JP2005336043A - Carbon nanotube and method of manufacturing carbon fiber - Google Patents

Carbon nanotube and method of manufacturing carbon fiber Download PDF

Info

Publication number
JP2005336043A
JP2005336043A JP2004185677A JP2004185677A JP2005336043A JP 2005336043 A JP2005336043 A JP 2005336043A JP 2004185677 A JP2004185677 A JP 2004185677A JP 2004185677 A JP2004185677 A JP 2004185677A JP 2005336043 A JP2005336043 A JP 2005336043A
Authority
JP
Japan
Prior art keywords
carbon nanotube
carbon
carbon nanotubes
ethanol
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004185677A
Other languages
Japanese (ja)
Inventor
Tomoaki Terasako
智昭 寺迫
Sho Shirakata
祥 白方
Akira Miyata
晃 宮田
Hiroyuki Miyaoka
宏幸 宮岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004185677A priority Critical patent/JP2005336043A/en
Publication of JP2005336043A publication Critical patent/JP2005336043A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that many conventional manufacturing methods necessitate a reduced pressure state, a pressurized state and an inert gas atmosphere, hardly are made large scaled and not suitable for low cost mass production and further necessitate a special technique such as the fixation of a catalytic metal on a porous substrate for the growth direction control of the carbon nanotube or the appliication of electric field or magnetic field in the growth of the carbon nanotube. <P>SOLUTION: The carbon nanotube and the carbon fiber are manufactured under an atmospheric pressure by using a chemical vapor phase deposition easily scaled up as the growth method, using ethanol having excellent safety property as a carbon material and using inexpensive gaseous nitrogen as a carrier gas. The manufactured quantity of carbon nanotube is increased, the manufacture of by-products except carbon nanotube is suppressed and the growth direction is changeable by adding indium, tin and oxygen in the formation of carbon nanotube. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、燃料電池用の水素貯蔵、電界放出型ディスプレー用の電子線源、ナノメートルスケールの配線、複合樹脂材料へ応用されるカーボンナノチューブおよびカーボンファイバーの製造方法に関する。  The present invention relates to a method for producing carbon nanotubes and carbon fibers applied to hydrogen storage for fuel cells, electron beam sources for field emission displays, nanometer-scale wiring, composite resin materials.

カーボンナノチューブの合成にはレーザー蒸着法やアーク放電法が使われているが、これらの方法は欠陥の少ないカーボンナノチューブやカーボンナノホーンのような特殊な構造を持つカーボンナノチューブの製造に適している。その反面、製造装置のスケールアップが困難であるという点でカーボンナノチューブの大量合成には適していない。これに対して化学気相堆積法はスケールアップも容易で連続生産によって低コスト化が可能であることから、カーボンナノチューブの量産に適している。これまでも、触媒金属微粒子と炭素原料に一酸化炭素(CO)、メタン、エチレン、アセチレン、ベンゼンを用いた化学気相堆積法によるカーボンナノチューブの製造が報告されている。  Laser deposition and arc discharge methods are used to synthesize carbon nanotubes, but these methods are suitable for producing carbon nanotubes having a special structure such as carbon nanotubes and carbon nanohorns with few defects. On the other hand, it is not suitable for mass synthesis of carbon nanotubes because it is difficult to scale up the production apparatus. In contrast, the chemical vapor deposition method is easy to scale up and can be reduced in cost by continuous production, and is therefore suitable for mass production of carbon nanotubes. Until now, the production of carbon nanotubes by chemical vapor deposition using catalytic metal fine particles and carbon raw materials such as carbon monoxide (CO), methane, ethylene, acetylene and benzene has been reported.

米ライス大学のグループはFe(CO)を触媒金属源とし、高温高圧のCOの不均衡化反応を利用したヒプコ(HiPco)法によるアモルファスカーボンの生成を伴わない単層カーボンナノチューブの大量生成の報告があるが、グラファイト層で覆われた触媒金属粒子が副生成物として存在することや高温高圧下でCOを利用するという安全性の問題があった。A group of Rice University of the United States has produced a large amount of single-walled carbon nanotubes without the formation of amorphous carbon by the HiPco method using Fe (CO) 5 as the catalyst metal source and the high-pressure and high-pressure CO imbalance reaction. Although there are reports, there are safety problems that the catalytic metal particles covered with the graphite layer exist as by-products and that CO is used under high temperature and high pressure.

東京大学の丸山らは、通常の触媒化学気相堆積法を用い、炭素源としてエタノールを使用することで、煤やアモルファスカーボンといった単層カーボンナノチューブ以外の副生成物の抑制と成長温度の低温化に成功している。しかしながら、この報告を含め、カーボンナノチューブの製造の多くが減圧下、アルゴンをはじめとする希ガス雰囲気中でなされている。Maruyama et al. At the University of Tokyo use conventional catalytic chemical vapor deposition and use ethanol as a carbon source to suppress by-products other than single-walled carbon nanotubes such as soot and amorphous carbon and lower the growth temperature. Has succeeded. However, including this report, many carbon nanotubes are produced in a rare gas atmosphere such as argon under reduced pressure.

また、カーボンナノチューブのデバイス応用には成長方向の制御が重要であるが、これまでにカーボンナノチューブの成長方向の制御は多孔質材料を基板に用いて、この孔に触媒金属を固定する方法や化学気相堆積法を用いて外部から磁界や電界を印加することで垂直方向への成長を促進するという方法がとられている。In addition, control of the growth direction is important for carbon nanotube device applications. To date, control of the growth direction of carbon nanotubes has been achieved by using a porous material as a substrate and fixing the catalytic metal in this hole. A method of promoting growth in the vertical direction by applying a magnetic field or an electric field from the outside using a vapor deposition method is employed.

発明が解決しようとする課題Problems to be solved by the invention

従来のカーボンナノチューブの製造方法にあっては、減圧あるいは加圧状態および希ガス雰囲気を必要とし、低コストでの大量生産には適しておらず、成長方向の制御も困難であった。  Conventional carbon nanotube production methods require a reduced pressure or pressurized state and a rare gas atmosphere, are not suitable for mass production at low cost, and control of the growth direction is difficult.

課題を解決するための手段Means for solving the problem

本発明は、スケールアップが容易で大量生産にも対応可能な大気圧下での化学気相堆積法を製造方法とし、エタノールを炭素原料とし、キャリアガスに安価かつ安全な窒素ガスを用い、さらに触媒金属以外に成長補助剤としてインジウム、スズ、酸素を供給することで上記課題を解決したものである。  The present invention uses a chemical vapor deposition method under atmospheric pressure that is easy to scale up and can be used for mass production, uses ethanol as a carbon raw material, uses inexpensive and safe nitrogen gas as a carrier gas, In addition to the catalyst metal, indium, tin, and oxygen are supplied as growth aids to solve the above problems.

以下に、本発明のエタノールを炭素原料として用いた大気圧化学気相堆積法によるカーボンナノチューブおよびカーボンファイバーの製造方法および実施の形態を説明する。  Below, the manufacturing method and embodiment of the carbon nanotube and carbon fiber by the atmospheric pressure chemical vapor deposition method using the ethanol of the present invention as a carbon raw material will be described.

図1は、大気圧化学気相堆積法によってカーボンナノチューブを製造する装置の概略図を示す。本製造方法では、安全性の点で優れているエタノールを炭素原料として用いる。製造装置は、二領域横型抵抗加熱式電気炉(1)とその中に置かれた石英製反応管(長さ1000mm、内径35mm)(2)、エタノールを気化するための蒸発器(3)キャリアガスとして用いる窒素ガス供給系から成る。二領域横型抵抗加熱式電気炉のうち、上流側はエタノールの熱分解、下流側はカーボンナノチューブを堆積する基板の加熱に使用した。蒸発器(3)で気化されたエタノールは窒素ガスによって反応管内に運ばれる。FIG. 1 shows a schematic view of an apparatus for producing carbon nanotubes by atmospheric pressure chemical vapor deposition. In this production method, ethanol, which is excellent in terms of safety, is used as a carbon raw material. The production apparatus consists of a two-region horizontal resistance heating type electric furnace (1), a quartz reaction tube (length 1000 mm, inner diameter 35 mm) (2), an evaporator (3) carrier for vaporizing ethanol. It consists of a nitrogen gas supply system used as gas. Of the two-region horizontal resistance heating type electric furnace, the upstream side was used for thermal decomposition of ethanol, and the downstream side was used for heating the substrate on which the carbon nanotubes were deposited. Ethanol vaporized in the evaporator (3) is carried into the reaction tube by nitrogen gas.

触媒金属原料には、硝酸ニッケル(II)六水和物、酢酸コバルト(II)四水和物、酢酸ニッケル(II)四水和物を用い、触媒金属原料の種類を問わず以下のような方法で触媒金属を基板上に定着する。本実施例ではSiO/Siウェハーを基板として用いたが、成長温度によってガラス、サファイア、半導体ウェハーなども使われる。As the catalyst metal raw material, nickel nitrate (II) hexahydrate, cobalt acetate (II) tetrahydrate, nickel acetate (II) tetrahydrate is used, regardless of the type of catalyst metal raw material, as follows. The catalyst metal is fixed on the substrate by the method. In this embodiment, a SiO 2 / Si wafer is used as a substrate, but glass, sapphire, a semiconductor wafer, etc. are also used depending on the growth temperature.

秤量した触媒金属原料をビーカー内のエタノール中に0.25×10−6mol/lから1.3×10−4mol/lの濃度で溶かし、スプーンで撹拌する。さらに、この触媒金属原料のエタノール溶液の入ったビーカーを超音波洗浄器内に10分間置くことで、触媒金属を超音波分散させる。The weighed catalyst metal raw material is dissolved in ethanol in a beaker at a concentration of 0.25 × 10 −6 mol / l to 1.3 × 10 −4 mol / l and stirred with a spoon. Further, the catalyst metal is ultrasonically dispersed by placing the beaker containing the ethanol solution of the catalyst metal raw material in an ultrasonic cleaner for 10 minutes.

次にビーカー内の触媒金属原料のエタノール溶液をスポイトで適量汲み、予めホットプレート上で80℃に加熱されているSiO/Si基板上に滴下し、触媒金属を定着させる。Next, an appropriate amount of an ethanol solution of the catalyst metal raw material in the beaker is drawn with a dropper and dropped onto a SiO 2 / Si substrate that has been heated to 80 ° C. on a hot plate in advance to fix the catalyst metal.

このようにして触媒金属を表面に定着させたSiO/Si基板は成長装置内の所定の位置(図1の4)に置かれる。The SiO 2 / Si substrate having the catalytic metal fixed on the surface in this way is placed at a predetermined position (4 in FIG. 1) in the growth apparatus.

電気炉の基板加熱領域とエタノール熱分解領域の温度およびエタノール用蒸発器の温度を所望の温度まで上昇させる。この温度上昇の際、石英製反応管内には100sccm(ここでsccmはstandard cubic centimeter per minutesの略で20℃、1気圧におけるcc/minである)の流量の窒素ガスを流す。The temperature of the substrate heating area and ethanol pyrolysis area of the electric furnace and the temperature of the ethanol evaporator are raised to desired temperatures. When this temperature rises, nitrogen gas having a flow rate of 100 sccm (where sccm is an abbreviation for standard cubic centimeter per minutes, 20 ° C. and cc / min at 1 atm) flows in the quartz reaction tube.

電気炉温度が設定温度に達したら、蒸発器内で気化されたエタノールの蒸気が反応管内に供給されるように空圧弁(図1の6および7)およびニードルバルブ(図1の8)を切り替える。窒素キャリアガス流量は質量制御流量計(図1の9)によって調整する。When the electric furnace temperature reaches the set temperature, the pneumatic valve (6 and 7 in FIG. 1) and the needle valve (8 in FIG. 1) are switched so that the vapor of ethanol vaporized in the evaporator is supplied into the reaction tube. . The nitrogen carrier gas flow rate is adjusted by a mass control flow meter (9 in FIG. 1).

予定成長時間が終了したら、エタノールの供給を停止し、窒素ガスのみを反応管内に供給し、電気炉およびエタノール蒸発器の温度を下げ、成長を終了する。When the planned growth time ends, the supply of ethanol is stopped, only nitrogen gas is supplied into the reaction tube, the temperatures of the electric furnace and the ethanol evaporator are lowered, and the growth is completed.

次に実施例について図2から図9を参照しながら説明する。電気炉の基板加熱領域およびエタノール熱分解領域の温度をそれぞれ925℃および500℃、エタノール用蒸発器温度を62℃、キャリアガス流量を200sccm、成長時間を90分として、触媒金属原料に酢酸コバルト(II)水和物を用いて作製したカーボンナノチューブの走査型電子顕微鏡写真を図2(a)に示す。Next, an embodiment will be described with reference to FIGS. The temperature of the substrate heating region and ethanol pyrolysis region of the electric furnace is 925 ° C. and 500 ° C., the ethanol evaporator temperature is 62 ° C., the carrier gas flow rate is 200 sccm, the growth time is 90 minutes, and the catalyst metal raw material is cobalt acetate ( II) A scanning electron micrograph of a carbon nanotube produced using a hydrate is shown in FIG.

電気炉の基板加熱領域およびエタノール熱分解領域の温度をそれぞれ925℃および500℃、エタノール用蒸発器温度を58℃、キャリアガス流量を100sccm、成長時間を60分として、触媒金属原料に酢酸ニッケル(II)四水和物を用いて作製したカーボンナノチューブの走査型電子顕微鏡写真を図2(b)に示す。The temperature of the substrate heating region and the ethanol pyrolysis region of the electric furnace was 925 ° C. and 500 ° C., the ethanol evaporator temperature was 58 ° C., the carrier gas flow rate was 100 sccm, the growth time was 60 minutes, and nickel acetate ( II) A scanning electron micrograph of carbon nanotubes produced using tetrahydrate is shown in FIG.

電気炉の基板加熱領域およびエタノール熱分解領域の温度をそれぞれ825℃および500℃、エタノール用蒸発器温度を58℃、キャリアガス流量を100sccm、成長時間を60分として、触媒金属原料に硝酸ニッケル(II)六水和物を用いて作製したカーボンナノチューブの走査型電子顕微鏡写真を図2(c)に示す。The temperature of the substrate heating region and the ethanol pyrolysis region of the electric furnace is 825 ° C. and 500 ° C., the evaporator temperature for ethanol is 58 ° C., the carrier gas flow rate is 100 sccm, the growth time is 60 minutes, and nickel nitrate ( II) A scanning electron micrograph of a carbon nanotube produced using hexahydrate is shown in FIG.

電気炉の基板加熱領域およびエタノール熱分解領域の温度をそれぞれ925℃および500℃、エタノール用蒸発器温度を62℃、キャリアガス流量を200sccm、成長時間を90分として触媒金属原料に酢酸ニッケル(II)四水和物と酢酸コバルト(II)四水和物の混合物を用いて作製したカーボンナノチューブの走査型電子顕微鏡写真を図2(d)に示す。The temperature of the substrate heating region and the ethanol pyrolysis region of the electric furnace was 925 ° C. and 500 ° C., the ethanol evaporator temperature was 62 ° C., the carrier gas flow rate was 200 sccm, the growth time was 90 minutes, and nickel acetate (II 2) A scanning electron micrograph of carbon nanotubes produced using a mixture of tetrahydrate and cobalt (II) acetate tetrahydrate is shown in FIG.

ニッケル、コバルト及びこれらの混合物のいずれを用いても窒素ガス雰囲気中、大気圧下での化学気相成長法によって直径50nmから130nmのカーボンナノチューブが形成されていることが分かる。中でも、硝酸ニッケル(II)六水和物を触媒金属原料に用いることが、比較的長いカーボンナノチューブを高密度で得るのに適していると言える。It can be seen that carbon nanotubes having a diameter of 50 nm to 130 nm are formed by chemical vapor deposition under atmospheric pressure in a nitrogen gas atmosphere using any of nickel, cobalt, and a mixture thereof. In particular, it can be said that the use of nickel (II) nitrate hexahydrate as a catalyst metal raw material is suitable for obtaining relatively long carbon nanotubes at a high density.

触媒金属原料に硝酸ニッケル(II)六水和物を用いたカーボンナノチューブ生成時にインジウム(In)、スズ(Sn)、酸素(O)を供給することで生成量を増加させることが可能である。実施例ではソーダライムガラス上に蒸着されているIn:Sn薄膜をインジウム、スズ、酸素の供給源として用いた。このIn:Sn薄膜は、組成がSn/(In+Sn)=0.14〜0.24、膜厚が2000Åの市販品を用いた。It is possible to increase the production amount by supplying indium (In), tin (Sn), and oxygen (O) when producing carbon nanotubes using nickel nitrate (II) hexahydrate as the catalyst metal raw material. In the examples, an In 2 O 3 : Sn thin film deposited on soda lime glass was used as a source of indium, tin, and oxygen. As the In 2 O 3 : Sn thin film, a commercial product having a composition of Sn / (In + Sn) = 0.14 to 0.24 and a film thickness of 2000 mm was used.

In:Sn薄膜をコートしたソーダライムガラスをInとSnO混合粉末で代替することや反応管外からインジウム、スズ、酸素をガスとして供給することも可能である。It is also possible to replace soda lime glass coated with an In 2 O 3 : Sn thin film with a mixed powder of In 2 O 3 and SnO 2 and supply indium, tin, and oxygen as gases from outside the reaction tube.

Inコートソーダライムガラスは表面に触媒金属がコートされているSiO/Si基板の1cm上流側に置かれた(図1の5)。In 2 O 3 coated soda lime glass was placed 1 cm upstream of the SiO 2 / Si substrate whose surface was coated with catalytic metal (5 in FIG. 1).

カーボンナノチューブ製造の手順は、上述したインジウム、スズ、酸素を供給しない場合と同様である。基板加熱領域およびエタノール熱分解領域温度をそれぞれ800℃および600℃とした。エタノール用蒸発器の温度は54℃とし、窒素キャリアガス流量は100sccmとした。成長時間は5分から60分とした。The procedure for producing carbon nanotubes is the same as that in the case where indium, tin and oxygen are not supplied. The substrate heating region and ethanol pyrolysis region temperatures were 800 ° C. and 600 ° C., respectively. The temperature of the ethanol evaporator was 54 ° C., and the nitrogen carrier gas flow rate was 100 sccm. The growth time was 5 to 60 minutes.

図3は、成長時間とSiO/Si基板上に堆積した金属触媒原料の質量に対する成長実験終了後のカーボン堆積物の質量の比(ここでは、カーボン堆積物生成割合と呼ぶことにする)との関係を成長時にインジウム、スズ、酸素の供給なしで作製した場合と供給下で作製した場合に対して示している。インジウム、スズ、酸素の供給なしで作製した場合、カーボン堆積物の生成割合は時間とともに緩やかに増加している。これに対して、インジウム、スズ、酸素供給下で作製した場合には25分付近で急激に増加し、40分以後は飽和している。成長時間40分におけるインジウム、スズ、酸素供給下で作製した試料のカーボン堆積物の生成割合は、供給なしで作製した試料に比べて3.5倍以上大きくなっている。FIG. 3 shows the ratio of the carbon deposit mass after the growth experiment to the growth time and the mass of the metal catalyst raw material deposited on the SiO 2 / Si substrate (hereinafter referred to as the carbon deposit production ratio). This relationship is shown for the case where it is manufactured without supplying indium, tin and oxygen during the growth and the case where it is manufactured under supply. When produced without supply of indium, tin, and oxygen, the generation rate of carbon deposits gradually increases with time. On the other hand, when it is produced under the supply of indium, tin, and oxygen, it increases rapidly in the vicinity of 25 minutes and is saturated after 40 minutes. The production rate of carbon deposits in the sample produced under the supply of indium, tin, and oxygen at a growth time of 40 minutes is at least 3.5 times that of the sample produced without supply.

図4(a)および図4(b)は、基板加熱領域およびエタノール熱分解領域温度をそれぞれ800℃および600℃、エタノール用蒸発器温度54℃、キャリアガス流量100sccm、成長時間40分で、インジウム、スズ、酸素の供給なしで作製した試料と供給下で作製した試料の表面の走査型電子顕微鏡像である。インジウム、スズ、酸素を供給なしで作製した試料の表面には、直径100nmから500nmのカーボン微粒子が高密度で堆積しており、これらのカーボン微粒子間に直径60nmから110nmのカーボンナノチューブが点在しているのが分かる。一方、インジウム、スズ、酸素供給下で作製した試料の表面は、供給なしで作製した試料に比べてカーボンナノチューブが高密度で存在しており、カーボン微粒子などの異物の堆積が少ないことが分かる。4 (a) and 4 (b) show that the substrate heating region and ethanol pyrolysis region temperatures are 800 ° C. and 600 ° C., the ethanol evaporator temperature is 54 ° C., the carrier gas flow rate is 100 sccm, and the growth time is 40 minutes. 2 is a scanning electron microscope image of the surface of a sample prepared without supplying tin and oxygen and a sample prepared under supply. Carbon fine particles having a diameter of 100 nm to 500 nm are deposited at a high density on the surface of a sample prepared without supplying indium, tin, and oxygen, and carbon nanotubes having a diameter of 60 nm to 110 nm are scattered between the carbon fine particles. I understand that. On the other hand, the surface of the sample prepared under the supply of indium, tin, and oxygen has a higher density of carbon nanotubes than the sample prepared without supply, and it can be seen that there is less accumulation of foreign matter such as carbon fine particles.

図5は、基板加熱領域およびエタノール熱分解領域温度をそれぞれ800℃および600℃、エタノール用蒸発器温度54℃、キャリアガス流量100sccm、成長時間27分、インジウム、スズ、酸素の供給下で作製したカーボンナノチューブを走査型電子顕微鏡によって撮影した写真である。図5(a)が8,000倍、図5(b)が60,000倍で撮影した結果である。これらの走査型電子顕微鏡写真は、直径50nmのカーボンナノチューブの先端に触媒金属の球形の塊が堆積しており,SiO/Si基板から外れた触媒金属微粒子を先頭にしてカーボンナノチューブが成長する先端成長が行われていることを示している。一方、インジウム、スズ、酸素を供給しなしで作製した試料では、先端に触媒金属微粒子を持ったカーボンナノチューブは観察されていないことから、主に根元成長が行われていると考えられる。FIG. 5 shows the substrate heating region and ethanol pyrolysis region temperatures of 800 ° C. and 600 ° C., an ethanol evaporator temperature of 54 ° C., a carrier gas flow rate of 100 sccm, a growth time of 27 minutes, and supplied with indium, tin, and oxygen, respectively. It is the photograph which image | photographed the carbon nanotube with the scanning electron microscope. FIG. 5A is a result of photographing at 8,000 times, and FIG. 5B is a result of photographing at 60,000 times. In these scanning electron micrographs, a spherical lump of catalytic metal is deposited on the tip of a carbon nanotube having a diameter of 50 nm, and the tip of the carbon nanotube grows starting from the catalyst metal fine particles detached from the SiO 2 / Si substrate. It shows that growth is taking place. On the other hand, in the sample prepared without supplying indium, tin, and oxygen, carbon nanotubes having catalytic metal fine particles at the tip were not observed, so it is considered that root growth is mainly performed.

走査型電子顕微鏡で観察されるカーボンナノチューブが実際にグラファイトからなることを確認するために以下の手順でX線回折測定を行った。まずカーボンナノチューブの堆積しているSiO/Si基板をビーカー内のエタノールに浸け、これを超音波洗浄器にかけることで基板からカーボンナノチューブの薄膜を剥ぎ取った。次にこのカーボンナノチューブの薄膜をX線回折測定用のガラス製のホルダーに載せ、エタノールを滴下することで付着させた。この測定用ホルダーに付着させた試料に対して、Cu−Kα線をX線源とするθ−2θ走査によるX線回折測定を行った。測定範囲は、10°から80°とした。図6には、基板加熱領域および熱分解領域温度をそれぞれ800℃および600℃、エタノール用蒸発器温度54℃、キャリアガス流量100sccm、成長時間30分、インジウム、スズ、酸素供給下で作製した試料のX線回折パターンを示す。X線回折パターンの26.5°、44.2°、51.6°にグラファイトの(002)、(101)、(004)による回折ピークが見られ、走査型電子顕微鏡で観察されたワイヤー状のナノ構造がグラファイトからなることが確認された。In order to confirm that the carbon nanotubes observed with a scanning electron microscope are actually made of graphite, X-ray diffraction measurement was performed according to the following procedure. First, the SiO 2 / Si substrate on which the carbon nanotubes were deposited was immersed in ethanol in a beaker, and this was subjected to an ultrasonic cleaner to peel off the carbon nanotube thin film from the substrate. Next, the carbon nanotube thin film was placed on a glass holder for X-ray diffraction measurement, and ethanol was dropped to adhere. X-ray diffraction measurement by θ-2θ scanning using Cu—K α rays as an X-ray source was performed on the sample attached to the measurement holder. The measurement range was 10 ° to 80 °. FIG. 6 shows a sample manufactured under substrate heating region and pyrolysis region temperatures of 800 ° C. and 600 ° C., an ethanol evaporator temperature of 54 ° C., a carrier gas flow rate of 100 sccm, a growth time of 30 minutes, and indium, tin, and oxygen supply, respectively. The X-ray diffraction pattern of is shown. Diffraction peaks due to (002), (101), and (004) of graphite are observed at 26.5 °, 44.2 °, and 51.6 ° of the X-ray diffraction pattern, and the wire shape observed with a scanning electron microscope It was confirmed that the nanostructure was made of graphite.

次に実施例で作製されたカーボンナノチューブが、単層ナノチューブであるか多層ナノチューブであるかを判別するためにラマン散乱測定を行った。市販の単層カーボンナノチューブでは低波数領域にブリージングモードと呼ばれる単層カーボンナノチューブ特有の振動モードによるラマン散乱線系列が見られたが、実施例の試料ではこれらのラマン散乱線系列が観察されなかった。図7には、市販の単層カーボンナノチューブおよび基板加熱領城および熱分解領域温度をそれぞれ800℃および600℃、エタノール用蒸発器温度54℃、キャリアガス流量100sccm、インジウム、スズ、酸素の供給下、成長時間27分で作製された試料の1200cm−1から1800cm−1の領域のラマン散乱スペクトルを示す。1500cm−1から1600cm−1に現れるGバンド(graphite band)と呼ばれるグラファイトに特徴的なフォノン分散に帰属するラマン散乱線のスペクトル形状に相違が見られる。単層カーボンナノチューブでは、Gバンドが2本に分離しているのに対して、インジウム、スズ、酸素供給下で作製された試料のGバンドは半値全幅が31cm−1と広いブロードなピークである。この実施例の試料のGバンドのピークの波数は1570cm−1であり、グラファイト(1580cm−1)に比べて10cm−1低波数側にシフトしている。これは多層カーボンナノチューブで観察される傾向と一致しており、実施例のカーボンナノチューブが多層カーボンナノチューブであるということを示している。また、1355cm−1付近にDバンド(disorder band)と呼ばれるグラファイト面内の乱れ、欠陥などに起因するラマン散乱線が観察される。Dバンドに対するGバンドの強度は、成長した結晶の結晶性を示す目安として頻繁に用いられ、この値が大きいほど結晶性が優れているとされている。本実施例においては、インジウム、スズ、酸素供給下で作製した試料で強く、かつ急激な成長が見られた成長時間27分で作製した試料で最も強いことが分かった。Next, Raman scattering measurement was performed to determine whether the carbon nanotubes produced in the examples were single-walled nanotubes or multi-walled nanotubes. In the commercially available single-walled carbon nanotubes, the Raman scattered ray series due to the vibration mode unique to the single-walled carbon nanotubes called breathing mode was seen in the low wavenumber region, but these Raman scattered ray series were not observed in the sample of the example . FIG. 7 shows a commercially available single-walled carbon nanotube, a substrate heating region and a thermal decomposition region temperature of 800 ° C. and 600 ° C., an ethanol evaporator temperature of 54 ° C., a carrier gas flow rate of 100 sccm, an indium, tin and oxygen supply shows the Raman scattering spectra in the region of 1800 cm -1 from the growth time of the sample produced at 27 minutes 1200 cm -1. There is a difference in the spectral shape of the Raman scattered radiation attributed to the phonon dispersion characteristic of graphite called G band (graphite band) appearing from 1500 cm −1 to 1600 cm −1 . In the single-walled carbon nanotube, the G band is separated into two, whereas the G band of the sample prepared under the supply of indium, tin, and oxygen has a broad peak with a full width at half maximum of 31 cm −1. . Wavenumber of the peak of the G-band of the sample of this example is 1570 cm -1, it shifted to 10 cm -1 wave number side lower than the graphite (1580 cm -1). This is consistent with the trend observed with multi-walled carbon nanotubes, indicating that the carbon nanotubes of the examples are multi-walled carbon nanotubes. In addition, Raman scattered rays caused by turbulence, defects, etc. in the graphite plane called a D band (disorder band) are observed near 1355 cm −1 . The intensity of the G band relative to the D band is frequently used as a measure of the crystallinity of the grown crystal, and the larger this value is, the better the crystallinity is. In this example, it was found that the sample produced under the supply of indium, tin, and oxygen was strong, and the sample produced with a growth time of 27 minutes in which rapid growth was observed was the strongest.

図8(a)および図8(b)は、基板加熱領域および熱分解領域温度をそれぞれ800℃および600℃、成長時間30分、エタノール用蒸発器温度53℃、キャリアガス流量100sccmのもと、インジウム、スズ、酸素の供給なしで作製した試料と供給下で作製した試料の断面の走査型電子顕微鏡写真を示している。インジウム、スズ、酸素の供給なしで作製した試料ではカーボンナノチューブがSiO/Si基板面に対して垂直に成長している様子が見られるが、インジウム、スズ、酸素供給下で作製した試料では、カーボンナノチューブが基板面に対して平行に折り重なるように堆積していることが分かる。インジウム、スズ、酸素を供給することで前述のように成長機構が根元成長から先端成長へと変化し、結果として成長方向が変化したと考えられる。8 (a) and 8 (b) show that the substrate heating region temperature and the thermal decomposition region temperature are 800 ° C. and 600 ° C., the growth time is 30 minutes, the ethanol evaporator temperature is 53 ° C., and the carrier gas flow rate is 100 sccm, The scanning electron micrograph of the cross section of the sample produced without supply of indium, tin, and oxygen, and the sample produced under supply is shown. In the sample prepared without supplying indium, tin, and oxygen, it can be seen that the carbon nanotubes grow perpendicular to the SiO 2 / Si substrate surface, but in the sample prepared with indium, tin, and oxygen supplied, It can be seen that the carbon nanotubes are deposited so as to be folded parallel to the substrate surface. By supplying indium, tin, and oxygen, it is considered that the growth mechanism changed from the root growth to the tip growth as described above, and as a result, the growth direction changed.

この結果を踏まえると、インジウム、スズ、酸素を外部から供給し、これらの供給を断続することでカーボンナノチューブの成長方向を制御し、ナノメートルスケールのカーボンナノチューブ配線の実現も期待される。Based on this result, indium, tin, and oxygen are supplied from the outside, and by intermittently supplying these, the growth direction of the carbon nanotubes is controlled, and the realization of nanometer-scale carbon nanotube wiring is also expected.

以上のようにカーボンナノチューブの生成時にインジウム、スズ、酸素を供給することで、カーボンナノチューブの生成量を大幅に増加し、カーボンナノチューブ以外の異物の生成を抑制し、カーボンナノチューブの成長方向を変えることが可能であることが明らかになった。As described above, by supplying indium, tin, and oxygen during the generation of carbon nanotubes, the generation amount of carbon nanotubes is greatly increased, the generation of foreign substances other than carbon nanotubes is suppressed, and the growth direction of carbon nanotubes is changed. It has become clear that this is possible.

実施例では多層カーボンナノチューブの製造を取りあげたが、単層カーボンナノチューブが多層カーボンナノチューブ形成の成長核となっていることを考慮すると本発明の単層カーボンナノチューブへの展開も可能と言える。In the examples, the production of multi-walled carbon nanotubes was taken up, but it can be said that the present invention can be applied to single-walled carbon nanotubes in consideration of the fact that single-walled carbon nanotubes are the growth nucleus for the formation of multi-walled carbon nanotubes.

触媒金属に酢酸コバルト(II)四水和物を用いて作製した試料表面(この場合、インジウム、スズ、酸素は供給していない)には図9に光学顕微鏡写真で示されるような直径2.5μmから3.0μmと比較的大きな直径を有するカーボンファイバーの堆積も確認され、本製造方法がカーボンファイバーの製造にも適用可能であることも明らかになっている。The surface of the sample prepared using cobalt (II) acetate tetrahydrate as the catalyst metal (in this case, indium, tin, and oxygen are not supplied) has a diameter of 2. as shown in the optical micrograph in FIG. Deposition of carbon fibers having a relatively large diameter of 5 μm to 3.0 μm has also been confirmed, and it has become clear that this production method can also be applied to the production of carbon fibers.

発明の効果The invention's effect

以上のように本発明によれば、簡便な装置、安全な炭素原料、安価なキャリアガスを用いてカーボンナノチューブを高い割合で生成し、かつ基板に対して特殊な加工を施すことなく成長方向の制御も可能となる。As described above, according to the present invention, carbon nanotubes are generated at a high rate using a simple apparatus, a safe carbon raw material, and an inexpensive carrier gas, and the growth direction can be increased without performing special processing on the substrate. Control is also possible.

本発明の実施例を示す概略図である。It is the schematic which shows the Example of this invention. (a)酢酸コバルト(II)四水和物、(b)酢酸ニッケル(II)四水和物、(c)硝酸ニッケル(II)六水和物、(d)酢酸コバルト(II)四水和物と酢酸ニッケル(II)四水和物の混合物を触媒金属原料として用いて作製した試料表面の走査型電子顕微鏡写真。(A) cobalt acetate (II) tetrahydrate, (b) nickel acetate (II) tetrahydrate, (c) nickel nitrate (II) hexahydrate, (d) cobalt acetate (II) tetrahydrate Scanning electron micrograph of the surface of a sample prepared using a mixture of the product and nickel (II) acetate tetrahydrate as a catalyst metal raw material. 成長時にインジウム、スズ、酸素を供給しなかった場合と供給した場合のカーボン堆積物生成割合(SiO/Si基板上に堆積した金属触媒原料の質量に対する成長実験終了後のカーボン堆積物の質量の比)の成長時間に対する変化。基板加熱領域および熱分解領域温度をそれぞれ800℃および600℃、エタノール蒸発器温度54℃、キャリアガス流量100sccm一定とした。Carbon deposit generation ratio when indium, tin, and oxygen are not supplied during the growth and when supplied (the mass of the carbon deposit after the growth experiment with respect to the mass of the metal catalyst raw material deposited on the SiO 2 / Si substrate) Ratio) to growth time. The substrate heating region and pyrolysis region temperatures were 800 ° C. and 600 ° C., the ethanol evaporator temperature was 54 ° C., and the carrier gas flow rate was 100 sccm, respectively. 基板加熱領域および熱分解領域温度をそれぞれ800℃および600℃、エタノール用蒸発器温度54℃、キャリアガス流量100sccm、成長時間40分で、(a)インジウム、スズ、酸素供給なしで作製した試料と(b)供給下で作製した試料の表面の走査型電子顕微鏡写真。The substrate heating region and pyrolysis region temperatures were 800 ° C. and 600 ° C., the ethanol evaporator temperature was 54 ° C., the carrier gas flow rate was 100 sccm, and the growth time was 40 minutes. (B) Scanning electron micrograph of the surface of the sample prepared under supply. 基板加熱領域および熱分解領域温度をそれぞれ800℃および600℃、エタノール用蒸発器温度54℃、キャリアガス流量100sccm、成長時間27分、インジウム、スズ、酸素供給下で成長したカーボンナノチューブの走査型電子顕微鏡写真((a)8,000倍、(b)60,000倍)。Scanning electrons of carbon nanotubes grown under substrate heating region and pyrolysis region temperatures of 800 ° C. and 600 ° C., ethanol evaporator temperature of 54 ° C., carrier gas flow rate of 100 sccm, growth time of 27 minutes, indium, tin and oxygen supply, respectively. Micrographs ((a) 8,000 times, (b) 60,000 times). 基板加熱領域および熱分解領域温度をそれぞれ800℃および600℃、エタノール用蒸発器温度54℃、キャリアガス流量100sccm、成長時間30分、インジウム、スズ、酸素供給下で作製したカーボンナノチューブのX線回折パターン。X-ray diffraction of carbon nanotubes produced under substrate heating region and pyrolysis region temperatures of 800 ° C. and 600 ° C., ethanol evaporator temperature of 54 ° C., carrier gas flow rate of 100 sccm, growth time of 30 minutes, indium, tin and oxygen supply, respectively. pattern. 市販の単層カーボンナノチューブと実施例で作製した試料のラマン散乱スペクトルの比較。実施例の試料は、基板加熱領域および熱分解領域温度をそれぞれ800℃および600℃、エタノール蒸発器温度54℃、キャリアガス流量100sccm、成長時間27分、インジウム、スズ、酸素供給下で作製された。Comparison of Raman scattering spectra of commercially available single-walled carbon nanotubes and samples prepared in Examples. Samples of the examples were prepared under substrate heating region and pyrolysis region temperatures of 800 ° C. and 600 ° C., ethanol evaporator temperature of 54 ° C., carrier gas flow rate of 100 sccm, growth time of 27 minutes, indium, tin, and oxygen supply, respectively. . 基板加熱領域および熱分解領域温度をそれぞれ800℃および600℃、エタノール用蒸発器温度54℃、キャリアガス流量100sccm、成長時間30分、(a)インジウム、スズ、酸素の供給なしで作製した試料および(b)供給下で作製した多層カーボンナノチューブ薄膜の断面の走査型電子顕微鏡写真。Substrate heating region and pyrolysis region temperatures of 800 ° C. and 600 ° C., ethanol evaporator temperature of 54 ° C., carrier gas flow rate of 100 sccm, growth time of 30 minutes, (a) a sample prepared without supply of indium, tin, and oxygen, and (B) Scanning electron micrograph of a cross section of a multi-walled carbon nanotube thin film produced under supply. カーボンファイバーの光学顕微鏡写真。Optical micrograph of carbon fiber.

符号の説明Explanation of symbols

1 二領域横型抵抗加熱式電気炉
2 石英製反応管
3 エタノール用蒸発器
4 触媒金属を定着したSiO/Si基板
5 In:Snコートソーダライムガラス
6 ノーマリー・オープン空圧作動弁
7 ノーマリー・クローズ空圧作動弁
8 ニードルバルブ
9 質量制御流量計
10 排気用トラップ
1 second region lateral resistance heating type electric furnace 2 quartz reaction tube 3 SiO 2 / Si substrate was fixed ethanol evaporator 4 catalyst metal 5 In 2 O 3: Sn-coated soda-lime glass 6 normally-open pneumatically operated valve 7 Normally closed pneumatically operated valve 8 Needle valve 9 Mass control flow meter 10 Exhaust trap

Claims (3)

原料にエタノール、触媒金属にニッケル、コバルトもしくはこれらの混合物を用いた大気圧下、窒素ガス雰囲気中での化学気相堆積法によるカーボンナノチューブの製造方法。A method of producing carbon nanotubes by chemical vapor deposition using nitrogen as a raw material and nickel, cobalt or a mixture thereof as a catalyst metal in a nitrogen gas atmosphere under atmospheric pressure. 原料にエタノール、触媒金属にニッケルを用い、カーボンナノチューブの生成量の増加、カーボンナノチューブ以外の副生成物の抑制および成長方向制御、もしくはいずれかを目的にインジウム、スズ、酸素を供給する大気圧下、窒素ガス雰囲気中での化学気相堆積法によるカーボンナノチューブの製造方法。Under atmospheric pressure to supply indium, tin, and oxygen for the purpose of increasing the amount of carbon nanotubes generated, suppressing the by-products other than carbon nanotubes, and controlling the growth direction, using ethanol as the raw material and nickel as the catalyst metal A method for producing carbon nanotubes by chemical vapor deposition in a nitrogen gas atmosphere. 原料にエタノール、触媒金属原料にニッケル、コバルトもしくはこれらの混合物を用い、大気圧下、窒素ガス雰囲気中での化学気相堆積法によるカーボンファイバーの製造方法。A method for producing carbon fiber by chemical vapor deposition under atmospheric pressure and nitrogen gas atmosphere using ethanol as a raw material and nickel, cobalt or a mixture thereof as a catalytic metal raw material.
JP2004185677A 2004-05-27 2004-05-27 Carbon nanotube and method of manufacturing carbon fiber Pending JP2005336043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185677A JP2005336043A (en) 2004-05-27 2004-05-27 Carbon nanotube and method of manufacturing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004185677A JP2005336043A (en) 2004-05-27 2004-05-27 Carbon nanotube and method of manufacturing carbon fiber

Publications (1)

Publication Number Publication Date
JP2005336043A true JP2005336043A (en) 2005-12-08

Family

ID=35490009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185677A Pending JP2005336043A (en) 2004-05-27 2004-05-27 Carbon nanotube and method of manufacturing carbon fiber

Country Status (1)

Country Link
JP (1) JP2005336043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303117A (en) * 2007-06-08 2008-12-18 Denso Corp Apparatus and method for manufacturing carbon nanotube
CN100581988C (en) * 2007-09-03 2010-01-20 中国科学院理化技术研究所 Device and method for stably preparing one-dimensional nano structure material by heat evaporation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303117A (en) * 2007-06-08 2008-12-18 Denso Corp Apparatus and method for manufacturing carbon nanotube
CN100581988C (en) * 2007-09-03 2010-01-20 中国科学院理化技术研究所 Device and method for stably preparing one-dimensional nano structure material by heat evaporation

Similar Documents

Publication Publication Date Title
US7687109B2 (en) Apparatus and method for making carbon nanotube array
CN100462301C (en) Method for preparing carbon nano tube array
US7682658B2 (en) Method for making carbon nanotube array
KR100923304B1 (en) Graphene sheet and process for preparing the same
US8840724B2 (en) Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
US8142568B2 (en) Apparatus for synthesizing a single-wall carbon nanotube array
US20120148476A1 (en) Method for producing carbon nanotube assembly having high specific surface area
US20060263524A1 (en) Method for making carbon nanotube array
US7700048B2 (en) Apparatus for making carbon nanotube array
WO2003082738A1 (en) Method for preparing monolayer carbon nanotube
US9096435B2 (en) Process for production of carbon nanotube
US8883260B2 (en) Apparatus and method for producing carbon
JP2007261839A (en) Method for producing carbon nanotube
US20140154416A1 (en) Apparatus and method for producing oriented carbon nanotube aggregate
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
Quinton et al. A comparative study of three different chemical vapor deposition techniques of carbon nanotube growth on diamond films
TW200800387A (en) Catalyst for catalyzing carbon nanotubes growth
JP2005336043A (en) Carbon nanotube and method of manufacturing carbon fiber
Maruyama Carbon nanotube growth mechanisms
TWI667363B (en) Method for fabricating carbon nanotube array
JP3711384B2 (en) Carbon nanotube aggregate array film and manufacturing method thereof
KR101287890B1 (en) Method for manufacturing carbon nano tube using liquid catalyst precursor
JP5002187B2 (en) Carbon nanocoil growth method
KR101005331B1 (en) Carbon NanoTube growing method for controlling wall number
JPS60112699A (en) Manufacture of diamond