JPS61158898A - Production of ornamental diamond - Google Patents

Production of ornamental diamond

Info

Publication number
JPS61158898A
JPS61158898A JP59278647A JP27864784A JPS61158898A JP S61158898 A JPS61158898 A JP S61158898A JP 59278647 A JP59278647 A JP 59278647A JP 27864784 A JP27864784 A JP 27864784A JP S61158898 A JPS61158898 A JP S61158898A
Authority
JP
Japan
Prior art keywords
diamond
gas
nucleus
plasma
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59278647A
Other languages
Japanese (ja)
Inventor
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP59278647A priority Critical patent/JPS61158898A/en
Publication of JPS61158898A publication Critical patent/JPS61158898A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the growth of the titled diamond having high purity and quality on the surface of a nucleus, by introducing a specific gas for the production of diamond into a reaction chamber furnished with a diamond nucleus,and heating the gas with plasma. CONSTITUTION:A diamond nucleus 6 consisting of a single crystal of diamond is attached to the needle-like supporting table 5 made of Al2O3, Si3N4, Si, Ta, etc., and placed in the reaction chamber 1 for the production of diamond by a vapor-phase growth process. A diamond-producing gas consisting of <= 50vol% hydrocarbon gas such as CH4 and H2 or a mixture of H2 and an inert gas such as Ar, etc. is introduced into the reaction chamber 1 through the gas-inlet tube 2 to an extent to attain a pressure of 10<-5>-100Torr. At the same time, high-frequency radiation or microwave is introduced through the inlet 3 into the chamber 1 to induce a plasma in the chamber 1. The ionization ratio in the plasma is increased by applying magnetic field to the coil 4 of the electromagnet arranged to the exterior part of the chamber 1. The objective diamond can be grown on the surface of the nucleus 6 at a substrate temperature of 800-1,100 deg.C and a growth rate of 0.01-10mu/hr.

Description

【発明の詳細な説明】 (技術分野) 本発明は装飾用ダイヤモンドの製造方法に関し、より詳
細には、高純度、高品質の装飾用ダイヤモンドの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for producing an ornamental diamond, and more particularly, to a method for producing a highly pure and high quality ornamental diamond.

(従来技術) ダイヤモンドは、優れた物理的性質から工業的に用いら
れる一方、装飾用としても一般的に用いられている。こ
のダイヤモンドは、天然に産出される他、最近に至って
は超高圧法、気相成長法等によっても得ることができる
ようになった。
(Prior Art) Diamonds are used industrially due to their excellent physical properties, and are also commonly used for decorative purposes. Diamonds are not only naturally produced, but also recently can be obtained by ultra-high pressure methods, vapor phase growth methods, and the like.

このようなダイヤモンドは特に装飾用として用いる場合
は、高純度、高品質が要求されるが、天然産では、ダイ
ヤモンド結晶中に欠陥や包含物が多く、高純度のものは
得難いため、高価なものとなる。一方、超高圧法では、
ダイヤモンドの合成は超高圧、高温下で行なわれ、得ら
れる生成物には、結晶中に不純物や欠陥が多く、コスト
も高い。
High purity and high quality are required for such diamonds, especially when they are used for decorative purposes, but natural diamonds have many defects and inclusions in their crystals, making it difficult to obtain high purity diamonds, making them expensive. becomes. On the other hand, in the ultra-high pressure method,
Diamond synthesis is carried out under ultra-high pressure and high temperature, and the resulting product has many impurities and defects in the crystal, and is expensive.

特に、Ni、C○、 Fe等の金属を触媒として用いる
と、これらの結晶中への混入は免がれない。
In particular, when metals such as Ni, C○, Fe, etc. are used as catalysts, their contamination into the crystal is unavoidable.

また、気相成長法では、純度の高いものが得られる利点
があり、一般には板状基体への薄膜形成用に用いられて
いるが、一方では基体としてダイヤモンド核を用い、そ
の核表面にダイヤモンドを気相成長させる方法も提案さ
れている。しかしながらこの方法では、得られるダイヤ
モンドの結晶構成が不均一であり、特に核から被覆物へ
の結晶構造が不連続となり易く、全体として多結晶ダイ
ヤモンドが生成される。多結晶ダイヤモンドは単結晶に
みられる 開等のもろさがないことから、一般的に工業
用として使用されるが、装飾用としては、品質上好まし
くない。
In addition, the vapor phase growth method has the advantage of being able to obtain products of high purity, and is generally used for forming thin films on plate-like substrates. A method of vapor phase growth has also been proposed. However, in this method, the crystal structure of the resulting diamond is non-uniform, and in particular, the crystal structure from the core to the coating tends to be discontinuous, resulting in polycrystalline diamond as a whole. Polycrystalline diamond is generally used for industrial purposes because it does not have the fragility of open crystals found in single crystals, but it is not desirable for decorative purposes due to its quality.

(発明の目的) 本発明者は上記の現状に濫み鋭意研究の結果、単結晶の
ダイヤモンド核を用い、特定の条件下でダイヤモンド被
覆を気相成長させることにより、装飾用として高純度、
高品質のダイヤモンドが得られることを知見した。
(Objective of the Invention) As a result of extensive research in light of the above-mentioned current situation, the present inventor has developed a diamond coating with high purity for decorative purposes by using a single crystal diamond core and growing a diamond coating in a vapor phase under specific conditions.
It was discovered that high quality diamonds can be obtained.

即ち、本発明の目的は、高純度、高品質のダイヤモンド
を得ることのできる装飾用ダイヤモンドの製造方法を提
供することである。さらに他の目的は、安価な装飾用ダ
イヤモンドを得ることのできる製造方法を提供すること
である。
That is, an object of the present invention is to provide a method for producing decorative diamonds that can yield diamonds of high purity and quality. Yet another object is to provide a manufacturing method that makes it possible to obtain inexpensive decorative diamonds.

(発明の概要) したがって、本発明においては、基体として単結晶から
成るダイヤモンド核を反応槽内に配置し、少なくとも炭
素を有する気体またはその蒸気を含むダイヤモンド生成
用ガスを該反応槽内に導入すると共にプラズマを発生さ
せ、反応温度800乃至1100℃の条件下で、該核表
面に0.01乃至10111N/hrの成長速度でダイ
ヤモンドを生成させて成る装飾用ダイヤモンドの製造方
法が提供される。
(Summary of the Invention) Therefore, in the present invention, a diamond core made of a single crystal is placed as a base in a reaction tank, and a diamond-forming gas containing at least a gas containing carbon or its vapor is introduced into the reaction tank. At the same time, there is provided a method for producing decorative diamond, which comprises generating plasma and producing diamond on the surface of the nucleus at a growth rate of 0.01 to 10111 N/hr under conditions of a reaction temperature of 800 to 1100°C.

(発明の実施例) ダイヤモンドは、その結晶構造から、単結晶質、多結晶
質に分けられる。単結晶質は、ダイヤモンドの基本的結
晶構造である等軸晶形が単一の結晶軸のもとに成長して
成るもので、多結晶質は、結晶軸の異なる結晶体が集合
して成るものである。
(Embodiments of the Invention) Diamonds are classified into single crystal and polycrystal based on their crystal structure. Single-crystalline diamonds are formed by the equiaxed crystal structure, which is the basic crystal structure of diamond, growing around a single crystal axis, and polycrystalline diamonds are formed by aggregation of crystals with different crystal axes. It is.

装飾用ダイヤモンドはその品質に関して、一般的にGT
A方式が用いられ、透明性(クラリティ)、色調(カラ
ー)等の評価により、そのグレードが決定されている。
Decorative diamonds are generally GT in terms of quality.
Method A is used, and the grade is determined by evaluating transparency (clarity), tone (color), etc.

クラリティは、ダイヤモンドの表面又は内部の傷、欠陥
および配列の異なる結晶(グレイン)の有無等により決
定され、カラーは、光の透過率により決定される。
Clarity is determined by the presence or absence of scratches, defects, and differently arranged crystals (grains) on or inside the diamond, and color is determined by light transmittance.

人工的にダイヤモンドを生成する場合、特に品質低下の
要因となるのは、不純物の混入による透過率の低下、ま
た多結晶の生成によるグレイン、欠陥等の発生が主であ
ると考えられる。
When diamond is produced artificially, the main causes of quality deterioration are thought to be a decrease in transmittance due to the inclusion of impurities, and the occurrence of grains, defects, etc. due to the formation of polycrystals.

本発明では、ダイヤモンドの生成にあたり、基本的には
気相成長法を用いる。ダイヤモンドの気相成長法として
は従来から固形状炭素をターゲットとして、アーク放電
等により炭素イオンを発生させるか、又は、炭素水素ガ
スをフィラメントを用いて熱エネルギーによりプラズマ
を発生させた後、これら炭素イオン、又はプラズマをバ
イアス電圧印加により加速させダイヤモンドを形成させ
る方法等があるが、本発明では、プラズマの発生効率を
上げ、且つその寿命を伸ばす必要がらり、しかも不純物
の混入を抑えることを考慮して、特に高周波プラズマC
VD法、マイクロ波プラズマCVD法、又は電子サイク
ロトン共鳴プラズマCVD法が好適に使用される。
In the present invention, a vapor phase growth method is basically used to generate diamond. Conventionally, the vapor phase growth method for diamond uses solid carbon as a target and generates carbon ions by arc discharge or the like, or generates plasma using thermal energy from carbon-hydrogen gas using a filament, and then grows these carbon atoms. There are methods of accelerating ions or plasma by applying a bias voltage to form diamonds, but the present invention takes into account the need to increase plasma generation efficiency and extend its life, and to suppress the contamination of impurities. In particular, high frequency plasma C
A VD method, a microwave plasma CVD method, or an electron cycloton resonance plasma CVD method is preferably used.

本発明における製造装置の一例を示す添付図面を参照し
て説明すると、反応槽1内にダイヤモンド生成用ガスと
して、例えばCH4、CIHI 、  C2H4゜Cl
H6、CaHsなどの炭化水素、アルコール等の炭素を
含有する気体あるいはそれらの蒸気と、水素、または水
素とHe、Ar等の不活性気体との混合ガスとをガス導
入管2を通して導入する。それと同時に導入口8から高
周波またはマイクロ波を導入し、反応槽1内にプラズマ
を誘発させる。
To explain with reference to the accompanying drawings showing an example of the manufacturing apparatus according to the present invention, diamond producing gases such as CH4, CIHI, C2H4°Cl are present in the reaction tank 1.
Hydrocarbons such as H6 and CaHs, carbon-containing gases such as alcohol, or their vapors, and hydrogen or a mixed gas of hydrogen and an inert gas such as He or Ar are introduced through the gas introduction pipe 2. At the same time, high frequency waves or microwaves are introduced from the inlet 8 to induce plasma in the reaction tank 1.

この時、マイクロ波によりプラズマを発生させる場合さ
らに反応槽lの外部に電磁石用コイル4を配置して反応
槽1内に磁場をかける。サイクロトロン周波数を次式(
1) 但し、#1:電子の質量 e:電子の電荷 B:磁束密度 とし、マイクロ波の周波数(2,45GHz )と一致
するように調整すると共鳴が起こる。その結果、電子寿
命が長くなり、電子が炭化水素と衝突し、放電現象が著
しく増大し、プラズマ中のイオン化率を一層大きくする
ことができる。このプラズマ雰囲気中に基体として、単
結晶のダイヤモンド核5を支持台として針状支持体6上
に配置してお(ことにより、核表面にダイヤモンドが生
成する。
At this time, when plasma is generated by microwaves, an electromagnetic coil 4 is further placed outside the reaction tank 1 to apply a magnetic field inside the reaction tank 1. The cyclotron frequency is expressed by the following formula (
1) However, #1: mass of electron, e: charge of electron, B: magnetic flux density, and when adjusted to match the frequency of microwaves (2.45 GHz), resonance occurs. As a result, the electron lifetime becomes longer, the electrons collide with hydrocarbons, the discharge phenomenon increases significantly, and the ionization rate in the plasma can be further increased. In this plasma atmosphere, a single-crystal diamond core 5 is placed as a support on a needle-like support 6 as a base (thereby, diamond is generated on the surface of the core).

本発明においては、上記の気相成長法において、ダイヤ
モンド生成時、基体温度を800乃至1100℃に制御
するとともに、ダイヤモンドの成長速度を0、Ol乃至
10μff/HRに制御することが極めて重要である。
In the present invention, in the above vapor phase growth method, it is extremely important to control the substrate temperature to 800 to 1100°C and control the diamond growth rate to 0, Ol to 10 μff/HR during diamond formation. .

即ち、上記範囲のような比較的高い、温度に制御するこ
とにより、核表面での炭素は活性化され、再配列する際
の拡散が促進される。それとともに成長速度を上記の比
較的遅い範囲に設定することで、炭素が拡散し、核自体
の単結晶の配列に準じて再配列するのく核表面での炭素
密度を適正に維持する。それゆえ、ダイヤモンドの生成
では、核自体の結晶配列に基づく結晶体の成長が繰り返
され、最終的には、グレインの発生のない、単結晶でク
ラリティに優れたダイヤモンドが得られる。
That is, by controlling the temperature to a relatively high temperature within the above range, carbon on the nuclear surface is activated and diffusion during rearrangement is promoted. At the same time, by setting the growth rate within the above-mentioned relatively slow range, carbon diffuses and rearranges itself in accordance with the single crystal arrangement of the nucleus itself, thereby maintaining an appropriate carbon density on the surface of the nucleus. Therefore, in the production of diamond, the growth of crystals based on the crystalline arrangement of the core itself is repeated, and in the end, a single-crystal diamond with excellent clarity without the generation of grains is obtained.

基体温度が上記範囲よりも低いと炭素は活性化されず、
拡散されないまま、核基体の任意の場所に配列し、これ
が新たな核となり、多結晶質もしくは非晶質が生成し、
また、逆に高いと非晶質が生成する。一方、成長速度が
上記範囲よりも速いと炭素密度が大となり炭素同志が互
いの拡散、再配列を阻害し、同様に多結晶になりやすく
、逆に範囲以下では生産性において問題外である。
If the substrate temperature is lower than the above range, carbon will not be activated,
Without being diffused, they are arranged anywhere on the nuclear substrate, and this becomes a new nucleus, producing polycrystalline or amorphous materials.
On the other hand, if it is too high, amorphous material will be formed. On the other hand, if the growth rate is faster than the above range, the carbon density becomes high and the carbon atoms inhibit mutual diffusion and rearrangement, and polycrystals tend to form as well.On the other hand, if the growth rate is below the above range, the productivity is out of the question.

基体温度は、基体自体が高周波またはマイクロ波により
加熱されることから、プラズマ形成時の諸条件を制御す
ることにより調節し得る。そのため特別な加熱手段を必
要とせず、熱源の不良により膜形成が阻害されることな
(、安定した製造ができる。
Since the substrate itself is heated by high frequency waves or microwaves, the substrate temperature can be adjusted by controlling the conditions during plasma formation. Therefore, no special heating means is required, and film formation is not inhibited by defects in the heat source (and stable production can be achieved).

ダイヤモンド生成時の他の条件としては、それぞれの気
相成長法にもよるが、ガスの圧力を1−乃至100 T
orrに、 ダイヤモンド生成用ガスの組成のうち、全
ガス容積に対する炭化水素ガスの容積を50%以下、特
に10%以下(Oを含まず)が好ましい。
Other conditions during diamond formation include gas pressures of 1-100 T, depending on the respective vapor phase growth method.
In the composition of the diamond-generating gas, the volume of hydrocarbon gas relative to the total gas volume is preferably 50% or less, particularly 10% or less (not including O).

本発明においては核となるダイヤモンドは、天然産のも
の、超高圧法によるもの、気相法によるもの等、単結晶
であればいずれも使用でき、特に気相法を用いる場合は
、核表面へのダイヤモンド生成と同一反応系で行い得る
。例えば、AJ203 。
In the present invention, any single crystal diamond can be used as the core, such as one produced naturally, one produced by an ultra-high pressure method, or one produced by a vapor phase method. can be carried out in the same reaction system as diamond production. For example, AJ203.

5iaN+ 、 Sl、 、 Ta等から成る針状支持
台を設、置し、単結晶ダイヤモンドの核生成の条件下で
、反応させ、支持台上に核を生成させた後、反応条件を
前述した条件に変更した後、核表面に単結晶ダイヤモン
ドの生成を行うことができる。
A needle-shaped support made of 5iaN+, Sl, Ta, etc. was installed and placed, and the reaction was performed under the conditions for nucleation of single crystal diamond. After the nuclei were generated on the support, the reaction conditions were changed to the conditions described above. After changing to , single-crystal diamond can be produced on the surface of the nucleus.

また、核としては、その粒子径にもよるが、単結晶の結
晶面に平行な面でカッティングし、面出ししたものを使
用すると、より効率のよい単結晶の成長を行なうことが
できる。
Further, although it depends on the particle size, if the core is cut in a plane parallel to the crystal plane of the single crystal and the surface is exposed, the single crystal can be grown more efficiently.

な訴、支持台は針状体が最も好ましく、針状体先端部に
核を保持するようなしたものが好ましい。
The support base is most preferably a needle-like body, and preferably one that holds the nucleus at the tip of the needle-like body.

ここで、本発明において使用する気相成長法特有の性質
として針状体の先端部に生成し易いことから、特に好適
である。
Here, it is particularly suitable because it is easy to form at the tip of the needle-shaped body, which is a characteristic peculiar to the vapor phase growth method used in the present invention.

また、本発明は、気相成長法がy応ガスの組成により、
純度調節できることに関して、不純物の混入制御も容易
であるため、ズ応ガス中にBlIHa 。
In addition, the present invention provides that the vapor phase growth method
Regarding the ability to adjust the purity, it is also easy to control the inclusion of impurities, so BlIHa is added to the reactive gas.

N2.等を混入させることにより、 ブルーまたはイエ
ロー等のカラーダイヤモンドを製造することもできる。
N2. It is also possible to produce colored diamonds such as blue or yellow by mixing diamonds.

本発明を次の例で説明する。The invention is illustrated by the following example.

実施例1 0.1カラツトの単結晶の天然ダイヤモンド(カット済
)を核として図面に示す、反応槽内の針状支持台上に設
置した。
Example 1 A 0.1 carat single-crystal natural diamond (already cut) was placed as a core on a needle-shaped support in a reaction tank as shown in the drawing.

下記の条件下でマ′イクロ波プラズマCvD法でダイヤ
モンドの気相成長を行なった。
Diamond was grown in a vapor phase using a microwave plasma CvD method under the following conditions.

この状態で1000時間の成長を行なったところ、L2
カラットのダイヤモンド粒子を得た。生成物をX線回折
法により、結晶形態を調べたところ、純粋な単結晶であ
ることが確められた。
When growth was performed for 1000 hours in this state, L2
Carat diamond particles were obtained. When the crystal form of the product was examined by X-ray diffraction, it was confirmed that it was a pure single crystal.

これを、カット(ブリリアンカット)を行ない、GIA
方式により品質鑑定を行なったところ、第1表に示すよ
うに純度、品質ともに優れたものであった。
This is cut (brilliant cut) and GIA
When the quality was evaluated by this method, as shown in Table 1, it was found to be excellent in both purity and quality.

また、オージェ電子分光法により粒子中の元素分析を行
なったところ、炭素(C)100%であった。
Furthermore, elemental analysis of the particles by Auger electron spectroscopy revealed that the particles were 100% carbon (C).

実施例2 アルミナ製針状支持体を反応槽内に配置し、下記条件下
で核の生成を行なった。
Example 2 An alumina needle support was placed in a reaction tank, and nuclei were generated under the following conditions.

上記気相成長により約3μmの単結晶のダイヤモンド核
の生成を確認した後、その状態で成長速度α05μlp
l/Hr、基体温度850℃、マイクロ波出力500 
Wで500時間、次に成長速度α5am/Hr。
After confirming the formation of a single crystal diamond nucleus of approximately 3 μm in size through the above vapor phase growth, the growth rate was α05 μlp in that state.
l/Hr, substrate temperature 850℃, microwave output 500
W for 500 hours, then growth rate α5am/Hr.

基体温度900℃、マイクロ波出力550 Wで500
11p間、さらに成長速度1μm/H1”、基体温度9
80℃、マイクロ洩出カフ00 Wで1000時間、生
成を行ない、最終的に0,22カラツトの単結晶ダイヤ
モンド粒子を得た。X#!i1回折法により結晶形態を
調べたところ、純粋な単結晶であることが確認された。
500 at a substrate temperature of 900°C and a microwave output of 550 W.
11 p, further growth rate 1 μm/H1”, substrate temperature 9
The production was carried out for 1000 hours at 80° C. and a micro-leakage cuff of 00 W, and finally single crystal diamond particles of 0.22 carats were obtained. X#! When the crystal form was examined by i1 diffraction method, it was confirmed that it was a pure single crystal.

このダイヤモンドをカッティング後、G工A品質鑑定を
行なったところ、第1表に示すように、優れた品質であ
った。
After cutting this diamond, G-A quality appraisal was performed, and as shown in Table 1, it was found to be of excellent quality.

オージェ電子分光法では炭素(cl 100%であった
Auger electron spectroscopy showed carbon (Cl 100%).

実施例3 電子サイクロトロン共鳴(ECR)プラズマCVD法を
用い、Si、aN4製計状支持体上に下記の条件で粒成
長を行ない、約2μmの単結晶ダイヤモンド粒子を得た
Example 3 Using the electron cyclotron resonance (ECR) plasma CVD method, grain growth was performed on a Si, aN4 scale support under the following conditions to obtain single crystal diamond particles of about 2 μm.

得られたダイヤモンド粒子を核として、成長速度0.7
 ttm/Hrでダイヤモンドの生成を1000時間行
ない、0.1カラツトのダイヤモンドを得た。
Using the obtained diamond particles as nuclei, the growth rate is 0.7
Diamond production was carried out for 1000 hours at ttm/Hr, yielding 0.1 carat of diamond.

X線回折法により結晶形態を調べたところ、単結晶であ
ることが認められた。
When the crystal form was examined by X-ray diffraction, it was found to be a single crystal.

このダイヤモンドをカッティング後、GIA品質鑑定を
行なったところ、第1表に示す如く、優れた品質であ、
つた。
After cutting this diamond, we conducted a GIA quality appraisal and found that it was of excellent quality, as shown in Table 1.
Ivy.

オージェ電子分光法では炭素100%であった。Auger electron spectroscopy showed that it was 100% carbon.

実施例4 ECRプラズマCVD法により、実施例8と同一条件で
、約3μ屑のダイヤモンド粒子を得た後、  。
Example 4 After diamond particles of approximately 3 μm were obtained by the ECR plasma CVD method under the same conditions as in Example 8.

筐応ガス組成をCH3: H2: B11H6= 1 
: 100 :α01とする以外は実施例1と同一条件
下でダイヤモンドを1500時間成長させ、0.19 
カラットのカラーダイヤモンドを得た。
The casing gas composition is CH3: H2: B11H6= 1
: 100: Diamond was grown for 1500 hours under the same conditions as in Example 1 except that α01 was set to 0.19.
Obtained a carat of colored diamonds.

X線回折の結果、単結晶であることが確認された。As a result of X-ray diffraction, it was confirmed that it was a single crystal.

カッティング後、G工A品質鑑定を行なったが第1表に
示す如く、良好な品質であった。
After cutting, G/A quality appraisal was performed, and as shown in Table 1, the quality was good.

オージェ電子分光法による元素分析の結果炭素(Q) 
99.3%ボロンIB)07%であった。
Results of elemental analysis by Auger electron spectroscopy Carbon (Q)
99.3% boron IB) 07%.

比較例1 0.1カラツトの天然ダイヤモンド(カット済)を核と
して、実施例1のマイクロ波プラズマCVD法のうち、
基体温度を1150℃詔よび成長速度12μwt / 
Hrにする以外は、まった(同じ条件下でダイヤモンド
や気相成長を1000時間行ない、&lカラットのダイ
ヤモンドを得た。
Comparative Example 1 Among the microwave plasma CVD methods of Example 1, using a 0.1 carat natural diamond (cut) as a core,
The substrate temperature was set at 1150℃ and the growth rate was set at 12μwt/
Except for the reduction in Hr, the diamond was grown in a vapor phase for 1000 hours under the same conditions, and a diamond of &l carat was obtained.

X線回折法により結晶形態を調べたところ、多結晶であ
ることが確認された。
When the crystal form was examined by X-ray diffraction, it was confirmed that it was polycrystalline.

これをカットし、GIA品質鑑定を行なったところ、第
1表に示すように、グレインが検呂され品質は、低いレ
ベルのものであった。
When this was cut and subjected to GIA quality appraisal, as shown in Table 1, the grains were detected and the quality was at a low level.

また、オージェ電子分光法により、元素分析を行なった
ところ炭素(al100%であった。
Further, elemental analysis was performed using Auger electron spectroscopy, and it was found to be carbon (100% Al).

比較例2 実施例1のマイクロ波プラズマCVD法のうち、基体温
度を1200℃にする以外は、まった(同じ条件下でダ
イヤモンドの気相成長を行ない、L8カラットのダイヤ
モンドを得た。
Comparative Example 2 The microwave plasma CVD method of Example 1 was repeated except that the substrate temperature was 1200° C. (Diamond was vapor-phase grown under the same conditions to obtain L8 carat diamond.

X線回折法により結晶形部を調べたところ、多結晶質で
、部分的に非晶質であることが確認された。
When the crystalline part was examined by X-ray diffraction, it was confirmed that it was polycrystalline and partially amorphous.

オージェ電子分光法による元素分析結果は、炭素(C)
100%であった。
The elemental analysis result by Auger electron spectroscopy shows that carbon (C)
It was 100%.

表中、O印は良好であることを示す 注)I CLARI’l″i1″ ;品質レベルの段階
は、次の順で表わされる。
In the table, the O mark indicates good quality Note) I CLARI'l''i1''; The quality level stages are expressed in the following order.

FLAWLESS(FLW) 、  耐T旺NALLY
 FLA盟、ESS(INT 、  FLW) 、  
VVS+  and V’VS2 、  VS+ an
dVS2 、  SI+  and S工2.工1.■
2 and工3の順に低評価 注)2 blemishes  ;表面評価であり、C
avj−ty(穴)。
FLAWLESS (FLW), resistant to NALLY
FLA Alliance, ESS (INT, FLW),
VVS+ and V'VS2, VS+ an
dVS2, SI+ and S engineering 2. Engineering 1. ■
Low evaluation in order of 2 and 3 Note) 2 blemises; Surface evaluation, C
avj-ty (hole).

Grain、 5cratch等により評価法)31n
clusi、ons  ;内部評価であり、peath
er 。
Evaluation method using Grain, 5cratch, etc.) 31n
clusi, ons; internal evaluation, peace
Er.

PinpOl、nt 、  C1oud 、  Kni
t Grain 、  等により評価 14 C0LOUR、D、 3 F、 G 、・、−Z
、 Z+(7)llfiT’低評価(発明の効果) 本発明は、気相成長法を用いて、単結晶ダイヤモンド核
に対し、特定の条件で核表面に単結晶ダイヤモンドを生
成することにより、装飾用ダイヤモンドとして、優れた
純度、品質のダイヤモンドを得ることができる。
PinpOl, nt, C1oud, Kni
Evaluation by t Grain, etc. 14 C0LOUR, D, 3 F, G, ·, -Z
, Z+(7)llfiT' low evaluation (effects of the invention) The present invention uses a vapor phase growth method to produce a single crystal diamond on the surface of a single crystal diamond nucleus under specific conditions. Diamonds of excellent purity and quality can be obtained as diamonds for industrial use.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に用いる製造装置の一例を示したものであ
る。 ■・・・反応槽、5・・・針状支持体、6−・ダイヤモ
ンド核
The drawing shows an example of a manufacturing apparatus used in the present invention. ■...Reaction tank, 5... Needle-like support, 6--Diamond core

Claims (2)

【特許請求の範囲】[Claims] (1)基体として単結晶から成るダイヤモンド核を反応
槽内に配置し、少なくとも炭素を有する気体を含むダイ
ヤモンド生成用ガスを該反応槽内に導入すると共にプラ
ズマを発生させ、基体温度800乃至1100℃の条件
下で、該核表面に0.01乃至10μm/HRの成長速
度でダイヤモンドを生成させることを特徴とする装飾用
ダイヤモンドの製造方法。
(1) A diamond nucleus made of a single crystal is placed as a base in a reaction tank, and a diamond-generating gas containing at least carbon is introduced into the reaction tank, and plasma is generated to raise the base temperature to 800 to 1100°C. 1. A method for producing decorative diamonds, characterized in that diamond is produced on the surface of the nucleus at a growth rate of 0.01 to 10 μm/HR under the following conditions.
(2)生成したダイヤモンドが単結晶であることを特徴
とする特許請求の範囲第1項記載の装飾用ダイヤモンド
の製造方法。
(2) The method for producing decorative diamonds according to claim 1, wherein the produced diamond is a single crystal.
JP59278647A 1984-12-29 1984-12-29 Production of ornamental diamond Pending JPS61158898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59278647A JPS61158898A (en) 1984-12-29 1984-12-29 Production of ornamental diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59278647A JPS61158898A (en) 1984-12-29 1984-12-29 Production of ornamental diamond

Publications (1)

Publication Number Publication Date
JPS61158898A true JPS61158898A (en) 1986-07-18

Family

ID=17600191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59278647A Pending JPS61158898A (en) 1984-12-29 1984-12-29 Production of ornamental diamond

Country Status (1)

Country Link
JP (1) JPS61158898A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156009A (en) * 1986-12-19 1988-06-29 Natl Inst For Res In Inorg Mater Synthesis of fine diamond powder
US4973494A (en) * 1987-02-24 1990-11-27 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method for depositing a boron nitride and carbon
US5013579A (en) * 1987-02-10 1991-05-07 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method for coating mechanical parts for improved wear resistance
AU614605B2 (en) * 1988-04-28 1991-09-05 De Beers Industrial Diamond Division (Proprietary) Limited Diamond growth
US5087434A (en) * 1989-04-21 1992-02-11 The Pennsylvania Research Corporation Synthesis of diamond powders in the gas phase
US5145711A (en) * 1987-08-10 1992-09-08 Semiconductor Energy Laboratory Co., Ltd. Cyclotron resonance chemical vapor deposition method of forming a halogen-containing diamond on a substrate
US5266363A (en) * 1986-11-10 1993-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method utilizing a microwave and a magnetic field at high pressure
US6110542A (en) * 1990-09-25 2000-08-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming a film
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
CN102605345A (en) * 2012-03-13 2012-07-25 天津理工大学 Preparation method for silica nanometer diamond film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266363A (en) * 1986-11-10 1993-11-30 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method utilizing a microwave and a magnetic field at high pressure
US6677001B1 (en) * 1986-11-10 2004-01-13 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method and apparatus
JPS63156009A (en) * 1986-12-19 1988-06-29 Natl Inst For Res In Inorg Mater Synthesis of fine diamond powder
US5013579A (en) * 1987-02-10 1991-05-07 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method for coating mechanical parts for improved wear resistance
US4973494A (en) * 1987-02-24 1990-11-27 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method for depositing a boron nitride and carbon
US6423383B1 (en) 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6217661B1 (en) 1987-04-27 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
US5145711A (en) * 1987-08-10 1992-09-08 Semiconductor Energy Laboratory Co., Ltd. Cyclotron resonance chemical vapor deposition method of forming a halogen-containing diamond on a substrate
AU614605B2 (en) * 1988-04-28 1991-09-05 De Beers Industrial Diamond Division (Proprietary) Limited Diamond growth
US5087434A (en) * 1989-04-21 1992-02-11 The Pennsylvania Research Corporation Synthesis of diamond powders in the gas phase
US6110542A (en) * 1990-09-25 2000-08-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming a film
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
US7125588B2 (en) 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film
CN102605345A (en) * 2012-03-13 2012-07-25 天津理工大学 Preparation method for silica nanometer diamond film

Similar Documents

Publication Publication Date Title
US20080003447A1 (en) Materials and methods for the manufacture of large crystal diamonds
JPH0288497A (en) Production of single crystal diamond grain
JPS58135117A (en) Preparation of diamond
JP2001081564A (en) Chemical vapor deposition system and method for synthesizing carbon nanotube using the same
JPS61158898A (en) Production of ornamental diamond
CN107407005A (en) Single-crystal diamond and its growing method
JPS60103098A (en) Manufacture of diamond film
US20090004093A1 (en) Materials and methods for the manufacture of large crystal diamonds
JPH05270977A (en) Plate diamond crystal and its formation
JPH08151295A (en) Production of substrate for vapor synthesis of single crystal diamond film
US6558742B1 (en) Method of hot-filament chemical vapor deposition of diamond
JPH0238304A (en) Improved abrasive grain of fine diamond and production thereof
US5437891A (en) Chemical vapor deposition of polycrystalline diamond with &lt;100&gt; orientation and &lt;100&gt; growth facets
US7622151B2 (en) Method of plasma enhanced chemical vapor deposition of diamond using methanol-based solutions
JPS61201698A (en) Diamond film and its production
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
JPS6261109B2 (en)
JPS62256795A (en) Production of diamond film
JP2003034867A (en) TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JPH03141199A (en) Production of single crystal cvd diamond
JP4480192B2 (en) Method for synthesizing high purity diamond
JPS632897A (en) Method for synthesizing diamond by vapor phase method
JPS60226494A (en) Gas-phase synthesis of diamond
JPS6330397A (en) Method for synthesizing diamond
JPS6340798A (en) Method for synthesizing diamond by vapor-phase process