアンプル20を1
80°回転して第2図(B)に示す如く、基板22の表
面を飽和状態のメルト23に接触させる。これにより、
前記等温気相成長時に基板22の表面に形成されたHg
+−x Cdx Te結晶層はメルトバックにより除去
され、その後基板22の表面にLPE成長が始まり、H
g +イCd x T e層が成長される。
Next, while lowering the temperature inside the ampoule 20, the ampoule 20 is heated to a predetermined growth start temperature equal to or higher than the liquid phase temperature T1.
The substrate 22 is rotated by 80 degrees to bring the surface of the substrate 22 into contact with the saturated melt 23 as shown in FIG. 2(B). This results in
Hg formed on the surface of the substrate 22 during the isothermal vapor phase growth
+-x Cdx The Te crystal layer is removed by meltback, and then LPE growth begins on the surface of the substrate 22, and H
A g+I Cd x T e layer is grown.

次に所定時間後、アンプル20を再び180°回転して
LPE成長を終了する。これにより、第1図(A)に示
したように、基板22(11)の表面には第1の化合物
半導体層12としてLPE成長されたHg+−x Cd
x Te層が形成され、また基板22(11)の裏面に
は第2の化合物半導体層13として等温気相成長された
H g +−x Cd、Te結晶層が形成された半導体
結晶が得られる。
Next, after a predetermined time, the ampoule 20 is rotated 180 degrees again to complete the LPE growth. As a result, as shown in FIG. 1(A), the surface of the substrate 22 (11) has Hg+-x Cd grown by LPE as the first compound semiconductor layer 12.
A semiconductor crystal is obtained in which a H g +-x Te layer is formed, and a H g +-x Cd, Te crystal layer is formed on the back surface of the substrate 22 (11) by isothermal vapor phase growth as the second compound semiconductor layer 13. .

その後、アンプル20内の温度を室温まで冷却するが、
その際、基板22の表面と裏面には同じ組成Hg+−x
 Cdx Teの結晶層が略同じ厚さて形成されている
から、基板と結晶層間の熱膨張率の差に基づく反り応力
が基板の表面と裏面で釣り合い、反りの無い表面が平坦
な半導体結晶が製造される。
After that, the temperature inside the ampoule 20 is cooled to room temperature,
At that time, the front and back surfaces of the substrate 22 have the same composition Hg+-x.
Since the Cdx Te crystal layers are formed with approximately the same thickness, the warping stress due to the difference in thermal expansion coefficient between the substrate and the crystal layer is balanced between the front and back surfaces of the substrate, producing a semiconductor crystal with a flat surface without warping. be done.

次に本発明方法の第2実施例について説明する。Next, a second embodiment of the method of the present invention will be described.

本実施例では第3図に示す公知のLPE装置が使用され
る。同図中、30はアンプルで、その内部には基板ホル
ダ31により保持された基板32かエピタキシャル結晶
成長用メルト23の上方に配置されている。
In this embodiment, a known LPE device shown in FIG. 3 is used. In the figure, numeral 30 is an ampoule in which a substrate 32 held by a substrate holder 31 is placed above a melt 23 for epitaxial crystal growth.

また、基板ホルダ31は第3図中、アンプル30の長手
方向に沿う縦断面図である第4図に示すように、アンプ
ル30内に基板ホルダ31の両側に配置された固定治具
34の凹部35に嵌合固定されている。アンプル30は
その軸線を中心として回転自在に構成されており、また
固定治具34はアンプル30と一体的に回転するように
なされているから、基板32は基板ホルダ31と共にア
ンプル30と一体的に回転する。
Further, as shown in FIG. 4, which is a longitudinal cross-sectional view of the ampoule 30 in FIG. 35 is fitted and fixed. Since the ampoule 30 is configured to be rotatable about its axis, and the fixing jig 34 is configured to rotate integrally with the ampoule 30, the substrate 32 and the substrate holder 31 are integrally rotated with the ampoule 30. Rotate.

上記の基板32はバルクCdTe、あるいは前記したC
dTe/異種基板/ Cd T eであり、また上記の
エピタキシャル結晶成長用メルト33は例えば前記した
Teリッチメルトである。
The above substrate 32 is made of bulk CdTe or the above-mentioned CdTe.
dTe/different substrate/CdTe, and the above-mentioned epitaxial crystal growth melt 33 is, for example, the above-mentioned Te-rich melt.

次に本実施例の動作について第5図と共に説明する。同
図中、第3図及び第4図と同一構成部分には同一符号を
付し、その説明を省略する。また、第5図には動作説明
に必要最小限なもののみ図示しである。まず、Hg、C
d及びTeを所定の比率で混合後溶融して所定の形に成
形した固形の原料結晶をアンプル30内の所定位置に置
き、アンプル30内を昇温し、所定の温度て短時間溶融
し、第5図(A)に示すようにエピタキシャル結晶成長
用メルト33を得る。
Next, the operation of this embodiment will be explained with reference to FIG. In the figure, the same components as in FIGS. 3 and 4 are denoted by the same reference numerals, and their explanations will be omitted. Further, FIG. 5 shows only the minimum necessary components for explaining the operation. First, Hg, C
d and Te in a predetermined ratio, and then melted and formed into a predetermined shape. A solid raw material crystal is placed in a predetermined position in an ampoule 30, the temperature inside the ampoule 30 is raised, and the mixture is melted at a predetermined temperature for a short period of time. A melt 33 for epitaxial crystal growth is obtained as shown in FIG. 5(A).

次に、アンプル30内を降温しでいき、成長開始温度で
アンプル30を180°回転し、第5図(B)に示す如
く基板32を上記メルト33中に浸し、基板32の両面
にHg l−x Cd x T eのLPE成長を開始
する。この状態を所定時間継続した後、アンプル30を
再び180°回転して第5図(A)の状態にすると、第
1図(A)に示したように、基板32(11)の表面と
裏面の夫々に、第1及び第2の化合物半導体層12及び
I3として、同じ厚さのHg+−x Cdx Te層が
LPE成長された半導体結晶が得られる。その後、第5
図(A)の状態でアンプル30内の温度を室温にまで冷
却する。この冷却を行なった際、本実施例によれば、第
1実施例と同様の理由で反りのない、表面が平坦な半導
体結晶が得られる。また、基板の両面にHg+−x C
dx Te結晶層をLPE成長時に同時に形成するため
、工数がかからず、汚染もない。
Next, the temperature inside the ampoule 30 is lowered, the ampoule 30 is rotated 180 degrees at the growth starting temperature, the substrate 32 is immersed in the melt 33 as shown in FIG. 5(B), and Hg l is applied to both sides of the substrate 32. -x Begin LPE growth of Cd x Te. After continuing this state for a predetermined time, the ampoule 30 is rotated 180 degrees again to the state shown in FIG. 5(A), and as shown in FIG. A semiconductor crystal is obtained in which Hg+-x Cdx Te layers having the same thickness are grown by LPE as the first and second compound semiconductor layers 12 and I3, respectively. Then the fifth
In the state shown in Figure (A), the temperature inside the ampoule 30 is cooled to room temperature. When this cooling is performed, according to this embodiment, a semiconductor crystal with a flat surface without warpage can be obtained for the same reason as in the first embodiment. Also, Hg+-x C on both sides of the board.
Since the dx Te crystal layer is formed at the same time as the LPE growth, there is no need for man-hours and there is no contamination.

次に本発明装置の各実施例について説明する。Next, each embodiment of the device of the present invention will be described.

第6図は本発明製造装置の要部の一実施例の斜視図を示
す。同図は基板ホルダ40の斜視図を示している。基板
ホルダ40は矩形の箱状のもので、基板を収納する凹部
41と基板を載置する底部42とを有し、底部42には
多数の小孔43が穿設されている。
FIG. 6 shows a perspective view of an embodiment of the essential parts of the manufacturing apparatus of the present invention. This figure shows a perspective view of the substrate holder 40. The substrate holder 40 is shaped like a rectangular box and has a recess 41 for storing the substrate and a bottom 42 for placing the substrate, and the bottom 42 has a large number of small holes 43 bored therein.

この基板ホルダ40を前記基板ホルダ21として用いた
場合は、等温気相成長時に基板22の裏面に対して小孔
43を通しても気相成長か行なわれるから、小孔43を
有さない基板ホルダ使用時に比し、基板22裏面の気相
成長を促進することができる。
When this substrate holder 40 is used as the substrate holder 21, vapor phase growth is performed even if the small hole 43 is passed through the back surface of the substrate 22 during isothermal vapor phase growth, so a substrate holder without the small hole 43 is used. The vapor phase growth on the back surface of the substrate 22 can be promoted more than usual.

次に本発明装置の他の実施例について第7図と共に説明
する。同図中、第2図及び第6図と同一構成部分には同
一符号を付し、その説明を省略する。第7図において、
アンプル20の内壁に一端が固定され、他端が基板ホル
ダ40の外周側面に近接離間対向するように部材50が
配置されている。従って、この部材50と基板ホルダ4
0の外周側面との間に通路51が形成され、その通路5
真の大きさはメルト23が通過できる最小の大きさ(例
えば数百μm)に設定されている。
Next, another embodiment of the device of the present invention will be described with reference to FIG. In the figure, the same components as in FIGS. 2 and 6 are denoted by the same reference numerals, and their explanations will be omitted. In Figure 7,
A member 50 is arranged such that one end is fixed to the inner wall of the ampoule 20 and the other end faces the outer circumferential side surface of the substrate holder 40 in close proximity to and away from it. Therefore, this member 50 and the substrate holder 4
A passage 51 is formed between the outer peripheral side surface of
The true size is set to the minimum size (for example, several hundred μm) through which the melt 23 can pass.

これにより、基板22に対する気相成長は、小孔43を
通して、基板裏面側において促進され、他方、基板表面
への通り路かできる限り細くされているため、基板表面
では抑制される。この結果、より短時間で所定厚みのH
g +−x CdアTe結晶層を基板22の裏面に成長
させることができる。
As a result, vapor phase growth on the substrate 22 is promoted on the back side of the substrate through the small holes 43, while being suppressed on the substrate surface because the path to the substrate surface is made as narrow as possible. As a result, H
A g + -x Cd-Te crystal layer can be grown on the backside of the substrate 22 .

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明製造方法によれば、基板表面の第1
の化合物半導体層と基板との間の熱膨張率の差に基づく
反り応力を、基板裏面に形成した第2の化合物半導体層
と基板との間の熱膨張率の差に基づく反り応力で打ち消
すようにしたため、成長終了後の冷却過程において基板
が反ることなく、表面が平坦な半導体結晶を製造するこ
とかでき、またLPE成長時に上記の第1及び第2の化
合物半導体層を同時に形成しているため、工数もかから
ず汚染の心配もない。また、本発明製造装置によれば、
基板ホルダ底部に小孔を設けたり、基板表面へのメルト
の通路を狭くして基板裏面に対する気相成長を促進して
いるため、基板裏面への化合物半導体層の形成をより短
時間で行なうことができる等の特長を有するものである
As described above, according to the manufacturing method of the present invention, the first
The warping stress due to the difference in thermal expansion coefficient between the second compound semiconductor layer and the substrate is canceled out by the warping stress due to the difference in thermal expansion coefficient between the second compound semiconductor layer formed on the back surface of the substrate and the substrate. As a result, a semiconductor crystal with a flat surface can be manufactured without causing the substrate to warp during the cooling process after the growth is completed, and the above-mentioned first and second compound semiconductor layers can be formed simultaneously during LPE growth. Because the process requires less man-hours and there is no need to worry about contamination. Moreover, according to the manufacturing apparatus of the present invention,
A small hole is provided at the bottom of the substrate holder and the path for the melt to the substrate surface is narrowed to promote vapor phase growth on the back surface of the substrate, allowing the formation of a compound semiconductor layer on the back surface of the substrate in a shorter time. It has features such as the ability to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明方法の第1実施例の説明図、第3図は本
発明に適用し得るLPE装置の一例の構成図、 第4図は第3図の縦断面図、 第5図は本発明方法の第2実施例の説明図、第6図は本
発明装置の要部の一実施例の斜視図、第7図は本発明装
置の要部の他の実施例の構成図、 第8図は従来装置の一例の構成図、 第9図は第8図の動作説明図、 第1O図は従来方法の課題説明図である。 図において、 ++、22.32はエピタキシャル成長用基板、12は
第1の化合物半導体結晶層、 13は第2の化合物半導体結晶層、 23.33はエピタキシャル結晶成長用メルトを示す。 本発明の原理説明図 第1図 本発明方法の第1実施例の説明図 第2図 33メルト 本発明1こ適用し得るLPE装置の一例の構成図筒 図 第3図の縦断面図 第 図 本発明方法の第2実施例の説明図 第5図 本発明装置の要部の 第6 実施例の斜視図 図 本発明装置の要部の他の実施例の構成図第7図 従来装置の一例の構成図 第8図 第8図の動作説明図 第9図 従来方法の課題説明図 第10図 dTe基板
FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is an explanatory diagram of a first embodiment of the method of the present invention, FIG. 3 is a configuration diagram of an example of an LPE device that can be applied to the present invention, and FIG. 3 is a longitudinal cross-sectional view, FIG. 5 is an explanatory diagram of the second embodiment of the method of the present invention, FIG. 6 is a perspective view of an embodiment of the main part of the device of the present invention, and FIG. 7 is a main part of the device of the present invention. FIG. 8 is a block diagram of an example of a conventional device; FIG. 9 is an explanatory diagram of the operation of FIG. 8; and FIG. 1O is a diagram explaining problems with the conventional method. In the figure, ++, 22.32 is a substrate for epitaxial growth, 12 is a first compound semiconductor crystal layer, 13 is a second compound semiconductor crystal layer, and 23.33 is a melt for epitaxial crystal growth. Fig. 1 is an explanatory diagram of the principle of the present invention. Fig. 2 is an explanatory diagram of the first embodiment of the method of the present invention. An explanatory diagram of the second embodiment of the method of the present invention. Figure 5. A perspective view of the sixth embodiment of the essential parts of the apparatus of the present invention. A configuration diagram of another embodiment of the essential parts of the apparatus of the present invention. Figure 7. An example of the conventional apparatus. Fig. 8 Fig. 8 is an explanatory diagram of its operation Fig. 9 is an explanatory diagram of the problems of the conventional method Fig. 10 is a dTe substrate

Claims (5)

【特許請求の範囲】[Claims] (1)基板(11)の表面上に液相エピタキシャル成長
法にて第1の化合物半導体結晶層(12)を形成する半
導体結晶の製造方法において、前記第1の化合物半導体
結晶層(12)と同一の構成元素で、かつ、略同じ厚さ
の第2の化合物半導体結晶層(13)を、液相エピタキ
シャル成長工程時に前記基板(11)の裏面に形成する
ことを特徴とする半導体結晶の製造方法。
(1) A method for manufacturing a semiconductor crystal in which a first compound semiconductor crystal layer (12) is formed on the surface of a substrate (11) by a liquid phase epitaxial growth method, which is the same as the first compound semiconductor crystal layer (12). A method for manufacturing a semiconductor crystal, characterized in that a second compound semiconductor crystal layer (13) of constituent elements and having substantially the same thickness is formed on the back surface of the substrate (11) during a liquid phase epitaxial growth step.
(2)前記基板(11)の表面と裏面は夫々少なくとも
前記第1の化合物半導体結晶層(12)の構成元素を含
む結晶層からなり、かつ、前記液相エピタキシャル成長
前に、等温気相成長により前記基板(11)の両面に夫
々前記第2の化合物半導体結晶層(13)を成長した後
、前記液相エピタキシャル成長法を適用して該基板(1
1)の表面に形成された該第2の化合物半導体結晶層を
メルトバックで除去すると共に、前記第1の化合物半導
体結晶層(12)を形成することを特徴とする請求項1
記載の半導体結晶の製造方法。
(2) The front and back surfaces of the substrate (11) are each made of a crystal layer containing at least a constituent element of the first compound semiconductor crystal layer (12), and are formed by isothermal vapor phase epitaxy before the liquid phase epitaxial growth. After growing the second compound semiconductor crystal layer (13) on both sides of the substrate (11), the liquid phase epitaxial growth method is applied to grow the second compound semiconductor crystal layer (13) on both sides of the substrate (11).
1) The first compound semiconductor crystal layer (12) is formed at the same time as removing the second compound semiconductor crystal layer formed on the surface of the second compound semiconductor crystal layer (12) by melt-back.
A method for manufacturing the semiconductor crystal described above.
(3)前記基板(11)の表面と裏面は夫々少なくとも
前記第1の化合物半導体結晶層(12)の構成元素を含
む結晶層からなり、該基板の両面に夫々液相エピタキシ
ャル成長を行なって前記第1及び第2の化合物半導体結
晶層(12、13)を夫々形成することを特徴とする請
求項1記載の半導体結晶の製造方法。
(3) The front and back surfaces of the substrate (11) are each made of a crystal layer containing at least the constituent elements of the first compound semiconductor crystal layer (12), and liquid phase epitaxial growth is performed on both surfaces of the substrate to form the first compound semiconductor crystal layer (12). 2. The method of manufacturing a semiconductor crystal according to claim 1, wherein the first and second compound semiconductor crystal layers (12, 13) are formed respectively.
(4)基板ホルダ(40)に保持された前記基板(11
)の表面をエピタキシャル結晶成長用メルト(23)に
接触させて該基板(11)表面に前記第1の化合物半導
体結晶層(12)を成長させる閉管チッピング方式の液
相エピタキシャル成長装置において、 前記基板ホルダ(40)の底部に小孔(43)を設けた
ことを特徴とする請求項2記載の半導体結晶を製造する
半導体結晶製造装置。
(4) The substrate (11) held by the substrate holder (40)
) in a liquid phase epitaxial growth apparatus using a closed tube tipping method in which the first compound semiconductor crystal layer (12) is grown on the surface of the substrate (11) by bringing the surface of the substrate holder into contact with an epitaxial crystal growth melt (23), 3. The semiconductor crystal manufacturing apparatus for manufacturing a semiconductor crystal according to claim 2, wherein a small hole (43) is provided at the bottom of the semiconductor crystal.
(5)基板ホルダ(40)に保持された前記基板(11
)の表面をエピタキシャル結晶成長用メルト(23)に
接触させて該基板(11)表面に前記第1の化合物半導
体結晶層(12)を成長させる閉管チッピング方式の液
相エピタキシャル成長装置において、 前記基板(11)表面への前記メルト(23)の通路(
51)を該メルト(23)が通過できる最小の大きさに
設定したことを特徴とする請求項2記載の半導体結晶を
製造する半導体結晶製造装置。
(5) The substrate (11) held by the substrate holder (40)
In a liquid phase epitaxial growth apparatus using a closed tube tipping method in which the first compound semiconductor crystal layer (12) is grown on the surface of the substrate (11) by bringing the surface of the substrate () into contact with an epitaxial crystal growth melt (23), 11) Passage of said melt (23) to the surface (
3. The semiconductor crystal manufacturing apparatus for manufacturing a semiconductor crystal according to claim 2, wherein the diameter of the semiconductor crystal 51) is set to a minimum size through which the melt (23) can pass.
JP24935690A 1990-09-19 1990-09-19 Manufacture of semiconductor crystal and semiconductor manufacturing device therefor Pending JPH04127544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24935690A JPH04127544A (en) 1990-09-19 1990-09-19 Manufacture of semiconductor crystal and semiconductor manufacturing device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24935690A JPH04127544A (en) 1990-09-19 1990-09-19 Manufacture of semiconductor crystal and semiconductor manufacturing device therefor

Publications (1)

Publication Number Publication Date
JPH04127544A true JPH04127544A (en) 1992-04-28

Family

ID=17191811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24935690A Pending JPH04127544A (en) 1990-09-19 1990-09-19 Manufacture of semiconductor crystal and semiconductor manufacturing device therefor

Country Status (1)

Country Link
JP (1) JPH04127544A (en)

Similar Documents

Publication Publication Date Title
US3783825A (en) Apparatus for the liquid-phase epitaxial growth of multi-layer wafers
US4923561A (en) Crystal growth method
JPH04127544A (en) Manufacture of semiconductor crystal and semiconductor manufacturing device therefor
JPH01197399A (en) Preperation of monocrystal cadmium telluride mercury layer
US4614672A (en) Liquid phase epitaxy (LPE) of silicon carbide
JP4870859B2 (en) Liquid phase epitaxial growth apparatus and growth method
JP2610034B2 (en) Single crystal growth method
SU1633032A1 (en) Method of producing semiconductor hetero-structures
JPH042689A (en) Method for hetero-epitaxial liquid phase growth
JPS60182140A (en) Liquid phase epitaxial crystal growth method and device thereof
JPH0354819A (en) Manufacture of soi substrate
JPS589794B2 (en) Semiconductor liquid phase multilayer thin film growth method and growth equipment
JPH02237125A (en) Growth of epitaxial crystal
JPS61263212A (en) Molecular beam epitaxy substrate holder
JPS5928326A (en) Preparation of member for three-dimensional integrated circuit
SU107450A1 (en) The method of obtaining single crystals of germanium and silicon with a given content of impurities
JP2596122B2 (en) Liquid phase epitaxial growth method
JPS6011294A (en) Method for growing single crystal
JPH03194922A (en) Device for crystal-growing ii-vi compound semiconductor
JPH09124398A (en) Crystal growth of compound semiconductor and apparatus therefor
JPH0348431A (en) Liquid epitaxial crystal deposition device
JPH02233585A (en) Base plate holder
JPS61117190A (en) Crucible for preparing crystal
JPS62158186A (en) Production of single crystal of compound semiconductor
JP2002121098A (en) Method for producing multiple oxide-based single crystal film, and multiple oxide-based single crystal film produced by the method