JPH0483706A - Production of boron nitride - Google Patents

Production of boron nitride

Info

Publication number
JPH0483706A
JPH0483706A JP19669090A JP19669090A JPH0483706A JP H0483706 A JPH0483706 A JP H0483706A JP 19669090 A JP19669090 A JP 19669090A JP 19669090 A JP19669090 A JP 19669090A JP H0483706 A JPH0483706 A JP H0483706A
Authority
JP
Japan
Prior art keywords
carbon
compound
boron
boron nitride
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19669090A
Other languages
Japanese (ja)
Inventor
Hidenobu Miyazawa
宮澤 英伸
Yutaka Sato
豊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP19669090A priority Critical patent/JPH0483706A/en
Publication of JPH0483706A publication Critical patent/JPH0483706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily obtain boron nitride powder with hardly any impurities by mixing carbon and/or a compound thereof in an organic solvent containing a boron compound dissolved therein, drying the resultant mixture, granulating the dried mixture and heating the prepared granules in a nitrogen atmosphere. CONSTITUTION:Part or all of a boron compound (e.g. boric acid, diborane, ethyl borate or methyl borate) is dissolved in an organic solvent (e.g. methanol, ethanol or propanol) and carbon or a compound thereof or both are simultaneously mixed with the resultant solution. The prepared mixture is then dried and granulated to afford granules, which are subsequently heated in a nitrogen atmosphere to afford the objective boron nitride.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ほう素化合物と炭素及び/又は炭素化合物と
の混合物を窒素雰囲気下で窒化して窒化ほう素を製造す
る方法に関し、更に詳述するとほう素化合物と炭素及び
/又は炭素化合物との混合方法を改良して純度の良い窒
化ほう素を製造する方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing boron nitride by nitriding a mixture of a boron compound and carbon and/or a carbon compound in a nitrogen atmosphere. Specifically, the present invention relates to a method for producing boron nitride of high purity by improving the method of mixing a boron compound with carbon and/or a carbon compound.

〔従来の技術及び発明が解決しようとする課題〕従来よ
り、ほう素化合物と炭素及び/又は炭素化合物との混合
物を竪型炉やトンネル型の棚積式式プッシャー炉を用い
て連続的に窒素雰囲気下で窒化する方法が知られている
(特開昭6015507号公報)。
[Prior art and problems to be solved by the invention] Conventionally, a mixture of boron compounds and carbon and/or carbon compounds has been continuously heated with nitrogen using a vertical furnace or a tunnel-type shelf-type pusher furnace. A method of nitriding in an atmosphere is known (Japanese Unexamined Patent Publication No. 6015507).

しかし、従来の方法は、ほう素化合物と炭素及び/又は
炭素化合物とを各々粉末で単純に混合していたため、連
続的に窒化する方法ではほう素化合物粉末と炭素及び/
又は炭素化合物粉末との混合物が比重の違い等により不
均質になり易く、このため窒化後の窒化ほう素粉末中に
未反応の炭素が残留することがあり、窒化ほう素の純度
を低下させる原因になっていた。しかも、混合後の粉末
を窒化する際、窒化温度がほう素化合物の融点よりはる
かに高いためにほう素化合物が溶融して流れ出してしま
い、混合物の表面積が減少し、窒素との接触面積が減少
する結果、反応が十分に進行しなくなり、この点でも未
反応物が残り易いものであった。また二の場合、この傾
向は窒化時に1つの容器に仕込む量が増えるほど顕著に
あられれ。
However, in the conventional method, the boron compound and the carbon and/or carbon compound were simply mixed in powder form.
Alternatively, the mixture with carbon compound powder tends to become inhomogeneous due to differences in specific gravity, etc., and for this reason, unreacted carbon may remain in the boron nitride powder after nitriding, which causes a decrease in the purity of boron nitride. It had become. Moreover, when the mixed powder is nitrided, the nitriding temperature is much higher than the melting point of the boron compound, so the boron compound melts and flows out, reducing the surface area of the mixture and the contact area with nitrogen. As a result, the reaction did not proceed sufficiently, and unreacted substances tended to remain in this respect as well. In the second case, this tendency becomes more pronounced as the amount charged into one container increases during nitriding.

これを防くためには仕込量を制限する必要かあるので、
生産性の低下を招いていた。
In order to prevent this, it is necessary to limit the amount of preparation.
This was causing a decline in productivity.

これらの不具合を防止するため、ほう素化合物と炭素及
び/又は炭素化合物との混合物にポリビニルアルコール
水溶液等を加えて、この混合物をペレット化する方法が
知られているが、この方法は水を用いるために水溶液が
増粘し、炭素及び/又は炭素化合物との混合物との濡れ
が悪く、均一に混合できないという問題がある上、水分
の蒸発に多くの熱量を要し、不経済であった。
In order to prevent these problems, a method is known in which an aqueous polyvinyl alcohol solution or the like is added to a mixture of a boron compound and carbon and/or a carbon compound, and this mixture is pelletized, but this method uses water. This causes the aqueous solution to thicken, resulting in poor wettability with the mixture with carbon and/or carbon compounds, making it impossible to mix uniformly. In addition, a large amount of heat is required to evaporate water, making it uneconomical.

一方、ほう素化合物をアンモニア等の還元性雰囲気下で
加熱して窒化ほう素を得る方法では上述した問題が生し
ないが、反応が低温で行なわれるため高結晶性の粉末を
得ることが難しく、このため窒化終了後に生成物を再加
熱するなどの対策が必要であった。
On the other hand, the method of obtaining boron nitride by heating a boron compound in a reducing atmosphere such as ammonia does not cause the above-mentioned problems, but it is difficult to obtain highly crystalline powder because the reaction takes place at a low temperature. Therefore, it was necessary to take measures such as reheating the product after nitriding.

本発明は上記事情に鑑みなされたもので、ほう素化合物
と炭素及び/又は炭素化合物との混合物を窒素雰囲気下
で窒化して窒化ほう素を製造する方法において、炭素等
が未反応物として残留することを可及的に防止し、高品
質な窒化ほう素粉末を生産性良く得ることのできる窒化
ほう素の製造方法を提供することを目的とする。
The present invention was made in view of the above circumstances, and is a method for producing boron nitride by nitriding a mixture of a boron compound and carbon and/or a carbon compound in a nitrogen atmosphere, in which carbon, etc. remain as unreacted substances. It is an object of the present invention to provide a method for producing boron nitride that can prevent such problems as much as possible and obtain high-quality boron nitride powder with good productivity.

〔課題を解決するための手段及び作用〕本発明者は上記
目的を達成するため鋭意検討を重ねた結果、ほう素化合
物と炭素及び/又l′!炭素化合物とを該ほう素化合物
の一部又は全部が溶解可能な有機溶媒と共に混合し、こ
れを乾燥造粒してほう素化合物と炭素、炭素化合物との
混合顆粒を窒素雰囲気下で加熱して窒化ほう素を得るこ
とが有効であることを知見した。
[Means and effects for solving the problem] As a result of intensive studies to achieve the above object, the present inventors discovered that boron compounds, carbon and/or l'! A carbon compound is mixed with an organic solvent in which part or all of the boron compound can be dissolved, and this is dried and granulated, and the mixed granules of the boron compound, carbon, and the carbon compound are heated in a nitrogen atmosphere. It was found that it is effective to obtain boron nitride.

即ち、ほう酸等のほう素化合物とカーボンブラック等の
炭素や炭素化合物とをメタノール等の有機溶媒と共に混
合することにより、原料の混合カニ湿式で行なわれ、ま
た、原料の一つであるほう素化合物の一部又は全部が有
機溶媒中に溶けた状態であるため、水を用いた場合と異
なり溶液の増粘もなく、粘度が低いため、均一に原料を
混合することができ、特に炭素源としてカーボンブラン
クを用いた場合、従来の水溶液と異なり濡れが良く、し
かもカーボンブラックの比重がほう酸等のほう素化合物
に比へて極端に小さいため、通常の混合方法ではカーボ
ンブラックとほう酸等のほう素化合物との均一な混合が
望めないものであったが、カーホンブラックとほう酸等
のほう素化合物とをメタノール等の有機溶媒と共に混合
した場合、有機溶媒中のほう素化合物が乾燥時にカーホ
ンブラックを核として析出するため、カーボンブラック
の表面をほう素化合物が十分に濡らした状態となること
を知見した。更に、上述したように従来の混合粉末を用
いる窒化方法では、窒化温度がほう素化合物の融点をは
るかに超えるため、ほう素化合物が溶融して流れ出てし
まい、混合物の表面積が減少し、このため窒素との接触
面積が減少し反応が十分に進行しなくなり、未反応物が
残り易いものであったが、上述した有機溶媒による湿式
混合後の原料を顆粒状とすることにより、ほう素化合物
が溶融しても十分な表面積を有し、従って窒化の反応が
十分に進行し、このため−ボート内の原料の仕込量を増
やした場合にも炭素等の未反応物が残らず、生産性が向
上すると共に、得られる窒化ほう素が高品質であること
を見い出し、本発明をなすに至ったものである 従って、本発明は、ほう素化合物と炭素及び/又は炭素
化合物との混合物を窒素雰囲気下に加熱して、窒化ほう
素化合物を製造する方法において、ほう素化合物の一部
又は全部を有機溶媒に溶解すると共に、該溶液に炭素及
び/又は炭素化合物を混合し、次いでこれを乾燥、造粒
してほう素化合物と炭素及び/又は炭素化合物との混合
顆粒を製造し、この顆粒を窒素雰囲気下に加熱するよう
にしたことを特徴とする窒化ほう素の製造方法を提供す
る。
That is, the raw material is wet-mixed by mixing a boron compound such as boric acid and carbon or a carbon compound such as carbon black with an organic solvent such as methanol. Because part or all of it is dissolved in an organic solvent, there is no thickening of the solution unlike when water is used, and the viscosity is low, so raw materials can be mixed uniformly, and it is especially useful as a carbon source. When carbon blank is used, unlike conventional aqueous solutions, it has good wettability, and the specific gravity of carbon black is extremely small compared to boron compounds such as boric acid. However, when carbon black and a boron compound such as boric acid are mixed together with an organic solvent such as methanol, the boron compound in the organic solvent becomes carbon black when dried. It was discovered that the boron compound precipitates as a nucleus, so that the surface of the carbon black is sufficiently wetted with the boron compound. Furthermore, as mentioned above, in the conventional nitriding method using mixed powder, the nitriding temperature far exceeds the melting point of the boron compound, so the boron compound melts and flows out, reducing the surface area of the mixture. The contact area with nitrogen was reduced, the reaction did not proceed sufficiently, and unreacted substances tended to remain. However, by making the raw materials into granules after wet mixing with the above-mentioned organic solvent, the boron compound can be reduced. It has a sufficient surface area even when melted, so the nitriding reaction progresses sufficiently, and therefore even when the amount of raw materials charged in the boat is increased, no unreacted substances such as carbon remain, increasing productivity. The inventors have discovered that the obtained boron nitride is of high quality and has led to the present invention. Therefore, the present invention provides a method for preparing a mixture of a boron compound and carbon and/or a carbon compound in a nitrogen atmosphere. In the method of manufacturing a boron nitride compound by heating below, part or all of the boron compound is dissolved in an organic solvent, carbon and/or a carbon compound is mixed in the solution, and then this is dried, A method for producing boron nitride is provided, characterized in that mixed granules of a boron compound and carbon and/or a carbon compound are produced by granulation, and the granules are heated in a nitrogen atmosphere.

以下、本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明の窒化ほう素の製造方法は、上述したように原料
としてほう素化合物と炭素及び/又は炭素化合物とを有
機溶媒を用いて湿式混合し、これを乾燥造粒した顆粒を
使用するものである。
As described above, the method for producing boron nitride of the present invention uses granules obtained by wet-mixing a boron compound and carbon and/or carbon compound as raw materials using an organic solvent, and drying and granulating the mixture. be.

ここで、ほう素化合物としては、例えばほう酸、無水ほ
う酸、ジボランやエチルボレート、メチルボレート等の
有機ほう窒化合物類を挙げることができるが、これらの
中でほう酸が最も好適に用いられる。
Examples of the boron compound include organic boron compounds such as boric acid, boric anhydride, diborane, ethyl borate, and methyl borate, and among these, boric acid is most preferably used.

また、炭素又は炭素化合物としては、例えば通常のアセ
チレンブラック、チャンネルブラック等のカーボンブラ
ック、グラファイト等の炭素や木炭、木粉、タール、ピ
ッチ、あるいはフェノール樹脂、ポリエチレン、ポリス
チレン等の合成高分子物質等が挙げられるが、製品純度
と経済性からカーボンブラックが好適に用いられる。
Examples of carbon or carbon compounds include carbon black such as ordinary acetylene black and channel black, carbon such as graphite, charcoal, wood flour, tar, pitch, and synthetic polymer substances such as phenol resin, polyethylene, and polystyrene. However, carbon black is preferably used in terms of product purity and economical efficiency.

また、ほう素化合物と炭素及び/又は炭素化合物の混合
割合は、元素重量比B/Cで0.6〜1.2の範囲が採
用される。Cに対するBの重量が0.6よりも小さいと
、反応後の残留カーボンが多くなり、一方、Bの混合割
合が1.2よりも大きいと窒化反応前のほう素化合物の
還元反応が不充分となり、ひいては窒化が充分に進行せ
ず、収率が低下してしまうので、上記重量範囲割合が好
ましく、更に好ましい割合は0.6〜]であ0゜ なお、本発明の方法においては、窒化反応をより効率的
にするため、通常の窒化反応に使用される触媒、例えば
鉄、コバルト、ニッケル、カルシウム、マグネシウム、
マンガン、モリブデン等の金属あるいはこれらの酸化物
、炭酸化合物等の金属化合物の常用量が上記原料化合物
に混用できる。
Moreover, the mixing ratio of the boron compound and carbon and/or carbon compound is in the range of 0.6 to 1.2 in element weight ratio B/C. If the weight of B to C is less than 0.6, there will be a large amount of carbon remaining after the reaction, while if the mixing ratio of B is greater than 1.2, the reduction reaction of the boron compound before the nitriding reaction will be insufficient. As a result, the nitriding does not proceed sufficiently and the yield decreases. Therefore, the above weight range ratio is preferable, and the more preferable ratio is 0.6 to 0. To make the reaction more efficient, catalysts used in common nitriding reactions, such as iron, cobalt, nickel, calcium, magnesium,
Conventional amounts of metals such as manganese and molybdenum or metal compounds such as their oxides and carbonate compounds can be mixed with the above raw material compounds.

次に、有機溶媒としては、上述したほう素化合物の一部
又は全部が溶解可能なものを使用するものであり、例え
ばメタノール、エタノール、プロパツール、インプロパ
ツール、ブタノール、イソブタノール、ヘプタツール、
オクタツール、グリセリン等の脂肪族アルコール、ベン
ジルアルコール、フェネチルアルコール等の芳香族アル
コールなどが挙げられるが、これらのなかではメタノー
ルが、粘度が低く、カーボンとの濡れや分散性も良く、
沸点も低いため扱い易く、しかも経済的であるので、最
も好適に用いられる。
Next, the organic solvent used is one in which some or all of the boron compounds mentioned above can be dissolved, such as methanol, ethanol, propatool, impropatol, butanol, isobutanol, heptatool,
Examples include aliphatic alcohols such as octatool and glycerin, and aromatic alcohols such as benzyl alcohol and phenethyl alcohol, but among these, methanol has a low viscosity and has good wettability and dispersibility with carbon.
It has a low boiling point, is easy to handle, and is economical, so it is most preferably used.

本発明においては、上述したほう素化合物と炭素及び/
又は炭素化合物とを上述した有機溶媒と共に混合し、こ
れを乾燥造粒した顆粒を窒化原料とするものである。
In the present invention, the above-mentioned boron compound and carbon and/or
Or a carbon compound is mixed with the above-mentioned organic solvent, and granules obtained by drying and granulating the mixture are used as the nitriding raw material.

ここで、有機溶媒の使用量は、ほう素化合物の一部又は
全部を溶解して炭素や炭素化合物と均一に混合できれば
良く、特に制限されないが、通常ほう素化合物と炭素及
び/又は炭素化合物との合計100重量部に対し、10
0〜2000重量部、好ましくは500〜1500重量
部の配合量とすることができる。
Here, the amount of organic solvent used is not particularly limited as long as it can dissolve part or all of the boron compound and mix uniformly with the carbon and/or carbon compound, but usually the boron compound and the carbon and/or carbon compound are mixed together. For a total of 100 parts by weight, 10
The amount may be 0 to 2000 parts by weight, preferably 500 to 1500 parts by weight.

また、混合方法も特に制限されず、通常の混合方法、例
えばボールミル、ニーダ−、エクストルーダー等を用い
ることができる。更に、乾燥造粒方法も特に制限されな
いが、乾燥と顆粒状に造粒することを同時に行なえる点
で、スプレードライヤーが好適に用いられる。造粒効果
を上げるために、各種バインダーを併用することができ
る。バインダーとしてはPVA、CMC、メチルセルロ
ースが例示される。
Further, the mixing method is not particularly limited, and ordinary mixing methods such as a ball mill, kneader, extruder, etc. can be used. Further, the drying and granulating method is not particularly limited, but a spray dryer is preferably used since it can perform drying and granulating at the same time. Various binders can be used in combination to increase the granulation effect. Examples of the binder include PVA, CMC, and methylcellulose.

このようにして得られたほう素化合物と炭素及び/又は
炭素化合物との混合顆粒は更に必要により粉砕して好ま
しくは粒径100〜5004+111の顆粒状として窒
化に供する。
The thus-obtained mixed granules of boron compound and carbon and/or carbon compound are further pulverized if necessary and subjected to nitriding in the form of granules preferably having a particle size of 100 to 5004+111.

次に、窒化方法はパノ千式、連続式を問わずいずれの方
法も採用し得るが、本発明の方法によって得られた原料
は不均一化を生じないため、特に連続式窒化方法が好適
に採用される。
Next, although any nitriding method can be used, regardless of whether it is a pano-thousand method or a continuous method, the continuous nitriding method is particularly preferable because the raw material obtained by the method of the present invention does not cause non-uniformity. Adopted.

この場合、窒化加熱反応炉として、原料物質を供給する
導入口と炉中を通って加熱反応した反応生成物を取出す
排出口を備えた窒化炉が好適に用いられる。そのような
加熱炉としては、形状に制限はないが、通常知られた各
種の竪型炉や流動床炉又はトンネル炉が好都合に使用で
き、トンネル炉としては棚積式プッシャー類が特に好ま
しい。
In this case, as the nitriding heating reactor, a nitriding furnace equipped with an inlet for supplying raw material and an outlet for taking out the reaction product that has passed through the furnace and has been heated and reacted is preferably used. Although there are no restrictions on the shape of such a heating furnace, various commonly known vertical furnaces, fluidized bed furnaces, or tunnel furnaces can be conveniently used, and shelf-type pushers are particularly preferred as tunnel furnaces.

これらの加熱炉は、本発明の方法における反応温度に耐
える炉材、例えば炭素、炭化けい素、窒化ほう素などの
耐熱材料で構成される。
These heating furnaces are constructed of a furnace material that can withstand the reaction temperatures in the method of the present invention, such as heat-resistant materials such as carbon, silicon carbide, boron nitride, and the like.

また、窒素雰囲気は窒素ガスだけとしてもよく、あるい
は窒素ガスに例えばアルゴン、ヘリウムなどの不活性ガ
スを混合したものであってもよく、更に窒素カスとして
は反応系において容易に窒素ガスに変化し得るもの、例
えばアンモニアガスなどでもよい。
In addition, the nitrogen atmosphere may be made of only nitrogen gas, or may be a mixture of nitrogen gas and an inert gas such as argon or helium. Furthermore, the nitrogen gas is easily converted into nitrogen gas in the reaction system. For example, ammonia gas or the like may be used.

なお、窒化反応は通常1700〜2000℃で、1〜5
時間で行なうことができる。
In addition, the nitriding reaction is usually carried out at 1700 to 2000°C and 1 to 5
It can be done in time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の窒化ほう素の製造方法に
よれば、炭素等の不純物が極めて少ない高品質な窒化ほ
う素粉束を生産性良く、しかも確実に製造できるもので
ある。
As explained above, according to the method for producing boron nitride of the present invention, a high-quality boron nitride powder bundle containing extremely few impurities such as carbon can be produced reliably and with high productivity.

以下、実施例及び比較例を示し、本発明を更に具体的に
説明するが、本発明は下記実施例に制限されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be explained in more detail by showing examples and comparative examples, but the present invention is not limited to the following examples.

〔実施例〕〔Example〕

ほう9900 gとカーボンブラック400gとをメタ
ノール5p中でボールミルを用いて3時間部合した。
9,900 g of carbon black and 400 g of carbon black were combined in 5 parts of methanol using a ball mill for 3 hours.

混合後のスラリーをスプレードライヤーを用いて乾燥と
造粒を同時に行ない、粒径500−前後の顆粒を得た。
The mixed slurry was simultaneously dried and granulated using a spray dryer to obtain granules with a particle size of approximately 500 mm.

この顆粒を黒鉛製容器に充填し、棚積式プッシャー炉(
外形: 1500X1500X8000+no)にN2
カス60Q/分を炉出口方向から原料混合物と向流に流
し、最高温度1900℃で3時間窒化を行なった。
The granules were filled into a graphite container and placed in a shelf-type pusher furnace (
External size: 1500X1500X8000+N2
Nitriding was carried out at a maximum temperature of 1900° C. for 3 hours by flowing the waste 60 Q/min countercurrently to the raw material mixture from the direction of the furnace exit.

〔比較例〕[Comparative example]

ほう酸900gとカーボンブラック400gとを1%ポ
リビニルアルコール水溶液5Q中でボールミルを用いて
3時間部合したが水溶液は増粘し、またカーボンブラッ
クとの濡れも悪いものであった。
900 g of boric acid and 400 g of carbon black were combined in a 1% polyvinyl alcohol aqueous solution 5Q for 3 hours using a ball mill, but the aqueous solution thickened and had poor wetting with carbon black.

混合後のスラリーを真空乾燥及び造粒機を用いて乾燥・
造粒したが、得られたものはまま粉が生じ、均一な顆粒
状粒子は得られなかった。
The slurry after mixing is vacuum dried and dried using a granulator.
Although granulation was carried out, the resulting product was a powder, and uniform granular particles could not be obtained.

この顆粒状粒子を実施例と同様に窒化した。These granular particles were nitrided in the same manner as in the example.

次に、実施例、比較例で得られた窒化ほう素について元
素分析を行なった。その結果を第1表に示す。
Next, elemental analysis was performed on the boron nitride obtained in Examples and Comparative Examples. The results are shown in Table 1.

第   1   表 第1表の結果かられかるように、実施例で得られた窒化
ほう素中の不純物は実質的にわずかのB20.のみであ
り、しかもこのB207は容易に除去することができる
ものである。
Table 1 As can be seen from the results in Table 1, the impurities in the boron nitride obtained in the examples were substantially small in B20. Moreover, this B207 can be easily removed.

これに対し、比較例で得られた窒化ほう素には不純物と
してB20.のほかに、除去し難い炭素が残留している
ものであった。
In contrast, the boron nitride obtained in the comparative example contained B20. In addition to this, there was some residual carbon that was difficult to remove.

出願人  信越化学工業 株式会社 代理人  弁理士 小 島 隆 司Applicant: Shin-Etsu Chemical Co., Ltd. Agent: Patent Attorney Takashi Kojima

Claims (1)

【特許請求の範囲】[Claims] 1、ほう素化合物と炭素及び/又は炭素化合物との混合
物を窒素雰囲気下に加熱して、窒化ほう素化合物を製造
する方法において、ほう素化合物の一部又は全部を有機
溶媒に溶解すると共に、該溶液に炭素及び/又は炭素化
合物を混合し、次いでこれを乾燥、造粒してほう素化合
物と炭素及び/又は炭素化合物との混合顆粒を製造し、
この顆粒を窒素雰囲気下に加熱するようにしたことを特
徴とする窒化ほう素の製造方法。
1. A method for producing a boron nitride compound by heating a mixture of a boron compound and carbon and/or a carbon compound in a nitrogen atmosphere, in which part or all of the boron compound is dissolved in an organic solvent, and Mixing carbon and/or a carbon compound with the solution, then drying and granulating it to produce mixed granules of a boron compound and carbon and/or a carbon compound,
A method for producing boron nitride, characterized in that the granules are heated in a nitrogen atmosphere.
JP19669090A 1990-07-25 1990-07-25 Production of boron nitride Pending JPH0483706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19669090A JPH0483706A (en) 1990-07-25 1990-07-25 Production of boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19669090A JPH0483706A (en) 1990-07-25 1990-07-25 Production of boron nitride

Publications (1)

Publication Number Publication Date
JPH0483706A true JPH0483706A (en) 1992-03-17

Family

ID=16361977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19669090A Pending JPH0483706A (en) 1990-07-25 1990-07-25 Production of boron nitride

Country Status (1)

Country Link
JP (1) JPH0483706A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070822A1 (en) * 2004-01-14 2005-08-04 Paint & Powder Technologies Llc Continuous pusher-type furnacing system for the production of high-quality uniform boron nitride
JP2007031170A (en) * 2005-07-22 2007-02-08 National Institute For Materials Science Boron nitride-based porous body and its manufacturing method
JP2016088799A (en) * 2014-11-04 2016-05-23 株式会社トクヤマ Method of producing boron nitride powder
CN108251801A (en) * 2016-12-29 2018-07-06 宁波江丰电子材料股份有限公司 The preparation method of magnesia, zinc oxide mixed-powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070822A1 (en) * 2004-01-14 2005-08-04 Paint & Powder Technologies Llc Continuous pusher-type furnacing system for the production of high-quality uniform boron nitride
JP2007031170A (en) * 2005-07-22 2007-02-08 National Institute For Materials Science Boron nitride-based porous body and its manufacturing method
JP2016088799A (en) * 2014-11-04 2016-05-23 株式会社トクヤマ Method of producing boron nitride powder
CN108251801A (en) * 2016-12-29 2018-07-06 宁波江丰电子材料股份有限公司 The preparation method of magnesia, zinc oxide mixed-powder

Similar Documents

Publication Publication Date Title
EP0414803B1 (en) Method of producing boron carbide
US4529575A (en) Process for producing ultrafine silicon carbide powder
JP2528056B2 (en) Method for producing titanium diboride and boron nitride powder
JPH0483706A (en) Production of boron nitride
JPH0211521B2 (en)
JPH0535083B2 (en)
JPH08217424A (en) Hexagonal boron nitride powder and its production
JPS6351965B2 (en)
JPS60235706A (en) Continuous production of silicon ceramics powder
JPH06102524B2 (en) Method for producing silicon nitride powder
JPH10203806A (en) Production of boron nitride powder
US5441694A (en) Preparation of high α-type silicon nitride powder
JPH0416502A (en) Production of boron nitride
JPS58213617A (en) Production of titanium carbonitride powder
JPS59190208A (en) Preparation of ultrafine silicon carbide powder
WO2020046229A2 (en) Production of boron carbide, metal carbide and/or metal boride at high temperature and in continuous production line
JPH0925111A (en) Low-oxygen silicon granule, its production and production of silicon nitride
JP2670849B2 (en) Method for manufacturing α-type silicon nitride
JPH11278812A (en) Production of silicon nitride powder
JPH02192408A (en) Production of aluminum nitride powder
JPH03271108A (en) Production of aluminum nitride powder
AU648108B2 (en) A proces for the preparation of alpha-silicon nitride powder
JPS602244B2 (en) Manufacturing method of rhombohedral boron nitride
JPH10203818A (en) Granulated low-oxygen silicone, its production and production of silicon nitride
JP2019131420A (en) Method for producing boron nitride powder