JP3539777B2 - Manufacturing method of aluminum nitride - Google Patents

Manufacturing method of aluminum nitride Download PDF

Info

Publication number
JP3539777B2
JP3539777B2 JP26951094A JP26951094A JP3539777B2 JP 3539777 B2 JP3539777 B2 JP 3539777B2 JP 26951094 A JP26951094 A JP 26951094A JP 26951094 A JP26951094 A JP 26951094A JP 3539777 B2 JP3539777 B2 JP 3539777B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
temperature
reaction
product
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26951094A
Other languages
Japanese (ja)
Other versions
JPH08133710A (en
Inventor
正人 山崎
和生 脇村
将夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP26951094A priority Critical patent/JP3539777B2/en
Publication of JPH08133710A publication Critical patent/JPH08133710A/en
Application granted granted Critical
Publication of JP3539777B2 publication Critical patent/JP3539777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は新規な窒化アルミニウム粉末及びその製法に関する。詳しくは、半導体周辺材料及び耐熱・耐蝕性セラミックスとして好適に用いられる窒化アルミニウム焼結体を得るための原料窒化アルミニウム粉末及びその製法に関する。
【0002】
【従来技術】
従来、窒化アルミニウム粉末の合成方法として次の2つの方法が工業化されていた。ひとつは金属アルミニウム粉末を窒素またはアンモニアガスで窒化する直接窒化法であり、もうひとつはアルミナとカーボンの粉末混合物を還元雰囲気下で焼成するアルミナ還元法である。これに対して最近有機アルミニウム法が原料として蒸留等により精製の可能な有機アルミニウムを用いるため、製品の高純度化が容易というメリットを有しており注目されている。
【0003】
【発明が解決しようとする課題】
しかしながら、有機アルミニウム法は得られる製品中に原料のアルキル基に起因する不純物を炭素として3wt%前後含有するという問題点を有していた。そのため、この炭素を除去するために、有機アルミニウムとアンモニアの反応で生成した窒化アルミニウム前駆体を酸化性ガス雰囲気下(空気中など)での焼成や、特開平2-199009で開示されているように、NH3 中での焼成を行って炭素含有量を減少する必要があり、結果として過剰に酸化されて酸素を数%含有することになって、製品を焼結した際の熱伝導率悪化の原因となっていた。また、NH3 中での焼成は前駆体中の炭素の除去には大変有効な方法であるものの、NH3 および電力原単位の悪化等、経済的な問題、さらに高温下NH3 雰囲気に耐える材質が無いということもあり、装置面と安全性の点からも問題点を有していた。
【0004】
例えば特公平4-8364には、有機アルミニウムガスとアンモニアガスとを反応させて窒化アルミニウム粉末を製造する方法が開示されている。この方法はこれらの化合物を200 ℃以下で混合した後に600 〜1300℃で反応せしめるものであるが、反応温度が600 〜1300℃と高く、不経済であること、高温下でアンモニア雰囲気に耐えうる素材が無いことから安全性の面で問題がある。さらに、200 ℃以下でこれらの化合物を混合した場合、混合部での閉塞が起きて長時間の運転が困難となるなど、工業化するには種々問題点があった。
【0005】
【課題を解決するための手段】
本発明者らは、上記問題点を解決するため、高純度の窒化アルミニウム粉末を安価に製造する方法について鋭意研究を行ってきた。その結果、従来は不可能とされていた、炭素含有量を低く抑えた窒化アルミニウム粉末を酸化処理やアンモニア中での焼成なしに製造する方法を開発することができ、本発明を完成するにいたった。
【0006】
即ち、本発明の窒化アルミニウムの製造方法は、有機アルミニウムとアンモニアを気相反応させて、窒化アルミニウムを製造する方法において、有機アルミニウムに対するアンモニアのモルを比1.5 〜100 、反応温度を300 ℃以上600 ℃未満、反応ゾーンでのガス滞留時間を0.5 〜1.5 秒で反応を行い、生成した窒化アルミニウム前駆体を不活性ガス中において1100〜1900℃で焼成することを特徴とするものである。従来、有機アルミニウム法で得られる窒化アルミニウム粉末は酸化ガス雰囲気中で700 ℃以上の温度で焼成する必要があり、結果として過剰に酸化されて酸素を数%含有し、この酸素原子が熱伝導率に悪影響を及ぼしていた。本発明ではこの問題点を簡単なプロセスで解決でき、工業的に極めて有利である。
【0007】
本発明の原料として使用される有機アルミニウムはAlR1R2R3(R1,R2,R3 はCH3,C2H5,n-C3H7,i-C3H7などのC1〜C4のアルキル基のひとつ以上の組み合わせ) で示されるものであり、代表的な有機アルミニウムとしてトリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム等があげられる。これらはそれぞれ融点は15.3℃、-45.5 ℃、1.0 ℃、沸点は127.1 ℃、186.6 ℃、〔常圧下では、沸点以下で熱分解〕という物性を有し、いずれも常温で液体であるため、蒸留精製などの簡単な手段で高純度化が可能である。また、工業的に生産する際の入手の容易さも特徴のひとつとしてあげることができる。
【0008】
本発明では、気化した精製有機アルミニウム化合物を、通常のH2,N2,He,Ar などのキャリアガスで反応器内に導入し、これと同時に反応器内にNH3 を導入しながら、有機アルミニウムに対するNH3 のモル比が1.5 〜100 の範囲で、300 ℃以上600 ℃未満の反応温度で、反応ゾーンでの滞留時間が0.5 〜1.5 秒で気相反応させる。このようにして得られる窒化アルミニウム前駆体は炭素を3wt%程度含有するものの、含有する有機物が熱分解によってガス化揮散し易く、この窒化アルミニウム前駆体を1100〜1900℃の温度で焼成することによって得られる窒化アルミニウム粉末は、平均粒子径が0.2 〜10μm で、炭素の含有量が0.2 wt%以下であり非常に少ない。
【0009】
また、この時得られる窒化アルミニウム前駆体の赤外吸収スペクトルを調べたところ、図1および図2に示すように700 ℃以上の高温下、あるいは滞留時間2秒以上で気相反応させた場合と比べ、約720 cm-1に観測されるAlN (窒化アルミニウム)の吸収スペクトルの吸光度と約2175cm-1の吸収スペクトルの吸光度との比が大きい。このことから700 ℃以上の高温下、あるいは滞留時間2秒以上で気相反応させた場合には窒化アルミニウム生成以外の副反応が進行し、生じる副反応生成物が焼成中に揮散せず残りやすいということが推察された。本願の方法で製造した窒化アルミニウム前駆体は上で述べた吸光度の比は3以上となり、揮散し難い副反応生成物の生成が少ない。
【0010】
本発明の方法ではアンモニアと有機アルミニウムのモル比は1.5 〜100 、好ましくは2 〜30がよい。モル比が1.5 以下では反応が完全に進まず、有機アルミニウムが一部分解種として生成物中に残留するため、また、モル比100 以上では反応上は問題がないものの、生産性が悪くなるため経済的に好ましくない。
【0011】
反応温度は300 ℃以上600 ℃未満、好ましくは400 ℃以上600 ℃未満で行うのがよい。、600 ℃以上では、副反応によって生成する有機物が多くなり、同様に焼成中に揮散せずに残るため好ましくない。また反応温度300 ℃以下では反応が完全に進まず、有機アルミニウムが一部分分解種として生成物中に残留する。これは比較的揮散し易いものの、300 ℃以下ではその絶対量が多くなるため、焼成中に一部が揮散せずに残り好ましくない。
【0012】
反応ゾーンでの滞留時間は0.5 〜1.5 秒がよい。滞留時間0.5 秒未満では反応が完全に進まず、有機アルミニウムが一部分分解種として生成物中に残留し焼成中に揮散せずに残るため好ましくなく、1.5 秒を越えると副反応によって生成する有機物が多くなり、同様に焼成中に揮散せずに残るため好ましくない。
【0013】
前駆体の焼成は、不活性ガス中で1100〜1900℃の温度で行う。不活性ガスとしては、He,N2,Ar等から選ぶことが可能であるが、経済的な面から考えるとN2ガスが好ましい。温度は1100℃でも十分であるが残留有機物の揮散は1400℃以上でさらに良くなる。しかし、1900℃を越えると部分的なシンタリングが発生し製品の歩留りを悪化させる。粒子径はレーザー回折・散乱式の粒径分布測定装置により測定した。また、炭素濃度の分析にはセラミックス中炭素・水素・窒素分析装置(LECO製)を用いた。
【0014】
本発明の窒化アルミニウム前駆体を不活性ガス雰囲気下、1400〜1900℃の温度で焼成すると、平均粒子径が0.5 〜10μm で炭素の含有量が0.2 wt%以下である窒化アルミニウム粉末が得られる。また、1100〜1400℃の温度で焼成すると平均粒子径が0.2 〜2 μm で炭素の含有量が0.3wt %以下である窒化アルミニウム粉末が得られる。
【0015】
【実施例】
以下に本発明を実施例によって具体的に例示するが、本発明はこれらの実施例に限定されるものではない。
【0016】
実施例1
内径8cm 、長さ6mの外部加熱により480 ℃に温度制御された空塔反応器にNH3 を毎時2.64kg、トリエチルアルミニウムを窒素ガスをキャリアーとして毎時0.87kgフィードし反応させた。フューム状の反応生成物をSUS316製の焼結金属フィルターにより補集したところ約310gの生成物(窒化アルミニウム前駆体)を得た。反応ゾーンでの滞留時間はヒーターの加熱長を変えることで行ったが、計算値で1秒であった。この結果得られた生成物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1600℃に昇温し、同温度で3時間保持した後室温まで降温し、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0017】
実施例2
反応器温度を580 ℃に温度制御した他は実施例1と同じ装置で同様におこなって約310gの生成物を得た。反応ゾーンでの滞留時間は1秒であった。この結果得られた生成物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1600℃に昇温し、同温度で3 時間保持した後室温まで降温し、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0018】
比較例1
反応器温度を780 ℃に温度制御した他は実施例1と同じ装置で同様におこなって約310gの生成物を得た。反応ゾーンでの滞留時間は0.9 秒であった。この結果得られた生成物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1600℃に昇温し、同温度で3時間保持した後室温まで降温し、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0019】
比較例2
反応温度を580 ℃に温度制御した他は実施例1と同じ装置で同様におこなって約310gの生成物を得た。ただし反応ゾーンでの滞留時間は2.5 秒であった。この結果得られた生成物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1600℃に昇温し、同温度で3時間保持した後室温まで降温し窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0020】
比較例3
反応温度を580 ℃に温度制御した他は実施例1と同じ装置で同様におこなって約310gの生成物を得た。ただし反応ゾーンでの滞留時間はヒーターの加熱長を変え0.2 秒であった。この結果得られた生成物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1600℃に昇温し、同温度で3時間保持した後室温まで降温し窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0021】
比較例4
実施例1と同じ装置で580 ℃に温度制御された空塔反応器にNH3 を毎時0.14kg、トリエチルアルミニウムを窒素ガスをキャリアーとして毎時0.87kgフィードし反応を行なった。フューム状の反応生成物をSUS316製の焼結金属フィルターにより補集したところ約280gの生成物を得た。反応ゾーンでの滞留時間は1秒であった。この結果得られた生成物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1600℃に昇温し、同温度で3 時間保持した後室温まで降温し、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0022】
実施例3
反応器温度を580 ℃に温度制御した他は実施例1と同じ装置で同様におこなって約310gの生成物を得た。反応ゾーンでの滞留時間は1秒であった。この結果得られた生成物をカーボン製坩堝にいれて、窒素ガス雰囲気下で1200℃に昇温し、同温度で3 時間保持した後室温まで降温し、窒化アルミニウム粉末を得た。評価結果を表1に示す。
【0023】
実施例4
NH3 フィード量を毎時1.04kgとした他は実施例1と同じ装置で同様に行なって約310gの生成物を得た。反応ゾーンでの滞留時間は約0.7 秒であった。この結果得られた生成物をカーボン製坩堝に入れて、窒素ガス雰囲気下で1600℃に昇温し、同温度で3時間保持した後、室温まで降温し、窒化アルミニウム粉末を得た。この評価結果を表1に示す。
【0024】
【表1】

Figure 0003539777
【0025】
【発明の効果】
本発明の方法によれば、反応後の生成した窒化アルミニウム前駆体の焼成を不活性ガス雰囲気下で行なうことで、有効に脱炭素処理を行なうことができ、従来の酸化性雰囲気またはアンモニア雰囲気での焼成処理に比較して、プロセス及び装置面で極めて容易であり、コスト的に有利である。また、品質でも優れた窒化アンモニウム粉末を工業的に得ることができる。
【図面の簡単な説明】
【図1】本発明に係る実施例2で得られた窒化アルミニウム前駆体のIR測定チャートを示す。
【図2】本発明に係る比較例1で得られた窒化アルミニウム前駆体のIR測定チャートを示す。[0001]
[Industrial applications]
The present invention relates to a novel aluminum nitride powder and a method for producing the same. More specifically, the present invention relates to a raw material aluminum nitride powder for obtaining an aluminum nitride sintered body suitably used as a semiconductor peripheral material and a heat-resistant and corrosion-resistant ceramic, and a method for producing the same.
[0002]
[Prior art]
Conventionally, the following two methods have been industrialized as methods for synthesizing aluminum nitride powder. One is a direct nitriding method in which metallic aluminum powder is nitrided with nitrogen or ammonia gas, and the other is an alumina reducing method in which a powder mixture of alumina and carbon is fired in a reducing atmosphere. On the other hand, recently, the organoaluminum method uses organic aluminum that can be purified by distillation or the like as a raw material, and thus has the merit that the product can be easily purified to a high degree, and thus has attracted attention.
[0003]
[Problems to be solved by the invention]
However, the organoaluminum method has a problem that the resulting product contains about 3% by weight of carbon-based impurities due to the alkyl group of the raw material. Therefore, in order to remove the carbon, the aluminum nitride precursor produced by the reaction between the organoaluminum and ammonia is calcined in an oxidizing gas atmosphere (such as in air), or as disclosed in JP-A-2-199009. In addition, it is necessary to reduce the carbon content by baking in NH 3 , resulting in excessive oxidation and containing several percent of oxygen, resulting in poor thermal conductivity when the product is sintered. Was the cause. In addition, although calcination in NH 3 is a very effective method for removing carbon in the precursor, economical problems such as deterioration of NH 3 and power consumption unit, and materials that can withstand NH 3 atmosphere at high temperatures There was no problem, and there was a problem in terms of the device and safety.
[0004]
For example, Japanese Patent Publication No. 4-8364 discloses a method of producing an aluminum nitride powder by reacting an organic aluminum gas and an ammonia gas. In this method, these compounds are mixed at a temperature of 200 ° C or less and then reacted at 600 to 1300 ° C. However, the reaction temperature is as high as 600 to 1300 ° C, which is uneconomical and can withstand an ammonia atmosphere at high temperatures. Since there is no material, there is a problem in terms of safety. Further, when these compounds are mixed at a temperature of 200 ° C. or lower, there are various problems in industrialization, such as clogging in the mixing section, making long-term operation difficult.
[0005]
[Means for Solving the Problems]
The present inventors have enthusiastically studied a method for inexpensively producing high-purity aluminum nitride powder in order to solve the above problems. As a result, it has been possible to develop a method of producing aluminum nitride powder having a low carbon content, which has been considered impossible in the past, without oxidation treatment or calcination in ammonia, thereby completing the present invention. Was.
[0006]
That is, in the method for producing aluminum nitride according to the present invention, in the method for producing aluminum nitride by reacting organic aluminum with ammonia in a gas phase, the molar ratio of ammonia to organic aluminum is 1.5 to 100, and the reaction temperature is 300 ° C. or higher and 600 ° C. or higher. The reaction is carried out at a temperature of less than 0 ° C and a gas residence time in the reaction zone of 0.5 to 1.5 seconds, and the produced aluminum nitride precursor is calcined at 1100 to 1900 ° C in an inert gas. Conventionally, aluminum nitride powder obtained by the organoaluminum method must be calcined in an oxidizing gas atmosphere at a temperature of 700 ° C. or more, and as a result, is excessively oxidized and contains several percent of oxygen. Was adversely affected. According to the present invention, this problem can be solved by a simple process, which is industrially extremely advantageous.
[0007]
The organic aluminum is used as a raw material of the present invention is AlR 1 R 2 R 3 (R 1, R 2, R 3 is CH 3, C 2 H 5, nC 3 C 1 ~C such H 7, iC 3 H 7 And at least one combination of 4 alkyl groups), and typical organic aluminums include trimethylaluminum, triethylaluminum, triisopropylaluminum and the like. These have the following properties: melting point: 15.3 ° C, -45.5 ° C, 1.0 ° C, boiling point: 127.1 ° C, 186.6 ° C [pyrolysis under normal pressure, below the boiling point]. High purity can be achieved by simple means such as purification. In addition, easy availability in industrial production can be cited as one of the features.
[0008]
In the present invention, the purified organic aluminum compound vaporized is introduced into the reactor with a normal carrier gas such as H 2 , N 2 , He, and Ar, and simultaneously, NH 3 is introduced into the reactor, The gas phase reaction is carried out at a reaction temperature of 300 ° C. or more and less than 600 ° C. with a residence time of 0.5 to 1.5 seconds in a reaction zone at a molar ratio of NH 3 to aluminum in the range of 1.5 to 100. Although the aluminum nitride precursor thus obtained contains about 3% by weight of carbon, the contained organic matter is easily gasified and volatilized by thermal decomposition. By firing this aluminum nitride precursor at a temperature of 1100 to 1900 ° C, The obtained aluminum nitride powder has an average particle diameter of 0.2 to 10 μm and a carbon content of 0.2 wt% or less, which is very small.
[0009]
The infrared absorption spectrum of the aluminum nitride precursor obtained at this time was examined. As shown in FIGS. 1 and 2, it was found that the aluminum nitride precursor was subjected to a gas phase reaction at a high temperature of 700 ° C. or more or a residence time of 2 seconds or more. In comparison, the ratio of the absorbance of the absorption spectrum of AlN (aluminum nitride) observed at about 720 cm -1 to the absorbance of the absorption spectrum at about 2175 cm -1 is larger. From this, when a gas phase reaction is performed at a high temperature of 700 ° C. or more or a residence time of 2 seconds or more, a side reaction other than the formation of aluminum nitride proceeds, and the generated by-products are likely to remain without being volatilized during firing. That was speculated. The aluminum nitride precursor produced by the method of the present invention has an absorbance ratio of 3 or more as described above, and generates little by-products that are difficult to volatilize.
[0010]
In the method of the present invention, the molar ratio of ammonia to organoaluminum is preferably from 1.5 to 100, and more preferably from 2 to 30. When the molar ratio is less than 1.5, the reaction does not proceed completely, and organoaluminum partially remains in the product as a decomposed species. Is not preferred.
[0011]
The reaction is carried out at a temperature of 300 ° C. to less than 600 ° C., preferably 400 ° C. to less than 600 ° C. If the temperature is higher than 600 ° C., the amount of organic substances generated by the side reaction increases, which similarly remains without volatilizing during firing, which is not preferable. At a reaction temperature of 300 ° C. or lower, the reaction does not proceed completely, and organoaluminum partially remains in the product as a decomposed species. Although this is relatively easy to volatilize, its absolute amount becomes large at 300 ° C. or lower, so that a part thereof does not volatilize during firing and is not preferable.
[0012]
The residence time in the reaction zone is preferably 0.5 to 1.5 seconds. If the residence time is less than 0.5 seconds, the reaction does not proceed completely, and the organoaluminum remains partially in the product as a decomposed species and remains without volatilizing during firing. It is also not preferable because it increases and similarly remains without volatilizing during firing.
[0013]
The calcination of the precursor is performed in an inert gas at a temperature of 1100-1900C. The inert gas can be selected from He, N 2 , Ar and the like, but N 2 gas is preferable from the viewpoint of economy. A temperature of 1100 ° C is sufficient, but the volatilization of residual organic matter is further improved at 1400 ° C or higher. However, when the temperature exceeds 1900 ° C., partial sintering occurs and the product yield is deteriorated. The particle size was measured by a laser diffraction / scattering type particle size distribution measuring device. The carbon concentration was analyzed using a carbon / hydrogen / nitrogen analyzer in ceramics (LECO).
[0014]
When the aluminum nitride precursor of the present invention is fired at a temperature of 1400 to 1900 ° C. in an inert gas atmosphere, an aluminum nitride powder having an average particle size of 0.5 to 10 μm and a carbon content of 0.2 wt% or less is obtained. When calcined at a temperature of 1100 to 1400 ° C., an aluminum nitride powder having an average particle size of 0.2 to 2 μm and a carbon content of 0.3 wt% or less is obtained.
[0015]
【Example】
Hereinafter, the present invention will be specifically illustrated by way of examples, but the present invention is not limited to these examples.
[0016]
Example 1
An empty tower reactor having an inner diameter of 8 cm and a length of 6 m and controlled at 480 ° C. by external heating was fed with 2.64 kg / hour of NH 3 and 0.87 kg / hour of triethylaluminum using nitrogen gas as a carrier. The fume-like reaction product was collected by a SUS316 sintered metal filter to obtain about 310 g of a product (aluminum nitride precursor). The residence time in the reaction zone was changed by changing the heating length of the heater, but the calculated value was 1 second. The resulting product was placed in a carbon crucible, heated to 1600 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0017]
Example 2
The same procedure as in Example 1 was repeated except that the reactor temperature was controlled at 580 ° C., to obtain about 310 g of a product. The residence time in the reaction zone was 1 second. The resulting product was placed in a carbon crucible, heated to 1600 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0018]
Comparative Example 1
The same procedure as in Example 1 was repeated except that the reactor temperature was controlled at 780 ° C. to obtain about 310 g of a product. The residence time in the reaction zone was 0.9 seconds. The resulting product was placed in a carbon crucible, heated to 1600 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0019]
Comparative Example 2
About 310 g of a product was obtained in the same manner as in Example 1 except that the reaction temperature was controlled at 580 ° C. However, the residence time in the reaction zone was 2.5 seconds. The resulting product was placed in a carbon crucible, heated to 1600 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0020]
Comparative Example 3
About 310 g of a product was obtained in the same manner as in Example 1 except that the reaction temperature was controlled at 580 ° C. However, the residence time in the reaction zone was 0.2 seconds by changing the heating length of the heater. The resulting product was placed in a carbon crucible, heated to 1600 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0021]
Comparative Example 4
Using the same apparatus as in Example 1, a reaction was carried out by feeding 0.14 kg / h of NH 3 and 0.87 kg / h of triethylaluminum using nitrogen gas as a carrier to an empty tower reactor controlled at 580 ° C. in temperature. The fume-like reaction product was collected by a SUS316 sintered metal filter to obtain about 280 g of the product. The residence time in the reaction zone was 1 second. The resulting product was placed in a carbon crucible, heated to 1600 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0022]
Example 3
The same procedure as in Example 1 was repeated except that the reactor temperature was controlled at 580 ° C., to obtain about 310 g of a product. The residence time in the reaction zone was 1 second. The resulting product was placed in a carbon crucible, heated to 1200 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0023]
Example 4
About 310 g of a product was obtained in the same manner as in Example 1, except that the NH 3 feed rate was changed to 1.04 kg / h. The residence time in the reaction zone was about 0.7 seconds. The resulting product was put into a carbon crucible, heated to 1600 ° C. in a nitrogen gas atmosphere, kept at the same temperature for 3 hours, and then cooled to room temperature to obtain an aluminum nitride powder. Table 1 shows the evaluation results.
[0024]
[Table 1]
Figure 0003539777
[0025]
【The invention's effect】
According to the method of the present invention, the decarburization treatment can be effectively performed by baking the produced aluminum nitride precursor after the reaction in an inert gas atmosphere. It is extremely easy in terms of process and equipment as compared with the calcination treatment, and is advantageous in cost. Further, an ammonium nitride powder excellent in quality can be industrially obtained.
[Brief description of the drawings]
FIG. 1 shows an IR measurement chart of the aluminum nitride precursor obtained in Example 2 according to the present invention.
FIG. 2 shows an IR measurement chart of the aluminum nitride precursor obtained in Comparative Example 1 according to the present invention.

Claims (2)

有機アルミニウムとアンモニアを気相反応させて窒化アルミニウムを製造する方法において、有機アルミニウムに対するアンモニアのモル比を1.5 〜100 、反応温度を300 ℃以上600 ℃未満、反応ゾーンでのガス滞留時間を0.5 〜1.5 秒で反応を行い、生成した窒化アルミニウム前駆体を不活性ガス中において1100〜1900℃で焼成することを特徴とする窒化アルミニウムの製造方法。In a method for producing aluminum nitride by reacting an organic aluminum with ammonia in a gas phase, the molar ratio of ammonia to organic aluminum is 1.5 to 100, the reaction temperature is 300 ° C. or more and less than 600 ° C., and the gas residence time in the reaction zone is 0.5 to A method for producing aluminum nitride, comprising reacting for 1.5 seconds and firing the produced aluminum nitride precursor at 1100 to 1900 ° C. in an inert gas. 原料有機アルミニウムがトリメチルアルミニウム、またはトリエチルアルミニウム、またはトリイソプロピルアルミニウムである請求項1記載の窒化アルミニウムの製造方法。The method for producing aluminum nitride according to claim 1, wherein the raw material organic aluminum is trimethylaluminum, triethylaluminum, or triisopropylaluminum.
JP26951094A 1994-11-02 1994-11-02 Manufacturing method of aluminum nitride Expired - Fee Related JP3539777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26951094A JP3539777B2 (en) 1994-11-02 1994-11-02 Manufacturing method of aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26951094A JP3539777B2 (en) 1994-11-02 1994-11-02 Manufacturing method of aluminum nitride

Publications (2)

Publication Number Publication Date
JPH08133710A JPH08133710A (en) 1996-05-28
JP3539777B2 true JP3539777B2 (en) 2004-07-07

Family

ID=17473427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26951094A Expired - Fee Related JP3539777B2 (en) 1994-11-02 1994-11-02 Manufacturing method of aluminum nitride

Country Status (1)

Country Link
JP (1) JP3539777B2 (en)

Also Published As

Publication number Publication date
JPH08133710A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
EP0186144B1 (en) Process for preparing aluminum nitride powder
US4619905A (en) Process for the synthesis of silicon nitride
GB2040902A (en) High purity silicon nitride and its production
US4929432A (en) Process for producing crystalline silicon nitride powder
JP3539777B2 (en) Manufacturing method of aluminum nitride
JPS62241812A (en) Manufacture of silicon nitride
JP3585302B2 (en) Manufacturing method of aluminum nitride
US4582696A (en) Method of making a special purity silicon nitride powder
JPH0553723B2 (en)
US5662875A (en) Continuous process for the preparation of silicon nitride by carbonitriding and silicon nitride thereby obtained
US4795622A (en) Method for producing silicon-imide
EP0225412B1 (en) Production of silicon imides and of silicon nitride thereof
JP2726703B2 (en) Method for producing aluminum nitride powder
JP3385059B2 (en) Method for producing high-purity aluminum nitride powder
JP3325344B2 (en) Method for producing aluminum nitride powder
JPS61151005A (en) Production of alpha type crystalline silicon nitride
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH062568B2 (en) Method for producing high-purity silicon carbide powder
JPH0454609B2 (en)
JPS62143805A (en) Removal of chlorine and/or fluorine from silicon nitride powder
NO178999B (en) Process for reducing carbon pollutants in finely divided ceramic powders
JPS61136904A (en) Production of composite fine powder of silicon nitride and silicon carbide
JPS60235707A (en) Production of fine complex powder
JPH08245206A (en) Boron carbonitride compound and method for synthesizing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees