JPS60155507A - Continuous preparation of boron nitride - Google Patents

Continuous preparation of boron nitride

Info

Publication number
JPS60155507A
JPS60155507A JP1224584A JP1224584A JPS60155507A JP S60155507 A JPS60155507 A JP S60155507A JP 1224584 A JP1224584 A JP 1224584A JP 1224584 A JP1224584 A JP 1224584A JP S60155507 A JPS60155507 A JP S60155507A
Authority
JP
Japan
Prior art keywords
furnace
carbon
reaction
compound
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1224584A
Other languages
Japanese (ja)
Other versions
JPH0211521B2 (en
Inventor
Yoshihiro Kubota
芳宏 久保田
Takeshige Ishida
石田 丈繁
Isao Yanagisawa
柳沢 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1224584A priority Critical patent/JPS60155507A/en
Publication of JPS60155507A publication Critical patent/JPS60155507A/en
Publication of JPH0211521B2 publication Critical patent/JPH0211521B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain continuously boron nitride of hexagonal system having improved physical and chemical properties, by inserting continuously a mixture containing B and C into a furnace, reacting them under countercurrent contact of nitrogen, taking out the reaction product successively. CONSTITUTION:A mixture of a boron compound and carbon and/or carbon compound is continuously inserted from a feed opening of a furnace provided with the feed opening and an outlet. It is heated at 1,650-2,300 deg.C under countercurrent contact of a nitrogen gas or a nitrogen gas-containing nonoxidizing gas, reduction and nitriding reactions are carried out. Then, the reaction product is successively taken out from the outlet of the furnace. Boric acid is especially preferable as the boron compound used with due regard to reactivity and cost. A blending ratio of the boron compound and carbon and/or carbon compound of main components is preferably an element component ratio in a weight range of B:C=0.6-1.2:1.

Description

【発明の詳細な説明】 本発明は、窒化はう素の連続Ilr]裂造法に関し。[Detailed description of the invention] The present invention relates to a continuous Ilr process for boron nitride.

特に、優れた物理的、化学的諸性質を有する六方晶形の
窒化はう素の遅1aFJ製造方法に関する。
In particular, the present invention relates to a method for producing slow 1aFJ of hexagonal nitrided boron having excellent physical and chemical properties.

六方晶形の窒化はう素は耐熱性、耐熱衝撃性−化学的安
定性、高熱伝導性、高電気絶縁性、潤滑特性に優れ、そ
め特性を活かして高温構造材、電気絶縁材、トランジス
ター、IC,マイクロ波用の放熱板あるいは耐摩耗材等
として広く使用されている。本発明は、この利用価値の
大きい六方晶形窒化はう素を製造する工業的に有利な新
規方法に係るものである。
Hexagonal boron nitride has excellent heat resistance, thermal shock resistance, chemical stability, high thermal conductivity, high electrical insulation, and lubrication properties, and its thin properties can be used for high-temperature structural materials, electrical insulation materials, transistors, and ICs. It is widely used as a heat sink for microwaves or as a wear-resistant material. The present invention relates to a new industrially advantageous method for producing hexagonal boron nitride, which has great utility value.

従来、六方晶形窒化はう素の製造方法としては。Traditionally, hexagonal nitride is the manufacturing method for boron.

下肥反応式による方法が代表的なものとして知られてい
る。
The method using the manure reaction formula is known as a representative method.

(1)2B十N2→2BN (2) B、 O,+ NE、十高融点物質(Oa、 
(PO4)り →B N (3ン B]13 + NH3→B N+ 3 Hol
(4) Na2B40. + 200(NH2)2−(
5) B、03+30十N、−+ 28N+300これ
ら製法の中で反応式(1)及び(3)の方法は、高価な
原料を必要とし、大量生産に不向であって工業的に採用
し難く、また、上記反応式(2)及び(4)による窒化
はう素の製法は、原料が安価で大量に生産できるため、
現在、工業的に実施されているが。
(1) 2B ten N2 → 2BN (2) B, O, + NE, ten high melting point substance (Oa,
(PO4)ri →B N (3 N B]13 + NH3→B N+ 3 Hol
(4) Na2B40. +200(NH2)2-(
5) B, 03 + 30 1N, - + 28N + 300 Among these production methods, the methods of reaction formulas (1) and (3) require expensive raw materials, are unsuitable for mass production, and are difficult to adopt industrially. In addition, the method for producing boron nitride using the above reaction formulas (2) and (4) uses inexpensive raw materials and can be produced in large quantities.
Although it is currently being implemented industrially.

その製法は多くの工程を必要とし、特に高い気密性が要
求されるアンそニアガス雰囲気の窒化炉での処理を2段
階以上行なわねばならないので、連1FAFI調造は極
めて困難であり、事実、これらの製法はバッチ式のみが
採用されている。この多くの処理工程をバッチ式で行な
う場合には、設備費と製造費がかさむために製品=スト
高となる欠点が避けられないものである。
The manufacturing method requires many steps, and in particular requires two or more steps of treatment in a nitriding furnace in an anthonia gas atmosphere, which requires high airtightness. Only the batch method is used for manufacturing. When many of these processing steps are carried out in a batch manner, the drawback that equipment costs and manufacturing costs increase, resulting in high product cost is unavoidable.

また、反応式(5)に基づく窒化はう素の製造は。Moreover, the production of boron nitride based on reaction formula (5) is as follows.

一段反応で、原料の価格も安いという利点はあるが、一
般に、■反応収率が低い、■残留カーボンが多く、その
分離が必要である。01200〜1600℃の高温反応
のため、従来技術ではバッチ反応となり、製造装置の大
型化一連続化が困難である。及び■温度分布の不均一性
に由来する品質のバラツキが極めて大きいなどの理由か
ら、工業的に不利とされ、固定炉又は小型回転炉による
小規模バッチ式が実用されているに過ぎず、特に。
Although it has the advantage of being a one-stage reaction and the cost of raw materials is low, it generally requires (1) a low reaction yield, and (2) a large amount of residual carbon, which must be separated. Since the reaction is at a high temperature of 1,200 to 1,600°C, the conventional technology requires a batch reaction, making it difficult to increase the size of the production equipment and make it continuous. and ■ Due to extremely large variations in quality due to non-uniformity of temperature distribution, it is considered to be disadvantageous industrially, and only small-scale batch systems using fixed furnaces or small rotary furnaces are in practical use. .

上記(5)の反応式を利用する連続的製造法は到底考え
られなかったのである。
A continuous production method using reaction formula (5) above was completely inconceivable.

しかし、優れた緒特性を有し、広い分野にゎたつて需要
が急速に伸びている高品質の六方晶形窒化はう素を大量
且つ安価に提供することは社会の大きな要望である。
However, there is a great need in society to provide high-quality hexagonal boron nitride in large quantities and at low cost, which has excellent properties and whose demand is rapidly increasing in a wide range of fields.

従って1本発明の目的は、安価な原料を用い。Therefore, one object of the present invention is to use inexpensive raw materials.

六方晶形窒化はう素を連続的に製造する工業的方法を提
供するKある。また、他の目的は、高純度且つ高結晶性
の六方晶形窒化はう素を安価に提供することにある。ま
た、更に他の目的は、上記反応式(5)の反応を効果的
に遂行させ、バラツキの小さい高品質の六方晶形窒化は
う素を高効率で製造しつる方法を提供することにある。
Hexagonal nitridation provides an industrial method for producing boron continuously. Another object of the present invention is to provide hexagonal boron nitride with high purity and high crystallinity at a low cost. Still another object is to provide a method for efficiently carrying out the reaction of the above reaction formula (5) and producing high-quality hexagonal boron nitride with small variations with high efficiency.

その他の本発明の目的及び優れた諸効果は、以下の記載
から一層明らかになるであろう。
Other objects and excellent effects of the present invention will become clearer from the following description.

本発明者らは、上記目的を達成すべく、特に。The present inventors particularly aimed to achieve the above object.

安価な出発原料を用い1段反応で六方晶窒化はう素を形
成させつる上記反応式(5)の方法について研究を重ね
た結果、極めて効率的で−しかも、従来+31−1 、
 lr TtfT 妬L 4−&−+イl s f−T
+ 諺社1/ ’h II宣姑―の六方晶形窒化はう素
を製造しつることを知った。
As a result of repeated research on the method of the above reaction formula (5), which forms hexagonal boron nitride in a one-step reaction using inexpensive starting materials, it has been found that it is extremely efficient - and +31-1 higher than conventional methods.
lr TtfT Jealous L 4-&-+Il s f-T
+ Proverbs 1/'h II I learned that Xuangu's hexagonal nitridation produces boron.

すなわち1本発明は、は5素化合物と炭素及び/又は炭
素化合物との混合物を、導入口と排出口を備えた加熱炉
の導入口から連続的に挿入し、窒素ガス又は窒素ガス含
有非酸化性ガスの向流接触条件下に、1,650〜2,
300℃の温度に加熱して還元、窒化反応させ、該炉の
排出口から反応生成物を連続的に取出すことを特徴とす
る窒化はう素の連続的製造方法を提供する。
In other words, the present invention provides a method in which a mixture of a penta-element compound and carbon and/or a carbon compound is continuously introduced through an inlet of a heating furnace equipped with an inlet and an outlet, and nitrogen gas or a nitrogen gas-containing non-oxidizing 1,650 to 2, under countercurrent contact conditions of reactive gases.
Provided is a method for continuously producing boron nitride, which is characterized by heating to a temperature of 300° C. to cause a reduction and nitriding reaction, and continuously taking out the reaction product from an outlet of the furnace.

本発明の方法に用いられるほう素化合物としては1例え
ば、はう酸、無水はう酸、シボ2ンやエチルボレート、
メチルボレート等の有機はう素化合物類を挙げることが
できるが1反応性と価格を考慮すれば、特にほう酸が好
ましい。また、炭素及び炭素化合物としては1例えば通
常のアセチレン・ブラック、チャンネル・ブラック、グ
ラファイト等の炭素や木炭、木粉、タール、ピッチある
1、S)!フェノールsi貸−ポリエチレンーポリスチ
レン等の合成高分子等が挙げられるが、製品純度と経済
性からカーボン・プラックが好適に用いられる。
Examples of the boron compounds used in the method of the present invention include 1, eg, halonic acid, fluoric anhydride, cibon, ethyl borate,
Examples include organic boron compounds such as methylborate, but boric acid is particularly preferred in view of reactivity and cost. In addition, carbon and carbon compounds include carbon such as ordinary acetylene black, channel black, graphite, charcoal, wood powder, tar, pitch, etc. 1)! Synthetic polymers such as phenol, silicone, polyethylene, and polystyrene may be used, but carbon plaque is preferably used in view of product purity and economical efficiency.

本発明の方法においては、窒化反応をより効率的にする
ため1通常の窒化反応に使用される触媒例、t ハ鉄、
コバルト、ニッケル、カルシウム、マグネシウム、マン
ガン、七すプデン等の金属あるいはこれらの酸化物、炭
酸化物等の金属化合物の好適量が上記原料化合物に混用
できる。また、はう酸化合物と炭素及び/又は炭素化合
物の混合物は、あらかじめ造粒してもよいが、その際ポ
パール、精密、メチルセルp−ズ等の造粒バインダー等
を添加混合する事は何んら差支えない。
In the method of the present invention, in order to make the nitriding reaction more efficient, (1) examples of catalysts used in ordinary nitriding reactions, (3) iron,
Suitable amounts of metals such as cobalt, nickel, calcium, magnesium, manganese, and hexaspodene, or metal compounds such as their oxides and carbonates can be mixed into the above-mentioned raw material compounds. In addition, the mixture of the oxalic acid compound and carbon and/or carbon compound may be granulated in advance, but at that time, a granulation binder such as Popal, Seimitsu, Methylcell P-s, etc. may not be added or mixed. There is no problem.

これらの成分の混合には1通常の混合機1例えば、ヘン
シェルミキサー、リボンミキサー、押出機等を用いるこ
とかでき、必要に応じて水分を添加したのち、混合−乾
燥を行う事もできる。又−主成分のほう素化合物と炭素
及び/又は炭素化合物の混合割合は、元素ttkFJB
10で0.6〜1.2の範囲が採用される。OK対する
Bの重量が0.6よりも小さいと1反応後の残留カーボ
ンが多くなり、一方、Bの混合割合が1.2よりも大き
いと窒、化反応前のほう素化合物の還元反応が不充分と
なり、ひいては窒化が充分に進行せず、収率が低下して
しまうので、上記重量範囲割合が好ましく。
For mixing these components, a conventional mixer such as a Henschel mixer, a ribbon mixer, an extruder, etc. can be used, and if necessary, after adding moisture, mixing and drying can be performed. Also, the mixing ratio of the main component boron compound and carbon and/or carbon compound is the element ttkFJB
10, a range of 0.6 to 1.2 is adopted. If the weight of B to OK is less than 0.6, the amount of carbon remaining after one reaction will increase, while if the mixing ratio of B is greater than 1.2, the reduction reaction of the boron compound before the nitrification reaction will be reduced. The proportions within the above weight ranges are preferable since this may result in insufficient nitriding, resulting in insufficient progress of nitriding and a decrease in yield.

更に好ましい割合は0.7〜1.0である。A more preferable ratio is 0.7 to 1.0.

本発明の方法においては、窒化加熱反応炉として、原料
物質を供給する導入口と炉中を通って加熱反応した反応
生成物を取出す排出口を備えた窒化炉が用いられる。そ
のよ5な加熱炉としては。
In the method of the present invention, a nitriding furnace is used as the nitriding heating reactor, which is equipped with an inlet for supplying a raw material and an outlet for taking out a reaction product that has been heated and reacted through the furnace. As a heating furnace like that.

形状忙制限はないが、通常知られた各種の竪型炉や流動
床炉又はトンネル炉が好都合に使用でき。
Although there are no shape limitations, various commonly known vertical furnaces, fluidized bed furnaces, or tunnel furnaces can be conveniently used.

トンネル炉としては棚柵式プッシャー炉が特に好ましい
。これらの加熱pは61本発明の方法における反応温度
に耐える炉材、1例えば炭X、炭化けい素、、窒化はう
素などの耐熱材料で構成される。
As the tunnel furnace, a shelf-type pusher furnace is particularly preferred. These heating devices are made of heat-resistant materials such as 61 furnace materials that can withstand the reaction temperatures in the method of the present invention, such as charcoal, silicon carbide, and boron nitride.

本発明においては、原料混合物を加熱炉中を一定方向に
移動させ、同時にその移動方向とは反対の方向に窒素ガ
ス又は窒素含有非酸化性ガスを流しながら、該混合物を
該向流窒業ガスと接触条件下に、加熱反応させることが
極めて重要であり。
In the present invention, the raw material mixture is moved in a certain direction in the heating furnace, and at the same time, while nitrogen gas or nitrogen-containing non-oxidizing gas is flowing in the opposite direction to the moving direction, the mixture is transferred to the countercurrent nitrogenous gas. It is extremely important to heat the reaction under contact conditions.

この要件と組合わせて、加熱反応を従来知られた反応温
度より高い1,650〜2,300℃の温度範囲で行な
わせることが重要である。そのような高温加熱用熱源は
特に制限されないが、カーボンヒーターが好ましく用い
られる。加熱温度が1.650℃未満の場合には、窒化
反応が充分に進行し難く、また、2,300℃を超える
と像化はう素以外の炭化はう素などの所望しない物質が
副生じ、目的物の純度及び収率が低下するので好ましく
ない。一方、ii!素又は窒素含有非酸化性ガスを原料
混合物の移動方向と同方向、すなわち並流状に流して接
触反応させると、混合物中の不純物。
In combination with this requirement, it is important to carry out the heating reaction at a temperature range of 1,650 DEG to 2,300 DEG C., which is higher than previously known reaction temperatures. Such a heat source for high temperature heating is not particularly limited, but a carbon heater is preferably used. If the heating temperature is less than 1.650°C, the nitriding reaction will not proceed sufficiently, and if the heating temperature exceeds 2,300°C, undesired substances such as boron carbide will be produced as by-products. , is not preferable because the purity and yield of the target product decrease. On the other hand, ii! When a nitrogen-containing non-oxidizing gas is caused to flow in the same direction as the moving direction of the raw material mixture, that is, in parallel flow, to cause a contact reaction, impurities in the mixture.

膿Ir珈瑯 壷へ七ヱ11L今E實仁Ifルは謙2−駒
lし炭素や他の金属不純物などのガス分圧が高くなり。
If the pus is removed from the coffee pot, the partial pressure of gases such as carbon and other metal impurities will increase.

その結果%窒素分圧が低下し、窒化反応が迅速に進行し
なくなったり、生成物中に金属不純物を同伴してしまう
ので好しくない。従って1本発明の方法においては、窒
化用ガスは原料混合物の移動方向に逆行して向流接触さ
せることが重量であり。
As a result, the % nitrogen partial pressure decreases, which is not preferable because the nitriding reaction does not proceed quickly or metal impurities are entrained in the product. Therefore, in the method of the present invention, it is important that the nitriding gas is brought into countercurrent contact with the raw material mixture in a direction opposite to the moving direction of the raw material mixture.

上記不都合が効果的に回避されるばかりでなく。Not only the above-mentioned inconveniences are effectively avoided.

導入原料混合物の予備加熱に有効に作用する付加効果も
得られる。上記の窒素ガスを含有する非酸化性ガスとし
ては1例えばアルゴン、ヘリウムなどの不活性ガスを挙
げることができるカζ窒素ガス濃度はできるだけ高いこ
とが望ましい。また。
An additional effect is also obtained which effectively acts on the preheating of the introduced raw material mixture. Examples of the above-mentioned non-oxidizing gas containing nitrogen gas include inert gases such as argon and helium.It is desirable that the nitrogen gas concentration be as high as possible. Also.

本発明方法において窒素ガスとは1反応系において容易
に窒素ガスに変化しつる1例えばアンモニアなどを包含
する。
In the method of the present invention, nitrogen gas includes gases that can be easily converted into nitrogen gas in a reaction system, such as ammonia.

本発明の方法において、窒素ガスの向流接触条件で加熱
反応させる原料混合物の反応時間は、温奢r上つイ奢f
bナス禍r ;踏台1 ヘ9 r+此日[4◆ツまた、
向流させる9素ガス等は、前記不都合が伴わず、且つ窒
化反応に遅延等の不利益をもたらさない比較的低い流速
が有利に採用される。
In the method of the present invention, the reaction time of the raw material mixture heated and reacted under countercurrent contact conditions of nitrogen gas is as follows:
b eggplant misfortune r ; stepping stone 1 h9 r + this day [4◆tsu also,
A relatively low flow rate of the 9-element gas or the like to be caused to flow counter-currently is advantageously used because it does not cause the above-mentioned disadvantages and does not cause disadvantages such as delay in the nitriding reaction.

本発明の方法は、前記したように、竪型加熱炉。As described above, the method of the present invention uses a vertical heating furnace.

又はトンネル炉、@に棚積式プッシャー炉が好都合に利
用できる。それぞれの加熱炉の場合について説明すれば
、竪型加熱炉では炉頂部より原料を一定速度で供給し、
下部より非酸化性窒素含有ガスを向流になる様に導入し
、ヒーターで炉内を1.650〜2,300℃に加熱し
反応させる。反応生成物は底部より1例えば四−タリー
パルプを介して連続的に一定速度で抜き出される。一方
−ガス入口から導入された非酸化性ガスは反応生成物を
冷却しなから一自体は熱せられ炉中を上昇し反応を進行
させ、上部の排気口より熱回収を行なったのち、排出さ
れる。
Alternatively, a tunnel furnace or a stacked pusher furnace can be advantageously used. To explain the case of each heating furnace, in a vertical heating furnace, raw materials are supplied from the top of the furnace at a constant rate,
A non-oxidizing nitrogen-containing gas is introduced from the bottom in a countercurrent manner, and a heater is used to heat the inside of the furnace to 1.650-2,300°C to cause a reaction. The reaction product is continuously withdrawn from the bottom through, for example, a four-tally pulp at a constant rate. On the other hand, the non-oxidizing gas introduced from the gas inlet does not cool the reaction products, but rather heats itself and rises in the furnace to proceed with the reaction. After recovering heat from the upper exhaust port, it is discharged. Ru.

マタ、トンネル炉の棚積式ブツシャー炉ハ、トンネル状
の炉内の底部にレールを設け、このレール上に合板を載
せ、各合板上に前記の混合物を充填した匣鉢な積み1合
板を炉入口から出口方向へと移送する方式のものである
。棚積式プッシャー炉は炉本体に駆動部が無く1合板を
順次、押し出しグツシャーでレール上を移送させる為1
機械強度が不要(・本発明の様な高温反応下で主として
用いられる炭素材の使用ができるので極めて好都合であ
る。
In the tunnel furnace, a shelf-type butsusha furnace is provided with a rail at the bottom of the tunnel-shaped furnace, a plywood is placed on the rail, and one stack of plywood filled with the above mixture is placed on each plywood in the furnace. This is a type of transport from the entrance to the exit. The shelf-type pusher furnace has no driving part in the furnace body, and the plywood is pushed out one by one and transferred on the rail with a gutsher.
Mechanical strength is not required (-This is extremely advantageous because it allows the use of carbon materials that are mainly used in high-temperature reactions such as in the present invention.

本発明の方法によれば、安価な原料から一段反応により
、高純度、高結晶性の六方晶形窒化はう素を高反応率且
つ連続的に製造することができるので1本発明は優れた
工業的価値及び実用性を有する。
According to the method of the present invention, high purity, highly crystalline hexagonal boron nitride can be produced continuously at a high reaction rate through a one-step reaction from inexpensive raw materials. It has practical value and practicality.

次に具体例により本発明を更に詳細に説明する。Next, the present invention will be explained in more detail using specific examples.

実施例1゜ カーボンヒーターを備えた容量300tの通常の竪型加
熱炉を用いた。
Example 1 A normal vertical heating furnace with a capacity of 300 tons and equipped with a carbon heater was used.

まず原料として、はう酸500Kf、アセチレン・ブラ
ック110〜及び酸化カルシウム50Kfをポリビニル
アルコール1.0チ水溶液501と共に混練均質化し、
直径5m、長さ3011Eのベレットに造粒して、15
0℃の温度に加熱し完全に脱水乾燥調製した。これを炉
の上部導入口から供給し。
First, as raw materials, 500Kf of halonic acid, 110~ of acetylene black, and 50Kf of calcium oxide are kneaded and homogenized with 1.0% of polyvinyl alcohol aqueous solution 501,
Granulated into a pellet with a diameter of 5 m and a length of 3011E, 15
It was heated to a temperature of 0°C and completely dehydrated and dried. This is supplied from the upper inlet of the furnace.

炉の下部のガス供給口から窒素ガスを120 t/mi
n の割合で導入しながら、炉の中央部の周壁なカーボ
ンヒーターで約2,000℃に加熱して反応を開始した
。反応開始3時間後に炉の底部の排出口のロータリーバ
ルブを連続的に操作しながら反応生成物である窒化はう
素をIKp/Hrの割合で取り出した。
Nitrogen gas is supplied from the gas supply port at the bottom of the furnace at 120 t/mi.
The reaction was started by heating to about 2,000° C. with a carbon heater in the peripheral wall at the center of the furnace while introducing the reactor at a rate of n. Three hours after the start of the reaction, boron nitride, a reaction product, was taken out at a ratio of IKp/Hr while continuously operating the rotary valve at the outlet at the bottom of the furnace.

反応は24時間行なったが、極めて順調であった。又−
得られた生成物は5%塩酸水で洗浄後。
The reaction was carried out for 24 hours and was extremely successful. Again-
The obtained product was washed with 5% hydrochloric acid water.

熱水でろ液が中性にな)脩芒甲ツ0℃、10時間乾燥し
た。この物の平均的な分析結果はX線回折では六方晶形
の窒化はう素であって、黒鉛化指数(G・1値)1.6
5の結晶性に優れた物であり。
The filtrate was made neutral with hot water) and dried at 0°C for 10 hours. The average analysis result of this material is that the hexagonal nitride is boron by X-ray diffraction, and the graphitization index (G・1 value) is 1.6.
It has excellent crystallinity.

化学分析の結果では残留カーボン0.041B、 03
Q;、08%、窒素含量56.1%と純度の高いもので
ある事を示した。又、3時間毎の生成物の分析値のバラ
ツキを調べたところ、カーボン0.008東B、O80
,005に窒素含量0.15チ以内で分析誤差範囲内で
あり、生成物間の品質1のバラツキはほとんど無視出来
るものであった。
The results of chemical analysis showed that the residual carbon was 0.041B, 03
Q;08% and nitrogen content 56.1%, indicating high purity. In addition, when we investigated the dispersion of the analysis values of the product every 3 hours, we found that carbon was 0.008 East B, O80
, 005, the nitrogen content was within 0.15 inches, which was within the analytical error range, and the variation in quality between the products was almost negligible.

尚、従来のバッチ式では通常どの分析値も5〜20チ位
のバラツキが見られた。
In addition, in the conventional batch method, there was usually a variation of about 5 to 20 inches in every analytical value.

又、総合収率は理論値の97.8%と高く優れたもので
あった。
Moreover, the overall yield was as high as 97.8% of the theoretical value, which was excellent.

同一容積のパッチ炉に比べ生産性は約15倍であった。Productivity was approximately 15 times higher than that of a patch furnace with the same volume.

なお、上記黒鉛化指数(G−1値)は。In addition, the graphitization index (G-1 value) is as follows.

X111回折のピーク面積をめ1次式より算出したもの
である。G−I値が低いものほど結晶化が進んでいる事
を示す。
The peak area of X111 diffraction was calculated using the linear equation. The lower the G-I value, the more advanced the crystallization is.

(102)面積 実施例2゜ ブツシャ一部及び炉外壁以外のヒーター、匣鉢。(102) Area Example 2゜ Heater and sagger other than part of the bush and the outer wall of the furnace.

台板、炉内壁、レール等は全て炭素材質で製作されてい
る棚積式プッシャー炉(外形:l、500Xx、5oo
x3ooomm)に、窒業ガス60 tAninを炉出
口方向から原料混合物と向流に流し、炉圧を100mm
Aqになる様調節した。その炉内中央1.000龍を2
,000℃の均熱帯になる様にカーボンヒーターを制御
し、この炉内に合板に設置された匣鉢(200x200
x150mm)中へ1鉢当すほう酸500p、アセチレ
ン・プラック1101酸化マグネシウム100gの混合
物を仕込み、1鉢/30分サイクルで匣鉢なプッシャー
で炉中へ順次移送し、この操作を240時間連続して行
なって窒化は5累を連続的に製造した。
The bed plate, furnace inner walls, rails, etc. are all made of carbon material (external size: l, 500Xx, 5oo
x3oomm), 60 tAnin of nitrogen gas was flowed countercurrently to the raw material mixture from the direction of the furnace exit, and the furnace pressure was set to 100 mm.
It was adjusted to be Aq. 1.000 dragons in the center of the furnace 2
A carbon heater was controlled to create a soaking zone of ,000℃, and a sagger (200 x 200
A mixture of 500 p of boric acid and 100 g of acetylene plaque 1101 magnesium oxide per pot was charged into a 1 pot (150 mm x 150 mm), and the mixture was transferred to the furnace using a sagger pusher in a cycle of 1 pot/30 minutes, and this operation was continued for 240 hours. The nitriding was carried out successively in five cycles.

得ヒれた生成物は5%塩酸水で洗浄し1次いで熱水でろ
液が中性になるまで洗ったのち、150℃の温度で10
時間乾燥した。得られた物はX線回折の結果、六方晶形
の窒化はう素であって、黒鉛化指数1.50の極めて結
晶性の優れた物であることが確認された。又−化学分析
の結果は残留カーボン0.03係、BO0,09%−窒
素含量3 56.27%の平均値を示した。なお、各匣鉢間の化学
分析値のバラツキは各々、Q、005%。
The obtained product was washed with 5% hydrochloric acid, first washed with hot water until the filtrate became neutral, and then heated at 150°C for 10 minutes.
Dry for an hour. As a result of X-ray diffraction, the obtained product was confirmed to be hexagonal boron nitride with extremely excellent crystallinity and a graphitization index of 1.50. Also, the results of chemical analysis showed an average value of residual carbon of 0.03%, BO of 0.09%, and nitrogen content of 356.27%. In addition, the variation in chemical analysis values between each sagger is Q, 005%.

0.003%、 0.10%以下で分析誤差内であり。0.003%, 0.10% or less, which is within analytical error.

生成物の品質のバラツキはほとんど無視出来るものであ
った。従来のバッチ式では1通常上記各成分の分析値は
いずれも5〜20チ位のバラツキが見られる。又、総合
収率は理論値の98.5%と高く、優れたものであった
。この方法は、同一容積の炉を用いてパッチ方式で窒化
はう素を製造した場合の約10倍の生産性であった。
The variation in product quality was almost negligible. In the conventional batch method, the analysis values of each of the above-mentioned components usually vary by about 5 to 20 degrees. Moreover, the overall yield was as high as 98.5% of the theoretical value, which was excellent. This method was approximately 10 times more productive than producing boron nitride using the patch method using a furnace of the same volume.

実施例3〜7及び比較例1〜5 を 実施例2で用いたプツシャーラキ用して、第1辰中に示
すような反応温度条件又はほう素化合物と炭素材との重
量割合を変えたものなどの一連の実験を行ない、各反応
生成物の分析結果を下掲第1ffにまとめて示す。なお
、分析は1反応生成物を塩酸水処理及び熱水洗浄し乾燥
したものについてのものである。また、参考のために、
前記実施例2を対応併記した。
Examples 3 to 7 and Comparative Examples 1 to 5 were used in the same way as in Example 2, but the reaction temperature conditions or the weight ratio of the boron compound and the carbon material were changed as shown in the first column. A series of experiments were conducted, and the analysis results of each reaction product are summarized in Section 1ff below. The analysis was conducted on the product obtained by treating the reaction product with hydrochloric acid, washing with hot water, and drying. Also, for reference,
The corresponding example 2 is also listed.

Claims (1)

【特許請求の範囲】 1、 はう素化合物と炭素及び/又は炭素化合物との混
合物を、導入口と排出口を備えた加熱炉の 3゜導入口
から連続的に挿入し、窒素ガス又は窒素ガス含有非酸化
性ガスの向流接触条件下に。 1、650〜&300℃の温度に加熱して還元。 窒化反応させ、該炉の排出口から反応生成物を連続的に
取出すことを特徴とする窒化はう素の連続的製造方法。 2、はう素化合物がほう酸である特許請求の範囲第1項
記載の方法。 3、はう素化合物と炭素及び/又は炭素化合物との混合
割合が1元素成分比B:0=O16〜1−2:1の重a
m煕で凱ス破詐饋すの箭開笛1項記載の方法。 4、加熱炉が竪型炉である特許請求の範囲第1項記載の
方法。 5、加熱炉がトンネル型の棚積式プッシャー炉である特
許請求の範囲第1項記載の方法。
[Claims] 1. A mixture of a boronate compound and carbon and/or a carbon compound is continuously inserted into a heating furnace equipped with an inlet and an outlet through a 3° inlet, and nitrogen gas or nitrogen is added. Under conditions of countercurrent contact with gas-containing non-oxidizing gases. 1. Reduction by heating to a temperature of 650~300℃. 1. A method for continuously producing boron nitride, which comprises carrying out a nitriding reaction and continuously taking out the reaction product from an outlet of the furnace. 2. The method according to claim 1, wherein the boronate compound is boric acid. 3. The mixing ratio of the boronate compound and carbon and/or carbon compound is a weight a with a one-element component ratio of B:0=O16 to 1-2:1
The method described in Paragraph 1 of the method of opening the whistle of the Kaisu fraud in m-hi. 4. The method according to claim 1, wherein the heating furnace is a vertical furnace. 5. The method according to claim 1, wherein the heating furnace is a tunnel-type stacked pusher furnace.
JP1224584A 1984-01-26 1984-01-26 Continuous preparation of boron nitride Granted JPS60155507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224584A JPS60155507A (en) 1984-01-26 1984-01-26 Continuous preparation of boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224584A JPS60155507A (en) 1984-01-26 1984-01-26 Continuous preparation of boron nitride

Publications (2)

Publication Number Publication Date
JPS60155507A true JPS60155507A (en) 1985-08-15
JPH0211521B2 JPH0211521B2 (en) 1990-03-14

Family

ID=11799977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224584A Granted JPS60155507A (en) 1984-01-26 1984-01-26 Continuous preparation of boron nitride

Country Status (1)

Country Link
JP (1) JPS60155507A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256307A (en) * 1985-09-05 1987-03-12 Tokuyama Soda Co Ltd Production of powder mixed with boron nitride
JPH11322310A (en) * 1998-05-11 1999-11-24 Sumitomo Electric Ind Ltd Cubic boron nitride polycrystalline abrasive grain and its production
EP1053973A1 (en) * 1999-05-19 2000-11-22 Advanced Ceramics Corporation Spherical boron nitride process, system and product of manufacture
WO2005070822A1 (en) * 2004-01-14 2005-08-04 Paint & Powder Technologies Llc Continuous pusher-type furnacing system for the production of high-quality uniform boron nitride
WO2011021366A1 (en) * 2009-08-20 2011-02-24 株式会社カネカ Process for production of spheroidized boron nitride
JP2012111657A (en) * 2010-11-24 2012-06-14 Denki Kagaku Kogyo Kk Boron nitride powder, method for producing the same, composition containing the same, and heat dissipative material
WO2013065556A1 (en) 2011-11-02 2013-05-10 株式会社カネカ Process for continuous production of boron nitride powder
WO2014109134A1 (en) * 2013-01-10 2014-07-17 株式会社カネカ Hexagonal boron nitride, and resin molded article having high thermal conductivities which is produced using same
EP2855401A4 (en) * 2012-05-30 2015-06-03 Auckland Uniservices Ltd Production of bn-composite materials
JP2016060661A (en) * 2014-09-17 2016-04-25 株式会社トクヤマ Boron nitride powder and method for producing the same
JP2016088799A (en) * 2014-11-04 2016-05-23 株式会社トクヤマ Method of producing boron nitride powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB870084A (en) * 1958-03-24 1961-06-14 United States Borax Chem Method of manufacturing boron nitride
JPS5347320A (en) * 1976-10-13 1978-04-27 Nippon Musical Instruments Mfg Manufacturing of magnetic material
JPS55158176A (en) * 1979-05-24 1980-12-09 Showa Denko Kk Manufacture of boron nitride filled carbon product
JPS5888107A (en) * 1981-11-16 1983-05-26 Denki Kagaku Kogyo Kk Continuous preparation of alpha-type silicon nitride

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB870084A (en) * 1958-03-24 1961-06-14 United States Borax Chem Method of manufacturing boron nitride
JPS5347320A (en) * 1976-10-13 1978-04-27 Nippon Musical Instruments Mfg Manufacturing of magnetic material
JPS55158176A (en) * 1979-05-24 1980-12-09 Showa Denko Kk Manufacture of boron nitride filled carbon product
JPS5888107A (en) * 1981-11-16 1983-05-26 Denki Kagaku Kogyo Kk Continuous preparation of alpha-type silicon nitride

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256307A (en) * 1985-09-05 1987-03-12 Tokuyama Soda Co Ltd Production of powder mixed with boron nitride
JPH11322310A (en) * 1998-05-11 1999-11-24 Sumitomo Electric Ind Ltd Cubic boron nitride polycrystalline abrasive grain and its production
EP1053973A1 (en) * 1999-05-19 2000-11-22 Advanced Ceramics Corporation Spherical boron nitride process, system and product of manufacture
US6348179B1 (en) 1999-05-19 2002-02-19 University Of New Mexico Spherical boron nitride process, system and product of manufacture
WO2005070822A1 (en) * 2004-01-14 2005-08-04 Paint & Powder Technologies Llc Continuous pusher-type furnacing system for the production of high-quality uniform boron nitride
US8617503B2 (en) 2009-08-20 2013-12-31 Kaneka Corporation Process for production of spheroidized boron nitride
WO2011021366A1 (en) * 2009-08-20 2011-02-24 株式会社カネカ Process for production of spheroidized boron nitride
JP5673539B2 (en) * 2009-08-20 2015-02-18 株式会社カネカ Method for producing spheroidized boron nitride
JP2012111657A (en) * 2010-11-24 2012-06-14 Denki Kagaku Kogyo Kk Boron nitride powder, method for producing the same, composition containing the same, and heat dissipative material
WO2013065556A1 (en) 2011-11-02 2013-05-10 株式会社カネカ Process for continuous production of boron nitride powder
JPWO2013065556A1 (en) * 2011-11-02 2015-04-02 株式会社カネカ Continuous production method of boron nitride powder
EP2774893A4 (en) * 2011-11-02 2015-11-25 Kaneka Corp Process for continuous production of boron nitride powder
EP2855401A4 (en) * 2012-05-30 2015-06-03 Auckland Uniservices Ltd Production of bn-composite materials
WO2014109134A1 (en) * 2013-01-10 2014-07-17 株式会社カネカ Hexagonal boron nitride, and resin molded article having high thermal conductivities which is produced using same
JPWO2014109134A1 (en) * 2013-01-10 2017-01-19 株式会社カネカ Hexagonal boron nitride and high thermal conductive resin molding using the same
JP2016060661A (en) * 2014-09-17 2016-04-25 株式会社トクヤマ Boron nitride powder and method for producing the same
JP2016088799A (en) * 2014-11-04 2016-05-23 株式会社トクヤマ Method of producing boron nitride powder

Also Published As

Publication number Publication date
JPH0211521B2 (en) 1990-03-14

Similar Documents

Publication Publication Date Title
CN103305739B (en) A kind of high nitrogen VN alloy VN18 and production method thereof
JPS60155507A (en) Continuous preparation of boron nitride
JPS6112844B2 (en)
US4818511A (en) Process and apparatus for producing non-oxide compounds
KR20110112334A (en) Method for producing high-purity silicon nitride
US4619905A (en) Process for the synthesis of silicon nitride
KR880005286A (en) Continuous manufacturing process of high purity ultra fine aluminum nitride by carbon-nitridation of alumina
US4511666A (en) Process for producing beta'-silicon aluminum oxynitride (B'-SiAlON)
JPS6111886B2 (en)
JPS61286207A (en) Production of boron nitride
CN104986749A (en) Pushing type dynamic continuous preparing method for My(CXN1-X) powder and sintering device
AU560369B2 (en) Method of making yttrium silicon oxynitrides
JPH0416502A (en) Production of boron nitride
JPH028964B2 (en)
JPS5884108A (en) Manufacture of high purity alpha-type silicon nitride
JPH0483706A (en) Production of boron nitride
WO2005070822A1 (en) Continuous pusher-type furnacing system for the production of high-quality uniform boron nitride
JP2726703B2 (en) Method for producing aluminum nitride powder
JP3585302B2 (en) Manufacturing method of aluminum nitride
IL104435A (en) Continuous process for the preparation of silicon nitride by carbonitriding and silicon nitride obtained thereby
US20030101850A1 (en) Continuous procedure for the manufacture of powdered materials
JP3539777B2 (en) Manufacturing method of aluminum nitride
JPH08245206A (en) Boron carbonitride compound and method for synthesizing the same
JPH0463802B2 (en)
JPH02192408A (en) Production of aluminum nitride powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term