JPS61286207A - Production of boron nitride - Google Patents

Production of boron nitride

Info

Publication number
JPS61286207A
JPS61286207A JP12485885A JP12485885A JPS61286207A JP S61286207 A JPS61286207 A JP S61286207A JP 12485885 A JP12485885 A JP 12485885A JP 12485885 A JP12485885 A JP 12485885A JP S61286207 A JPS61286207 A JP S61286207A
Authority
JP
Japan
Prior art keywords
precursor
heating
boron nitride
mixture
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12485885A
Other languages
Japanese (ja)
Other versions
JPH0535083B2 (en
Inventor
Yasuo Yoshida
吉田 保夫
Kazuo Aoyanagi
青柳 和夫
Kiyoshi Katayama
片山 清
Yukio Iizuka
飯塚 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12485885A priority Critical patent/JPS61286207A/en
Publication of JPS61286207A publication Critical patent/JPS61286207A/en
Publication of JPH0535083B2 publication Critical patent/JPH0535083B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain BN excellent in crystallizability for a short time by adding water to a mixture of boric acid or boric anhydride and an organic cyclic compd. having NH2 group, thereafter molding and heating the mixture. CONSTITUTION:A BN precursor is obtained by mixing boric acid or boric anhydride and an organic cyclic compd. having NH2 group such as melamine and adding water to the mixture. Then after the precursor is molded to increase the bulk density, dried and/or calcinated, it is calcined in the nonoxidizing atmosphere. By molding the precursor in such a way, the large quantities of precursor can be charged in a heating apparatus having the specified and the productivity is increased and furthermore the thermal conductivity of the precur sor is made excellent and thereby the quick elevation in temp. and the uniform heating are performed. Also since the clearances are caused among the precursors, the escape of a gas generated by being thermally decomposed is made easy and the blow-off and the scattering which are caused in case of heating the precursor in a powdery state are prevented. Furthermore since boric anhydride is made to high temp. and remains for a long time after the volatilization of a volatile component high in the decomposition pressure in an initial period, the crystallizing of BN is performed extremely excellently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ホウ素の製造法に関し、さらに詳しくは、
加熱時間を短縮し、最高温度を、低下させ、処理量を増
加し、大きな結晶が得られ、さらに゛操作し易い改良さ
れた窒化ホウ素の製造法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing boron nitride, and more specifically,
This invention relates to an improved method for producing boron nitride that shortens heating time, lowers the maximum temperature, increases throughput, provides large crystals, and is easy to operate.

〔従来の技術〕[Conventional technology]

従来、窒化ホウ素の工業的製造法としては、ホウ酸、無
水ホウ酸或いはホウ砂と、ジシアンジアミド、メラミン
、尿素等の熱分解によってアンモニアを発生する有機化
合物との混合物を加熱するか、または、ホウ酸をリン酸
カルシウムのような比表面積の大きい充填剤と共に造粒
し、アンモニア気流中で加熱する方法が行なわれている
。この方法は、それぞれの融点以上の温度で窒化される
ホウ酸またはホウ砂の反応表面を保持することが難かし
く、反応率も低いため、製造バッチの大型化、および急
熱による反応時間の短縮を妨げている◎さらに、この方
法はメラミン等の′炭化により、得られる窒化ホウ素が
黒化したり、窒化が不均一となったりする問題もある。
Traditionally, boron nitride has been produced industrially by heating a mixture of boric acid, boric anhydride, or borax and an organic compound that generates ammonia through thermal decomposition, such as dicyandiamide, melamine, or urea. A method is used in which acid is granulated with a filler having a large specific surface area such as calcium phosphate, and then heated in an ammonia stream. In this method, it is difficult to maintain the reaction surface of boric acid or borax that is nitrided at a temperature above their respective melting points, and the reaction rate is low, so the production batch is large and the reaction time is shortened due to rapid heating. Further, this method has the problem that the obtained boron nitride becomes black due to carbonization of melamine, etc., and nitridation becomes uneven.

これに対し、ホウ酸或いは無水ホウ酸とメラミン等を混
合しさらに水を加えて窒化ホウ素前躯体を生成させ、こ
れを不活性雰囲気中で加熱する方法は、前編体生成中に
メラミンが常温で完全に反応するため、その後の加熱に
よるメラミン炭化が無く、さらに前躯体の加熱残分は窒
化ホウ素のみが残り、他の成分はすべて気散するので、
高収率で高純度の窒化ホウ素が容易に得られることを知
った。
On the other hand, a method in which boric acid or boric anhydride is mixed with melamine, etc., water is added to form a boron nitride precursor, and this is heated in an inert atmosphere is that the melamine is kept at room temperature during the formation of the precursor. Because the reaction is complete, there is no melamine carbonization due to subsequent heating, and only boron nitride remains after heating the precursor, and all other components are vaporized.
We learned that high yield and high purity boron nitride can be easily obtained.

〔発明が解決しようとする問題点] そこで、上記方法について種々研究を行なったところ、
上記窒化ホウ素前躯体は、過剰の水分を存在させると、
加熱後窒化ホウ素として残る窒素とホウ素の外に、多量
の加熱揮発分を含んでおり、加熱時過剰水分を含めたこ
れら揮発分が蒸発するため、前躯体を加熱すると、前編
体粉末の飛散があり、また熱が内部まで伝わりにくく、
大量の前編体を均一、かつ急速に加熱することが困難で
あった。さらに揮発成分が除去された後、残留する無水
ホウ酸も低い温度で速やかに揮発するため、700℃以
上での窒化ホウ素の結晶成長がなく、結晶性のよい窒化
ホウ素が得にくい欠点があった。
[Problems to be solved by the invention] Therefore, after conducting various research on the above method, we found that
When the above boron nitride precursor is in the presence of excess moisture,
In addition to nitrogen and boron that remain as boron nitride after heating, it contains a large amount of heated volatile matter, and these volatile matter, including excess moisture, evaporate during heating. Yes, and it is difficult for heat to be transmitted to the inside,
It has been difficult to uniformly and rapidly heat a large amount of pre-woven bodies. Furthermore, after the volatile components are removed, the remaining boric anhydride evaporates quickly at low temperatures, so boron nitride crystals do not grow at temperatures above 700°C, making it difficult to obtain boron nitride with good crystallinity. .

本発明は上記の事情に鑑み、大量の前躯体を均一、かつ
急速に加熱して、短時間に結晶性のよい窒化ホウ素を得
る方法を提供することを目的とするO 〔問題点を解決するための手段] 本発明は上記の目的を達成するためになされたもので、
その要旨は、ホウ酸、もしくは無水ホウ酸とN H2基
を有する有機環状化合物との混合物に水を加え、次いで
成形し、嵩密度を高めて加熱する窒化ホウ素の製造法に
ある。
In view of the above circumstances, the present invention aims to provide a method for uniformly and rapidly heating a large amount of precursor to obtain boron nitride with good crystallinity in a short time. Means for achieving the above object] The present invention has been made to achieve the above object,
The gist is a method for producing boron nitride, which involves adding water to a mixture of boric acid or boric anhydride and an organic cyclic compound having an N H2 group, followed by molding, increasing the bulk density, and heating.

〔発明の具体的構成および作用〕[Specific structure and operation of the invention]

本発明に用いられるホウ酸或いは無水ホウ酸のうちホウ
酸としてはオルソホウ酸、メタホウ酸、四ホウ酸がいず
れも使用出来る。
Of the boric acid or boric anhydride used in the present invention, any of orthoboric acid, metaboric acid, and tetraboric acid can be used as the boric acid.

また、NHs基を有する有機環状化合物は、望ましくは
窒化ホウ素の加熱反応に際して溶融しないものである。
Further, the organic cyclic compound having an NHs group desirably does not melt during the heating reaction of boron nitride.

例えばメラミン、アンメリン、アンメリド、メラム、メ
レム、メロン、シアノメラミン、グアニルメラミン等で
ある。溶融しないことが望ましい理由は、加熱時発泡し
、分解ガスが逃散し翔く、分解不十分により炭化し易く
黒化し、また窒化ホウ素純度が低下するためである。尿
素(HgNCONH2)  は水と容易に溶けあい分解
してNHsを発生するので、ホウ酸との安定な前躯体を
作り難(好ましくない。
Examples include melamine, ammeline, ammelide, melam, melem, melon, cyanomelamine, guanylmelamine, and the like. The reason why it is desirable not to melt is that it foams when heated, the decomposition gas escapes and flies, and due to insufficient decomposition, it tends to carbonize and turn black, and the purity of boron nitride decreases. Urea (HgNCONH2) easily dissolves in water and decomposes to generate NHs, making it difficult to form a stable precursor with boric acid (unfavorable).

今、ホウ酸(Hs BOs又)’!J(BO2)或いは
無水ホウ酸(B*Os)とメラミン(Cs NeHs 
)を用い、窒化ホウ素(BN)を調造する場合について
説明する。先ず、ホウ酸或いは無水ホウ酸とメラミンと
をB/N原子比で1/3〜2/1の割合で混合したもの
に水を加えると、CHNs (N)b−HaBOs )
sの分子式で示される前躯体が得られる。これをタブレ
ットマシン等の造粒機によって成形し、この成形体を乾
燥しさらに仮焼するか、乾燥或いは仮焼した後、非酸化
性雰囲気において焼成することにより純度の高い結晶性
のよい大方晶窒化ホウ素(BN)が得られる。
Now, boric acid (Hs BOs)'! J (BO2) or boric anhydride (B*Os) and melamine (Cs NeHs
) is used to prepare boron nitride (BN). First, when water is added to a mixture of boric acid or boric anhydride and melamine at a B/N atomic ratio of 1/3 to 2/1, CHNs (N)b-HaBOs)
A precursor represented by the molecular formula of s is obtained. This is molded using a granulator such as a tablet machine, and this molded body is dried and further calcined, or after drying or calcining, it is calcined in a non-oxidizing atmosphere to produce a highly pure, highly crystalline macrogonal crystal. Boron nitride (BN) is obtained.

上記前躯体を成形して用いることにより、前躯体の嵩密
度が高くなり、一定容量の加熱装置に多量の前躯体が装
入出来、生産性が増大する。また嵩密度が上ることによ
って熱伝導率がよくなり、大量の成形前躯体を加熱する
場合、中心部まで容易に熱が伝わり、急速な昇温か可能
となるとともに均一に加熱される。また、個々の前躯体
間に隙間が生ずるため、加熱分解して発生するガスの逃
散が容易となり、前躯体な粉末の状態で加熱する場合に
発生する吹上げ、飛散が防止される。さらに、嵩密度が
高いことKより、初期の分解圧力の高い揮発成分の揮発
後も無水ホウ酸が高温になって長時間残留するので、窒
化ホウ素の結晶成長が極めてよく行なわれる。
By molding and using the precursor, the bulk density of the precursor becomes high, and a large amount of the precursor can be charged into a heating device with a constant capacity, thereby increasing productivity. In addition, the increased bulk density improves thermal conductivity, and when heating a large amount of molded precursors, heat is easily transmitted to the center, allowing rapid temperature rise and uniform heating. Furthermore, since gaps are created between the individual precursors, the gas generated by thermal decomposition can easily escape, and the blowing up and scattering that occur when the precursors are heated in a powdered state is prevented. Further, due to the high bulk density of K, boric anhydride remains at a high temperature for a long time even after the volatile components with high initial decomposition pressure are volatilized, so that crystal growth of boron nitride is carried out extremely well.

上記B/Nの原子比が173〜2/1の範囲である理由
は、原子比が173未溝では、水の存在下で前躯体にな
らないメラミンが残存して焼成中に炭化し窒化ホウ素を
黒色或いは褐色化する。
The reason why the B/N atomic ratio is in the range of 173 to 2/1 is that when the atomic ratio is not 173, melamine that does not become a precursor remains in the presence of water and is carbonized during firing and forms boron nitride. Turns black or brown.

結晶性のよいBNを得るにはB/N=1/1以上である
ことが望ましく、約271までホウ酸の量に応じて結晶
性の改善が見られ、ホウ酸又は無水ホウ酸の量が原子比
2/1を越えても結晶性の改善は見られず、製品中に無
益に存在する。すなわち二上記範囲では、Bの割合が多
いと結晶性のよいBNが得やすい。
In order to obtain BN with good crystallinity, it is desirable that B/N = 1/1 or more, and improvement in crystallinity is seen depending on the amount of boric acid up to about 271, and as the amount of boric acid or boric anhydride increases Even if the atomic ratio exceeds 2/1, no improvement in crystallinity is observed, and it remains useless in the product. That is, in the above range, the higher the proportion of B, the easier it is to obtain BN with good crystallinity.

一方無定形窒化ホウ素(BN )を得るには、メラミン
が過剰、通常、172以下であることがよい。従って好
ましいB/N比の範囲は1/3〜2/1である。
On the other hand, in order to obtain amorphous boron nitride (BN), it is preferable that melamine be in excess, usually 172 or less. Therefore, the preferred range of B/N ratio is 1/3 to 2/1.

水の混合量は、原料として市BO3”HBOz・B20
gのうちいずれを用いるかKよって多少異なるがHBC
h 、B2O5は水と反応してHsBOsとなるので、
それに消費される水の量だけ多(あればよい。HsBO
sを使用した場合、粉状のメラミン、ホウ酸であれば、
メラミン11当90.2〜0.39の水を加えて、スク
リュー攪拌により混合及び成形が可能である。また粒状
のメラミン、ホウ酸を混合粉砕する場合、メラミン1g
fi91.5〜2Iの水を加えると糊状になり攪拌しに
くいが、2gを越えると次第に流動性を生じボールミル
で攪拌することが出来る。しかし水の量が多すぎると、
乾燥しなげれば、成形出来なくなる。従って成形を前提
とすると、メラミン1g当り、水は0.2〜2g程度が
よい。過剰の水は成形の前に脱水してこの範囲にしても
よい。
The amount of water mixed is BO3"HBOz/B20 as a raw material.
Which of g to use differs depending on K, but HBC
h, B2O5 reacts with water to form HsBOs, so
As much water as it consumes (if necessary, HsBO
When using s, if powdered melamine or boric acid,
Mixing and molding are possible by adding 90.2 to 0.39 parts of water per 11 parts of melamine and stirring with a screw. When pulverizing granular melamine and boric acid, 1g of melamine
When water with a fi of 91.5 to 2I is added, it becomes pasty and difficult to stir, but when it exceeds 2 g, it gradually becomes fluid and can be stirred in a ball mill. However, if there is too much water,
If it is not dried, it will not be possible to mold it. Therefore, assuming molding, the amount of water per 1 g of melamine is preferably about 0.2 to 2 g. Excess water may be dehydrated to this range before molding.

成形はプレス成形、パンペレタイザー等によって行なう
ことが出来、塊状物、造粒物等にされる。
Molding can be carried out by press molding, pan pelletizer, etc., and it is made into lumps, granules, etc.

BN生成の加熱温度は、300〜2300°Cが適する
。その際の雰囲気はN2s 入1”、NHsである。
The suitable heating temperature for BN generation is 300 to 2300°C. The atmosphere at that time was 1" containing N2s and NHs.

また、生成したBNの結晶性を高めるために1さらに高
温に加熱することも出来る。加熱の前に成形物を乾燥し
てもよい。
Moreover, in order to improve the crystallinity of the produced BN, it is also possible to heat it to an even higher temperature. The molded product may be dried before heating.

次に実施例、比較例を示して本発明の方法を説:il)
Next, the method of the present invention will be explained by showing Examples and Comparative Examples:
.

明する。I will clarify.

〔実施例1〕 無水ホウ酸粉末=34ゆ、メラミン粉末;40ゆを品用
式攪拌機に入れ、攪拌しながら水;35−を徐々に加え
、約100時の前躯体粉末を得た。
[Example 1] Boric anhydride powder = 34 yen and melamine powder;

得られた前躯体粉末の嵩比重は0.56であった。The bulk specific gravity of the obtained precursor powder was 0.56.

この前編体粉末を機械プレスによって造粒成形し、20
+tダXlOmtのタブレットの成形前躯体を得た。こ
の成形前躯体の嵩比重は0.74であった。
This pre-knit powder was granulated using a mechanical press, and
A molded precursor of a +t×XlOmt tablet was obtained. The bulk specific gravity of this molded precursor was 0.74.

この成形前躯体の全量を80℃で乾燥し、次いてステン
レス製の加熱容器に装入し、窒素気流中で、10[]0
”Cまで4時間かけて昇温した。得られた製品はステン
レス容器に装入前と外見状の変化がなく、崩壊、粉化も
認められなかった。更にこの製品を窒化ホウ素で内張す
した黒鉛容器中に入れ、窒素ガス気流中で1400℃ま
で加熱し、最終製品とした。この最終製品のX線回折図
を第1図に示した。図より明かなよ51CBNの明確な
回折線を示し、結晶化の程度を示すLo値(学振炭素材
料117委員会法に準する)は500人であった。
The entire amount of this molded precursor was dried at 80°C, then placed in a stainless steel heating container, and heated in a nitrogen stream for 10 []0
The temperature was raised to ``C'' over 4 hours.The obtained product had no change in appearance from before being charged into the stainless steel container, and no disintegration or powdering was observed.Furthermore, this product was lined with boron nitride. The final product was prepared by placing it in a graphite container and heating it to 1400°C in a nitrogen gas stream.The X-ray diffraction pattern of this final product is shown in Figure 1.As can be seen from the figure, a clear diffraction line of 51CBN was observed. The Lo value (according to the Japan Society for Carbon Materials 117 Committee Law), which indicates the degree of crystallization, was 500.

〔比較例1〕 実施例1と同じ操作、条件によって前躯体粉末を得た。[Comparative example 1] A precursor powder was obtained using the same operations and conditions as in Example 1.

この前躯体粉末を80℃で十分乾燥し、内容量:200
gのステンレス製加熱器に装入し、窒素ガスを5g/分
の速度で流しながら、4時間かけて昇温した。加熱時、
揮発ガスと共に1粉末の飛散があり、ガス出口バイブが
詰り、窒素ガス吹込みパイプに接続したゴム配管が吹き
飛び、揮発ガスと共に粉末も容器外に噴出した。800
℃付近まで粉末の飛散が甚しく、静まった時点で再度窒
素ガス吹込みパイプに上記ゴム管を接続して窒素ガスを
上記加熱器に送入した。
Thoroughly dry this precursor powder at 80°C, content: 200
The mixture was placed in a stainless steel heater of 1.5 g, and the temperature was raised over 4 hours while flowing nitrogen gas at a rate of 5 g/min. When heating,
A powder was scattered along with the volatile gas, the gas outlet vibrator was clogged, the rubber piping connected to the nitrogen gas blowing pipe was blown off, and the powder was blown out of the container along with the volatile gas. 800
The scattering of the powder was severe until the temperature reached around 0.degree. C., and once it had subsided, the rubber tube was connected to the nitrogen gas blowing pipe again and nitrogen gas was fed into the heater.

1000℃に昇温した後冷却したが、中心部はガラス状
に固着し炭化黒色化が見られた。この冷却、固化した粉
末には揮発ガスの噴出孔が残り、装入時の粉末の1/3
fがガスと共に噴出していた。
Although the temperature was raised to 1000° C. and then cooled, the center part was fixed in a glassy state and blackened by carbonization. Volatile gas ejection holes remain in this cooled and solidified powder, leaving 1/3 of the powder at the time of charging.
f was spewing out along with the gas.

残った製品を粉砕し、実施例1と同じ窒化ホウ素を内張
すした黒鉛容器中で、窒素を通しながら1400℃まで
加熱し、最終製品とした。この最終製品のX線回折図を
第2図に示す。第1図に比べて、BNの回折強度が著し
く弱(、BO値も200人で結晶成長が不十分なことを
示している◎〔実施例2〕 本発明の方法によって連続的にBNfj!:、Ill造
するには、第3図にフローを示す装置によって行なう。
The remaining product was pulverized and heated to 1400° C. while passing nitrogen in the same graphite container lined with boron nitride as in Example 1 to obtain a final product. The X-ray diffraction pattern of this final product is shown in FIG. Compared to Fig. 1, the diffraction intensity of BN is significantly weaker (and the BO value is also 200, indicating that the crystal growth is insufficient◎ [Example 2]) Continuously BNfj! by the method of the present invention: , Ill is fabricated using an apparatus whose flow is shown in FIG.

すなわち、定量供給機を有するホウ酸(Hs BOs 
)ホッパー1およびメラミンホッパー2より重量でホウ
F!!/メラミン=170.6の割合でスクリュ混合機
3に供給し、さらに水タンク4より重量で、ホウ酸/水
=110.93の割合で水を加える。上記スクリュ混合
機3内でこれらを1時間攪拌反応させ、窒化ホウ素の前
躯体を生成させ、これをスクリュ混合機3の排出端3&
より排出し、ブリケラティンマシン5のホッパー5&に
送入する。ホッパー5a内の前編体はブリケラティング
マシン5に送られ、造粒、成形され、主反応炉6に供給
される。主反応炉6は密閉回転円筒炉で、加熱装置を備
えている。この主反応炉6には、窒素ボンベ7より窒素
が導入されている。上記主反応炉6に導入された成形前
躯体は、窒素気流中で210[rC1時間焼成される。
That is, boric acid (Hs BOs) with a metering feeder
) by weight from Hopper 1 and Melamine Hopper 2! ! The mixture was supplied to the screw mixer 3 at a ratio of boric acid/melamine = 170.6, and water was further added by weight from the water tank 4 at a ratio of boric acid/water = 110.93. These are stirred and reacted for one hour in the screw mixer 3 to generate a precursor of boron nitride, which is then transferred to the discharge end 3 of the screw mixer 3.
It is discharged from the briquette machine 5 and fed into the hopper 5 & of the briquette machine 5. The prewoven body in the hopper 5a is sent to the briquetting machine 5, where it is granulated and shaped, and then supplied to the main reactor 6. The main reactor 6 is a closed rotary cylindrical furnace equipped with a heating device. Nitrogen is introduced into the main reactor 6 from a nitrogen cylinder 7. The molded precursor introduced into the main reactor 6 is fired in a nitrogen stream for 210 rC for 1 hour.

この焼成された生成物は、水冷ジャケラ・トが設げられ
た冷却帯8を経てボールミル9によって粉砕される。こ
の粉砕された生成物は、洗浄装置10に導かれ、40℃
の温水で洗浄され、次いで真空濾過911で濾過され、
BN以外の生成物が除去される。不純生成物の除去され
たBNは、乾燥機12によって乾燥され、BNの最終製
品となる。
The calcined product passes through a cooling zone 8 equipped with a water-cooled jacket and is pulverized by a ball mill 9. This pulverized product is led to a washing device 10 and is heated to 40°C.
washed with hot water, then filtered with vacuum filtration 911,
Products other than BN are removed. The BN from which impurity products have been removed is dried by a dryer 12 to become a final BN product.

また、主反応炉6に導入された窒素ガスは、主反応炉6
内で発生したガス等と共に除害塔13゜14に導かれ、
窒素以外のガス等を除去した後、大気に放出される。
In addition, the nitrogen gas introduced into the main reactor 6 is
It is guided to the abatement tower 13゜14 together with the gas etc. generated inside.
After removing gases other than nitrogen, it is released into the atmosphere.

上記連続装置によって得られたBNの収率は、理論収率
の95%に達した。
The yield of BN obtained by the above continuous apparatus reached 95% of the theoretical yield.

〔効果〕〔effect〕

以上述べたように本発明の方法は、前躯体を造粒、成形
した後これを焼成するので、成形前躯体の嵩密度が高く
なるととKより伝熱性がよ(なり、大量の成形前躯体が
急速かつ均一に加熱され生産性が大幅に向上し、また発
生するガスは成形前躯体の粒間を通って排出されるので
、粉体前躯体な使用する場合のような粉体吹上げ、或い
はそれの放出等による損失がなく、さらに、初期の分解
圧力の高い揮発成分が揮発した後までも、無水ホウ酸が
高温下で長時間にわたって残留し、 BNの結晶性がよ
くなる等多くの効果を具現す不゛ものである。
As described above, in the method of the present invention, the precursor is granulated and molded, and then fired. Therefore, when the bulk density of the molded precursor is high, the heat conductivity is better than that of K. is heated rapidly and uniformly, greatly improving productivity, and the gas generated is discharged through the grains of the molding precursor, making it possible to eliminate powder blowing, such as when using powder precursors. In addition, there is no loss due to release of boric acid, and even after the volatile components with high initial decomposition pressure have volatilized, boric anhydride remains for a long time at high temperatures, resulting in many effects such as improving the crystallinity of BN. It is an imitation that embodies the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は成形前躯体を用いて造ったBNOX線回折図、
第2図は粉末前躯体を用いて造ったBNのX線回折図、
第3図は、本発明の方法によるBNの連続製造装置のフ
ローを示す図である。 1・・・・・・ホウ酸ホッパー、2・・・・・・メラ之
ンホツバー、3・・・・・・スクリュー混合機、3a・
・・・・・排出端、4・・・・・・水タンク、5・・・
・・・プリケラティングマシン、5&・・・・・・ホッ
パー、6・・・・・・主反応炉、7・・・・・・窒素ボ
ンベ、8・・・・・・冷却帯、9・・・・・・ボールミ
ル、10・・・・・・洗浄装器、11・・・・・・真空
濾過機、12・・・・・・乾燥機、13,14・・・・
・・除害塔。
Figure 1 is a BNOX-ray diffraction diagram created using the molded precursor.
Figure 2 is an X-ray diffraction diagram of BN made using the powder precursor.
FIG. 3 is a diagram showing the flow of a continuous BN manufacturing apparatus according to the method of the present invention. 1...Boric acid hopper, 2...Melanon hopper, 3...Screw mixer, 3a.
...Discharge end, 4...Water tank, 5...
... Pre-kerating machine, 5 & ... hopper, 6 ... Main reactor, 7 ... Nitrogen cylinder, 8 ... Cooling zone, 9. ... Ball mill, 10 ... Cleaning equipment, 11 ... Vacuum filter, 12 ... Dryer, 13, 14 ...
...Abatement tower.

Claims (1)

【特許請求の範囲】[Claims] ホウ酸、もしくは無水ホウ酸とNH_2基を有する有機
環状化合物との混合物に水を加え、次いで成形し、嵩密
度を高めて加熱することを特徴とする窒化ホウ素の製造
法。
A method for producing boron nitride, which comprises adding water to a mixture of boric acid or boric anhydride and an organic cyclic compound having an NH_2 group, followed by molding, increasing bulk density, and heating.
JP12485885A 1985-06-08 1985-06-08 Production of boron nitride Granted JPS61286207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12485885A JPS61286207A (en) 1985-06-08 1985-06-08 Production of boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12485885A JPS61286207A (en) 1985-06-08 1985-06-08 Production of boron nitride

Publications (2)

Publication Number Publication Date
JPS61286207A true JPS61286207A (en) 1986-12-16
JPH0535083B2 JPH0535083B2 (en) 1993-05-25

Family

ID=14895836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12485885A Granted JPS61286207A (en) 1985-06-08 1985-06-08 Production of boron nitride

Country Status (1)

Country Link
JP (1) JPS61286207A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188411A (en) * 2004-12-28 2006-07-20 General Electric Co <Ge> Method for manufacturing boron nitride
JP2009149469A (en) * 2007-12-20 2009-07-09 Denki Kagaku Kogyo Kk Method for producing hexagonal boron nitride
WO2013065556A1 (en) * 2011-11-02 2013-05-10 株式会社カネカ Process for continuous production of boron nitride powder
JP2015107884A (en) * 2013-12-03 2015-06-11 株式会社トクヤマ Method for producing boron nitride
KR20180015683A (en) 2015-09-03 2018-02-13 쇼와 덴코 가부시키가이샤 Hexavalent boron nitride powder, production method thereof, resin composition and resin sheet
WO2018124126A1 (en) 2016-12-28 2018-07-05 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2018123788A1 (en) 2016-12-28 2018-07-05 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2019130869A1 (en) 2017-12-27 2019-07-04 Showa Denko K.K. Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
CN111377742A (en) * 2020-03-23 2020-07-07 河北工业大学 Template-free synthesis method of three-dimensional porous hexagonal boron nitride

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111453706A (en) * 2020-04-27 2020-07-28 信阳市德福鹏新材料有限公司 Synthesis method of hexagonal boron nitride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191505A (en) * 1984-10-23 1986-08-26 Natl Inst For Res In Inorg Mater Production of boron nitride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191505A (en) * 1984-10-23 1986-08-26 Natl Inst For Res In Inorg Mater Production of boron nitride

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188411A (en) * 2004-12-28 2006-07-20 General Electric Co <Ge> Method for manufacturing boron nitride
JP2009149469A (en) * 2007-12-20 2009-07-09 Denki Kagaku Kogyo Kk Method for producing hexagonal boron nitride
WO2013065556A1 (en) * 2011-11-02 2013-05-10 株式会社カネカ Process for continuous production of boron nitride powder
JPWO2013065556A1 (en) * 2011-11-02 2015-04-02 株式会社カネカ Continuous production method of boron nitride powder
JP2015107884A (en) * 2013-12-03 2015-06-11 株式会社トクヤマ Method for producing boron nitride
KR20180015683A (en) 2015-09-03 2018-02-13 쇼와 덴코 가부시키가이샤 Hexavalent boron nitride powder, production method thereof, resin composition and resin sheet
US10781352B2 (en) 2015-09-03 2020-09-22 Showa Denko K.K. Powder of hexagonal boron nitride, process for producing same, resin composition, and resin sheet
WO2018124126A1 (en) 2016-12-28 2018-07-05 昭和電工株式会社 Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2018123788A1 (en) 2016-12-28 2018-07-05 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
KR20190082951A (en) 2016-12-28 2019-07-10 쇼와 덴코 가부시키가이샤 Hexavalent boron nitride powder, production method thereof, resin composition and resin sheet
KR20190082952A (en) 2016-12-28 2019-07-10 쇼와 덴코 가부시키가이샤 Hexavalent boron nitride powder, production method thereof, resin composition and resin sheet
US11577957B2 (en) 2016-12-28 2023-02-14 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
US11305993B2 (en) 2016-12-28 2022-04-19 Showa Denko K.K. Hexagonal boron nitride powder, method for producing same, resin composition and resin sheet
WO2019130869A1 (en) 2017-12-27 2019-07-04 Showa Denko K.K. Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
KR20200031140A (en) 2017-12-27 2020-03-23 쇼와 덴코 가부시키가이샤 Hexagonal boron nitride powder and its manufacturing method, composition and heat dissipation material using the same
CN111377742A (en) * 2020-03-23 2020-07-07 河北工业大学 Template-free synthesis method of three-dimensional porous hexagonal boron nitride
CN111377742B (en) * 2020-03-23 2022-04-26 河北工业大学 Template-free synthesis method of three-dimensional porous hexagonal boron nitride

Also Published As

Publication number Publication date
JPH0535083B2 (en) 1993-05-25

Similar Documents

Publication Publication Date Title
US3473894A (en) Preparation of hexagonal boron nitride
EP0414803B1 (en) Method of producing boron carbide
CA1334331C (en) Apparatus and method for producing uniform, fine boron-containing ceramic powders
JPS61286207A (en) Production of boron nitride
US5126121A (en) Process for preparing aluminum nitride powder via controlled combustion nitridation
US5194234A (en) Method for producing uniform, fine boron-containing ceramic powders
JPS6111886B2 (en)
JPS60155507A (en) Continuous preparation of boron nitride
JPS6197110A (en) Manufacture of silicon nitride having high alpha-phase content
JP5043632B2 (en) Method for producing hexagonal boron nitride
JPH0611643B2 (en) Boron Nitride Manufacturing Method
US2079324A (en) Method of producing fertilizers
Boussebha et al. Dynamic/thermochemical method: A novel approach in the synthesis of B4C powder
JPH08290905A (en) Hexagonal boron nitride powder and its production
JPH10203806A (en) Production of boron nitride powder
US2856279A (en) Nitrogen-phosphorus compounds
CN105967156B (en) A kind of dedicated h-BN powders of synthesis c-BN and preparation method thereof
JPH0138042B2 (en)
JPH0416502A (en) Production of boron nitride
JPH01176208A (en) Production of fine powder of boron nitride of hexagonal system
JP2726703B2 (en) Method for producing aluminum nitride powder
JPH0483706A (en) Production of boron nitride
JPH0610105B2 (en) Method for manufacturing boron nitride sintered body
JPS58115016A (en) Preparation of fine powdery silicon carbide
US3336309A (en) Preparation of cyanuric acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term