JPS60112699A - Manufacture of diamond - Google Patents

Manufacture of diamond

Info

Publication number
JPS60112699A
JPS60112699A JP58220956A JP22095683A JPS60112699A JP S60112699 A JPS60112699 A JP S60112699A JP 58220956 A JP58220956 A JP 58220956A JP 22095683 A JP22095683 A JP 22095683A JP S60112699 A JPS60112699 A JP S60112699A
Authority
JP
Japan
Prior art keywords
substrate
diamond
gas
radiating material
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58220956A
Other languages
Japanese (ja)
Other versions
JPH0480000B2 (en
Inventor
Kazutaka Fujii
和隆 藤井
Nobuaki Shohata
伸明 正畑
Masao Mikami
三上 雅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58220956A priority Critical patent/JPS60112699A/en
Publication of JPS60112699A publication Critical patent/JPS60112699A/en
Publication of JPH0480000B2 publication Critical patent/JPH0480000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To manufacture an uniform diamond film at a high growing speed by arranging the heating surface of a thermoelectron radiating material and the surface of a substrate almost in parallel with a reaction gas flow, and thermally decomposing gaseous hydrocarbon under a hydrogen atmosphere with the thermoelectron radiating material. CONSTITUTION:A substrate 3 is placed on a substrate support 2 in a reactor tube 1, and a thermoelectron radiating material 4 is arranged above the substrate 3 with a thermoelectron radiating material support 5. When the pressure is reduced, a cock 6 is closed and a cock 7 is opened to evacuate the inside of the reactor tube 1 with a vacuum apparatus 8. After the substrate 3 is heated by a reactor furnace 13, a mixed gas is introduced from a gaseous hydrocarbon bomb 11 and a gaseous hydrogen bomb 12 through a gas mixer 15. Since the heating surface of the thermoelectron radiating material 4 and the surface of the substrate 3 are arranged in parallel with the gas flow, the thermal decomposition of the reaction gas by the thermoelectron radiating material 4 and the exciting process can be made uniform in the vicinity of the substrate by making the distribution of the gas flow velocity and the temp. uniform. The inclusion of nondiamond carbon can be eliminated in this way, and the uniform diamond film can be manufactured at a high growing speed.

Description

【発明の詳細な説明】 本発明は、化学気相析出法を用い、基板上にダイヤモン
ドを析出させる製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method for depositing diamond on a substrate using a chemical vapor deposition method.

炭化水素ないしは炭素化合物の気体の熱分解によってダ
イヤモンドを合成する方法として、従来、数種の方法が
知られている。例えば、特開昭47−42286に記載
の方法は、ダイヤモンド種結晶を白金又はパラジウム等
からなる線1.tをコーン状に巻いた中に置き、この触
媒ヒーターを加熱するとともに、反応系を抵抗加熱、高
周波加熱、炉内加熱等で、1100〜1700℃に保持
している。反応容器は、水平又は垂直反応容器を使用し
、水素ガスをキャリアガスとして炭化水素ガスを反応容
器に送シ込み、下記の反応を利用してダイヤモンド種結
晶の粒子径を増大させている。
Several methods are conventionally known for synthesizing diamond by thermal decomposition of gaseous hydrocarbons or carbon compounds. For example, in the method described in Japanese Patent Application Laid-Open No. 47-42286, a diamond seed crystal is used as a wire made of platinum or palladium. The catalytic converter is placed in a cone-shaped tube, and the catalyst heater is heated, and the reaction system is maintained at 1,100 to 1,700° C. by resistance heating, high-frequency heating, furnace heating, or the like. A horizontal or vertical reaction vessel is used as the reaction vessel, and hydrocarbon gas is fed into the reaction vessel using hydrogen gas as a carrier gas, and the particle size of the diamond seed crystal is increased using the following reaction.

CnH2n+z→C(ダイヤモンド)十H,(但しn≦
5)−4&VC、ダイヤモンドの気相合成では、ダイヤ
モンド以外の無定形炭素やクラファイトの析出が以後の
ダイヤモンドの生成を除土してしまうが、白金又はパラ
ジウム等の触媒ヒーターの作JHcよって、ダイヤモン
ド上に析出したノドダイヤモンド物質を下記の反応を利
用して除去できるととを述べている。
CnH2n+z→C (diamond) 10H, (however, n≦
5)-4 & VC, in the vapor phase synthesis of diamond, the precipitation of amorphous carbon and graphite other than diamond removes the subsequent formation of diamond, but due to the production of a catalyst heater such as platinum or palladium, diamond It states that the diamond material deposited on the surface can be removed using the following reaction.

C(無定形炭素又はグラフアイ))+2H,→CH。C (amorphous carbon or graphite)) +2H, →CH.

しかしながら、この方法ではダイヤモンドを成長させる
為に、ダイヤモンド種結晶を必要とする欠点がある。す
なわち、ダイヤモンド以外の物質からなる基板上にダイ
ヤモンドを析出させることができない欠点がある。また
コーン状に巻いた触媒ヒーター中に基板を置く為、触媒
効果および触媒ヒーターによる加熱効果は均一にはな9
得ず平坦な表面上に均一な膜状ダイヤモンドを得ること
は不可能である。
However, this method has the drawback of requiring a diamond seed crystal to grow diamond. That is, there is a drawback that diamond cannot be deposited on a substrate made of a substance other than diamond. In addition, since the substrate is placed in a catalytic heater wrapped in a cone shape, the catalytic effect and the heating effect by the catalytic heater are not uniform.
It is impossible to obtain a uniform diamond film on a flat surface.

まだ別の方法、例えば1982年発行のジャパニーズ・
ジャーナル・オプ・アプライド・フィジクス誌(Jap
anese J’に&nal of Applied 
Physics )第21巻第L183ページ記載の論
文には、第1図に示すような装置を用い、メタンガスと
水素ガスをボンベ3から供給し、混合ガス供給管6から
反応管7内に導入し、約2000℃に加熱したタングス
テン、フィラメント5で接触加熱、熱分解させタングス
テン、フィラメント5直下に置いた基板13上にダイヤ
モンドを析出させている。基板は反応炉1で加熱してい
る。タングステン・フィラメント5の構造は、コイル状
に−巻きしてお如、反応ガスの流れは、混合ガス供給管
6を上昇し、排気装置2により反応管7内で下方に向き
を変えるようになっている。この方法はダイヤモンド以
外の物質上にダイヤモンドを析出させることができる点
で優れた方法であるがタングステン・フィラメント5が
コイル状に巻かれており、しかも−巻きである為、基板
13全体を均一に加熱できず、小面積に析出ししかも、
非ダイヤモンド物質が混在する不均一性を有している。
There are still other methods, such as the Japanese book published in 1982.
Journal of Applied Physics (Jap
anese J'ni&nal of Applied
Physics) Vol. 21, page L183 uses an apparatus as shown in FIG. 1, supplies methane gas and hydrogen gas from cylinder 3, introduces them into reaction tube 7 from mixed gas supply pipe 6, Tungsten heated to about 2000° C. is heated in contact with the filament 5 and thermally decomposed to deposit diamond on a substrate 13 placed directly below the tungsten and filament 5. The substrate is heated in a reactor 1. The structure of the tungsten filament 5 is such that it is coiled, so that the flow of the reaction gas ascends the mixed gas supply pipe 6 and is directed downward in the reaction tube 7 by the exhaust device 2. ing. This method is an excellent method in that diamond can be deposited on materials other than diamond, but since the tungsten filament 5 is wound in a coil shape and is wound in a negative direction, the entire substrate 13 can be uniformly coated. It cannot be heated and precipitates in a small area.
It has non-uniformity with a mixture of non-diamond materials.

更に、ガスの流れが反応管7内で逆転する構造であシ、
ガス流は乱流゛となる。またガス流は、タングステン・
フィラメント5に接触後、基板13に垂直に近い角度で
衝突する構造である為、基板13厘上ア、基板13中心
から端の方向へ反応ガスが流れる為、更にガス流速分布
の乱れが生ずる。この結果、予備加熱されたガスの温度
分布が不均一になったシ、ガス濃度分布が一様でなくな
り、非ダイヤモンド物質の混在を招き、ダイヤモンドの
成長も抑制される欠点を有している。
Furthermore, the structure is such that the gas flow is reversed within the reaction tube 7,
The gas flow becomes turbulent. In addition, the gas flow is
After contacting the filament 5, the reactant gas collides with the substrate 13 at an almost perpendicular angle, so that the reaction gas flows over the substrate 13 and from the center of the substrate 13 to the ends, further causing disturbance in the gas flow velocity distribution. As a result, the temperature distribution of the preheated gas becomes non-uniform, the gas concentration distribution becomes non-uniform, non-diamond substances are mixed in, and the growth of diamond is also suppressed.

本発明は、前記欠点を改善することを目的とし、熱電子
放射材によって構成される加熱面と、反応ガス流と、該
加熱面直下に配置された基板面とを互いKはぼ平行に配
置し、ガス流速分布および濃度分布を一様にすることに
よって、熱電子放射材による反応ガスの熱分解および励
起過程を基板付近で均一にするものである。
The present invention aims to improve the above-mentioned drawbacks, and aims to arrange a heating surface made of a thermionic emitting material, a reactive gas flow, and a substrate surface disposed directly under the heating surface so that they are substantially parallel to each other. However, by making the gas flow velocity distribution and concentration distribution uniform, the thermal decomposition and excitation process of the reaction gas by the thermionic emitting material is made uniform in the vicinity of the substrate.

すなわち、ダイヤモンド成長の抑制因子である非ダイヤ
モンド炭素の混在を、基板付近でのガス流速分布および
ガス濃度分布を一様にすることによって除き、早い成長
速度で、均一なダイヤモンド膜を得る。
That is, the presence of non-diamond carbon, which is a factor that inhibits diamond growth, is removed by making the gas flow velocity distribution and gas concentration distribution uniform in the vicinity of the substrate, thereby obtaining a uniform diamond film at a high growth rate.

以下、本発明の詳細な説明する。熱電子放射材の加熱に
よυ、発生する熱電子の作用、熱電子放射材による反応
ガスの接触分解等にょシ、水素ガスおよび炭化水素ガス
は原子状水素、炭化水素の分解生成物おるいはこれらの
励起状態に変化する。
The present invention will be explained in detail below. Hydrogen gas and hydrocarbon gas are the decomposition products of atomic hydrogen and hydrocarbons. changes to these excited states.

基板上に付着した遊離炭素あるいは、炭化水素の分解生
成物は、励起状態にある分子ないしは原子からエネルギ
ーを授与され、sP3結合を有するダイヤモンドとなる
。更に、原子状水素は、SP。
Free carbon or hydrocarbon decomposition products deposited on the substrate are given energy by molecules or atoms in an excited state, and become diamonds having sP3 bonds. Furthermore, atomic hydrogen is SP.

sp’結合をイjする非ダイヤモンド炭素原子と反応し
、炭化水素となって基板上から離脱する為、基板上には
、ダイヤモンドだけが析出することになる。本発明の方
法においては、熱電子放射材の加熱面および基板面を反
応ガス流に平行ないしは平行に近くなるように配置する
ことによって、上記の原子状水素、炭化水素の分解生成
物あるいはこれらの励起状態にあるものを基板付近で均
一に生じせしめ、基板上に析出する非ダイヤモンド炭素
を完全に除去できることになる。非ダイヤモンド炭素の
存在しない清浄なダイヤモンド表面は、ダイヤモンドの
成長に好ましb条件であシ、均一にしかも早い成長速度
でダイヤモンド膜が得られ、従来技術の欠点を改善でき
る。
Since it reacts with non-diamond carbon atoms that have sp' bonds and becomes hydrocarbons, which are separated from the substrate, only diamond is deposited on the substrate. In the method of the present invention, by arranging the heating surface of the thermionic emitting material and the substrate surface so that they are parallel or nearly parallel to the reaction gas flow, the above-mentioned atomic hydrogen, decomposition products of hydrocarbons, or the decomposition products thereof are produced. The excited state is uniformly generated near the substrate, and non-diamond carbon deposited on the substrate can be completely removed. A clean diamond surface free of non-diamond carbon provides favorable conditions for diamond growth, and a diamond film can be obtained uniformly and at a high growth rate, thereby improving the drawbacks of the prior art.

本発明において使用する混合ガスに対する炭化水素の容
す、%は、水素ガスによる非ダ・イヤモンド炭素の分解
が均一に行なわれ、非ダイヤモンド炭素が生成しにくい
為、上限は20%が望捷しい。
The upper limit of the percentage of hydrocarbons in the mixed gas used in the present invention is desirably 20%, since non-diamond carbon is uniformly decomposed by hydrogen gas and non-diamond carbon is difficult to generate. .

下限は、容ft%が0.01%よシ小さくなると成長速
度が極端に遅くなる為、0.01%が望ましい。膜状ダ
イヤモンド成長時には、1〜5−が望ましい。
The lower limit is preferably 0.01% because the growth rate becomes extremely slow when the volume ft% is smaller than 0.01%. When growing diamond in the form of a film, a range of 1 to 5- is desirable.

熱電子放射材の加熱温度は、炭化水素および水素ガスの
接触分解、および励起効果を考慮すると1800℃以上
が好ましい。
The heating temperature of the thermionic emission material is preferably 1800° C. or higher in consideration of the catalytic decomposition of hydrocarbon and hydrogen gas and the excitation effect.

基板温度は、引出炭素の構造に直接影響を及ぼす因子で
あり、低すぎると、析出物はアモルファス状と寿る。ま
た高すぎるとダイヤモンドからグラファイトに変態する
ので、600〜1000℃が好ましい。
The substrate temperature is a factor that directly affects the structure of the drawn carbon; if it is too low, the precipitate remains amorphous. Further, if the temperature is too high, diamond will transform into graphite, so 600 to 1000°C is preferable.

熱電子放射材は、熱電子放出能力大、高温における低蒸
気圧、畠融点等が必要条件であるため、タングステン、
ホウ化ランタン等が望ましい。特に製造しやすいタング
ステンが好ましい。
Tungsten,
Lanthanum boride etc. are preferable. Tungsten, which is easy to manufacture, is particularly preferred.

熱電子放射材の加熱面および基板面に平行ないしは平行
に近くなるように反応ガスを流す構造として、第2図お
よび第3図に示すような構造が考えられるが、基板に対
する熱電子放射材の距離が一定である第2図に示すよう
な構造が望ましい。
The structure shown in Figures 2 and 3 can be considered as a structure in which the reactive gas flows parallel or nearly parallel to the heating surface of the thermionic emitter and the substrate surface, but the structure shown in Figures 2 and 3 is conceivable. A structure as shown in FIG. 2 in which the distance is constant is desirable.

第2図において交流電源1に接続された熱電子放射材3
が支持台2中の穴を通シ、加熱面を植成している。第3
図は交流電源1に接続した2枚の金属板2に耐火物カバ
ー4が金属ネジ2にょシ組立てられ該金属板間に熱電子
放射材5が形成されている。
In FIG. 2, thermionic emitter 3 connected to AC power source 1
is passed through a hole in the support base 2, and a heating surface is planted therein. Third
In the figure, a refractory cover 4 is assembled to two metal plates 2 connected to an AC power source 1 with metal screws 2, and a thermionic radiation material 5 is formed between the metal plates.

次に、本発明による気相合成ダイヤモンドの製造方法に
ついて図面を用いて説明する。第4図は本発明の方法を
実施する装置の態様を示す。反応管l中の基板支持台2
上に基板3を設置し、基板3の上に熱電子放射材4を熱
電子放射材支持台5で設置する。次に減圧の場合は、コ
ツクロを閉じコック7を開いて真空排気装置8によって
反応管1の中を真空にする。同時に反応炉13によシ基
板3を加熱後、コック9および10を開いて炭化水素ガ
スボンベ11.水素ガスボンベ12よシ、ガス混合器1
5を紅白して炭化水素ガスおよび水素ガスを反応管1へ
導入して、圧力調整後熱電子放射材加熱電源14によシ
、熱電子放射材4を加熱して、成長を開始する。導入ガ
スは、ガス排気口16より排気する。常圧で運転する時
は、コ、り7を閉じて、コツクロを開いてガス排気口1
6よシ導大ガスを排気すればよい。昇温は、水素中で行
なう。
Next, a method for manufacturing a vapor phase synthesized diamond according to the present invention will be explained using the drawings. FIG. 4 shows an embodiment of an apparatus for carrying out the method of the invention. Substrate support stand 2 in reaction tube l
A substrate 3 is placed thereon, and a thermionic radiation material 4 is placed on the substrate 3 using a thermionic radiation material support 5. Next, in the case of reducing the pressure, close the lid, open the cock 7, and evacuate the inside of the reaction tube 1 using the evacuation device 8. At the same time, after heating the substrate 3 in the reactor 13, the cocks 9 and 10 are opened and the hydrocarbon gas cylinder 11. Hydrogen gas cylinder 12, gas mixer 1
Hydrocarbon gas and hydrogen gas are introduced into the reaction tube 1, and after pressure adjustment, the thermionic emissive material heating power source 14 is used to heat the thermionic emissive material 4 and start growth. The introduced gas is exhausted from the gas exhaust port 16. When operating at normal pressure, close port 7, open port 7, and open gas exhaust port 1.
6. All you have to do is exhaust the gas. The temperature increase is carried out in hydrogen.

以下実施例に基づき、本発明を説明する。The present invention will be explained below based on Examples.

実施例1 2インチφのn型シリコンウエノ1−を基板として用い
た。0.3 mmφのタングステンa3を第2図のよう
に、加熱面がガス流に平行になるように石英ガラス製治
具2で固定し、交流電源lでこめタングステン線を18
00℃に加熱した。このタングステン線直下10tnm
の所に電気炉で1080℃に傍熱加熱したシリコン基板
を設置した。反応ガス流量はメタンガスが毎分20cc
で水素ガスが毎分10tである。10分の反応後シリコ
ン基板上には、非−常になめらかなダイヤモンド薄膜が
基板全域にわたって均一に得られた。膜厚は1.5μm
で、ウエノ・−全面で均一な膜厚が得られた。なお、ダ
イヤモンドの同定は電子線回折によって行なった。
Example 1 An n-type silicon wafer 1- with a diameter of 2 inches was used as a substrate. As shown in Fig. 2, a 0.3 mmφ tungsten A3 was fixed with a quartz glass jig 2 so that the heating surface was parallel to the gas flow, and the tungsten wire was heated using an AC power supply l.
Heated to 00°C. 10tnm directly below this tungsten wire
A silicon substrate that had been indirectly heated to 1080°C in an electric furnace was placed there. The reaction gas flow rate is 20cc/min of methane gas.
The hydrogen gas flow rate is 10 tons per minute. After 10 minutes of reaction, a very smooth diamond thin film was obtained uniformly over the entire surface of the silicon substrate. Film thickness is 1.5μm
A uniform film thickness was obtained over the entire surface of Ueno. Note that diamond was identified by electron beam diffraction.

実施例2 501角のモリブデン板を基板に用いた。第3図のよう
K、タングステン板2を石英ガラス板4を用い、タング
ステン製ネジ3で固定する。このタングステン板2に0
.5 m1llφのタングステン線5をコイル状に巻き
、タングステン製ネジ3で固定し、交流電源1で180
0℃に加熱した。このタングステン線5の直下10龍の
所に電気炉で1000℃に傍熱加熱したモリブデン基板
を設置した。反応ガス流量は、メタンガスが毎°分10
ccで水素ガスが毎分20tである。10分の反応後、
シリコン基板上には、非常になめらかなダイヤモンド薄
膜が基板全域にわたって均一に得られた。膜厚は2μm
でウェハー全面で均一であった。
Example 2 A 501 square molybdenum plate was used as a substrate. As shown in FIG. 3, a tungsten plate 2 is fixed to a quartz glass plate 4 using tungsten screws 3. 0 to this tungsten plate 2
.. Wrap a tungsten wire 5 of 5 ml φ into a coil, fix it with a tungsten screw 3, and use an AC power source 1 to
Heated to 0°C. A molybdenum substrate indirectly heated to 1000° C. in an electric furnace was placed 10 degrees directly below the tungsten wire 5. The reaction gas flow rate is 10°/min for methane gas.
cc hydrogen gas is 20t/min. After 10 minutes of reaction,
A very smooth diamond thin film was obtained uniformly over the entire silicon substrate. Film thickness is 2μm
It was uniform over the entire wafer.

本発明によって、ダイヤモンド膜が大面積でかつ均質な
ものが速い成長速度で得られた。すなわち、従来法では
、1 crA以下の面積にしかもまばらにしかダイヤモ
ンド薄膜を作製できなかったものが、本発明の方法を用
いると2インチφ以上の基板上に均質に合成できる。し
かも成長速度は、毎時lOミクロン程度であシ、従来法
に比し、数倍速い成長が実現された。
According to the present invention, a large-area, homogeneous diamond film was obtained at a fast growth rate. In other words, the conventional method could produce a diamond thin film only sparsely on an area of 1 crA or less, but by using the method of the present invention, it can be homogeneously synthesized on a substrate with a diameter of 2 inches or more. Moreover, the growth rate was approximately 10 microns per hour, which was several times faster than the conventional method.

またダイヤモンド以外の基板上、たとえばシリコン上に
ダイヤモンド薄膜を得ることができ、工業的価値は大で
ある。
Furthermore, it is possible to obtain a diamond thin film on a substrate other than diamond, such as silicon, which has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来法による装置の例を示す図。第2図、第
3図は、本発明による熱電子放射材の構成例を示す図。 第4図は本発明による製造装置の図である。 第1図において、l・・・電気炉 2・・・排気装置3
・・炭化水素と水素の供給装置 4A・・・基板支持棒
4B・・・基板支持台 5・・・タングステン・フィラ
メント 6・・・混合ガス供給管 7・・・反応管 8
゜9.10.11・・・コック 12・・・排気口 1
3・・・基板を示す。 TJi、2図において、1・・・交+5ti、電源 2
・・・支持台3・・・熱電子放射材を示す。 第3図において、1・・・交流電源 2・・・金属板3
・・・金属ネジ 4・・・耐火物カバー 5・・・熱電
子放射材を示す。 第4図において、l・・・反応管 2・・・基板支持台
3・・・基板 4・・・熱電子放射材 5・・・熱電子
放射材支持台 6・・・コック 7・・・コック 8・
・・真空排気装置 9・・・コック 10・・・コック
 11・1.水素ガスボンベ 12・・・炭化水素ボン
ベ 13・反応炉 14・・・熱電子放射材加熱電源 
15・・・ガス混合装置16・・・ガス排気口を示す。
FIG. 1 is a diagram showing an example of an apparatus according to a conventional method. FIG. 2 and FIG. 3 are diagrams showing an example of the structure of the thermionic emitting material according to the present invention. FIG. 4 is a diagram of a manufacturing apparatus according to the present invention. In FIG. 1, l...electric furnace 2...exhaust device 3
...Hydrocarbon and hydrogen supply device 4A...Substrate support rod 4B...Substrate support stand 5...Tungsten filament 6...Mixed gas supply pipe 7...Reaction tube 8
゜9.10.11...cock 12...exhaust port 1
3... Indicates a substrate. TJi, in figure 2, 1...AC +5ti, power supply 2
. . . Support stand 3 . . . Indicates thermionic emitting material. In Fig. 3, 1...AC power source 2...Metal plate 3
... Metal screw 4 ... Refractory cover 5 ... Indicates thermionic emitting material. In FIG. 4, l...Reaction tube 2...Substrate support stand 3...Substrate 4...Thermionic emission material 5...Thermionic emission material support stand 6...Cock 7... Cook 8・
...Vacuum exhaust device 9...Cook 10...Cook 11.1. Hydrogen gas cylinder 12... Hydrocarbon cylinder 13. Reactor 14... Thermionic radiation material heating power source
15... Gas mixing device 16... Gas exhaust port is shown.

Claims (1)

【特許請求の範囲】[Claims] 水素雰囲気下で炭化水素ガスを熱電子放射材で熱分解し
て、ダイヤモンドを合成する方法において、該熱電子放
射材によって構成される加熱面と、水素および炭化水素
とを含む混合ガス流と、該熱電子放射材の加熱面直下に
配置された基板面とを互いにそれぞれほぼ平行に設置す
ることを特徴とするダイヤモンドの合成方法。
A method of synthesizing diamond by thermally decomposing a hydrocarbon gas with a thermionic emitting material in a hydrogen atmosphere, comprising: a heating surface constituted by the thermionic emitting material; a mixed gas flow containing hydrogen and a hydrocarbon; A method for synthesizing diamond, characterized in that surfaces of the thermionic emitter and a substrate placed directly below the heating surface are placed substantially parallel to each other.
JP58220956A 1983-11-24 1983-11-24 Manufacture of diamond Granted JPS60112699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58220956A JPS60112699A (en) 1983-11-24 1983-11-24 Manufacture of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58220956A JPS60112699A (en) 1983-11-24 1983-11-24 Manufacture of diamond

Publications (2)

Publication Number Publication Date
JPS60112699A true JPS60112699A (en) 1985-06-19
JPH0480000B2 JPH0480000B2 (en) 1992-12-17

Family

ID=16759186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58220956A Granted JPS60112699A (en) 1983-11-24 1983-11-24 Manufacture of diamond

Country Status (1)

Country Link
JP (1) JPS60112699A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110405A (en) * 1988-06-09 1992-05-05 Kabushiki Kaisha Toshiba Method of manufacturing single-crystal diamond particles
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
US5310447A (en) * 1989-12-11 1994-05-10 General Electric Company Single-crystal diamond of very high thermal conductivity
US5419276A (en) * 1989-12-11 1995-05-30 General Electric Company Single-crystal diamond of very high thermal conductivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891100A (en) * 1981-11-25 1983-05-30 Natl Inst For Res In Inorg Mater Synthesizing method for diamond
JPS58110494A (en) * 1981-12-17 1983-07-01 Natl Inst For Res In Inorg Mater Synthesizing method for diamond

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891100A (en) * 1981-11-25 1983-05-30 Natl Inst For Res In Inorg Mater Synthesizing method for diamond
JPS58110494A (en) * 1981-12-17 1983-07-01 Natl Inst For Res In Inorg Mater Synthesizing method for diamond

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110405A (en) * 1988-06-09 1992-05-05 Kabushiki Kaisha Toshiba Method of manufacturing single-crystal diamond particles
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
US5310447A (en) * 1989-12-11 1994-05-10 General Electric Company Single-crystal diamond of very high thermal conductivity
US5419276A (en) * 1989-12-11 1995-05-30 General Electric Company Single-crystal diamond of very high thermal conductivity

Also Published As

Publication number Publication date
JPH0480000B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
JPS5891100A (en) Synthesizing method for diamond
JPS5927754B2 (en) Diamond synthesis method
Badzian et al. Nucleation and growth phenomena in chemically vapor-deposited diamond coatings
JP2001081564A (en) Chemical vapor deposition system and method for synthesizing carbon nanotube using the same
JPS63182297A (en) Aggregate diamond
JPH08225395A (en) Production of diamond doped with boron
CN111268656A (en) Preparation method of boron nitride nanotube
CN100432287C (en) Process for preparing diamond film under strong magnetic field
JPS60112699A (en) Manufacture of diamond
JPH0518796B2 (en)
JPS61158898A (en) Production of ornamental diamond
JPS6221757B2 (en)
JPS62158195A (en) Synthesizing method of diamond
KR20010049398A (en) Method of synthesizing carbon nanotubes using low pressure chemical vapor deposition
JPS60112698A (en) Manufacture of diamond
Zhu et al. Effects of process parameters on CVD diamond films
JPH0481552B2 (en)
JPS60145995A (en) Preparation of diamond-shaped carbon
JPS6261109B2 (en)
JPS60200896A (en) Process for synthesizing fibrous diamond
JPS632897A (en) Method for synthesizing diamond by vapor phase method
JPS593098A (en) Synthesizing method of diamond
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JPS63297299A (en) Method for vapor synthesis of diamond
JP2005336043A (en) Carbon nanotube and method of manufacturing carbon fiber