JPS5956532A - Roll cooling method of thin steel sheet in continuous annealing - Google Patents

Roll cooling method of thin steel sheet in continuous annealing

Info

Publication number
JPS5956532A
JPS5956532A JP16636582A JP16636582A JPS5956532A JP S5956532 A JPS5956532 A JP S5956532A JP 16636582 A JP16636582 A JP 16636582A JP 16636582 A JP16636582 A JP 16636582A JP S5956532 A JPS5956532 A JP S5956532A
Authority
JP
Japan
Prior art keywords
cooling
roll
thin steel
steel sheet
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16636582A
Other languages
Japanese (ja)
Other versions
JPS6234807B2 (en
Inventor
Osamu Hashimoto
修 橋本
Yoshio Sakamoto
坂元 祥郎
Takeo Fukushima
丈雄 福島
Kenichi Yanagi
謙一 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16636582A priority Critical patent/JPS5956532A/en
Publication of JPS5956532A publication Critical patent/JPS5956532A/en
Publication of JPS6234807B2 publication Critical patent/JPS6234807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To improve an aging characteristic, yield characteristic and ductility by bringing a thin steel sheet into contact with plural cooling rolls after soaking and cooling the same under the specific conditions for the radius of a cooling roll having the larger diameter of two cooling rolls, the max. winding angle of the thin steel sheet on the cooling rolls, the distance between the two faces bisecting the winding angle of the two adjacent rolls and the passing speed of the thin steel sheet. CONSTITUTION:A thin steel sheet is brought into contact with plural cooling rolls after soaking in continuous annealing of said sheet and is cooled under the conditions satisfying the equation I and the equation II. In the equations, R; the radius (m) of the cooling roll having the larger diameter of the two adjacent cooling rolls, thetaM; the max. winding angle (angle of roll center) (degree) at which the thin steel sheet can be wound on the cooling rolls), LS; the passing speed (m/min) of the thin steel sheet, D; the distance (m) between the two faces bisecting the respective winding angles of the two adjacent rolls.

Description

【発明の詳細な説明】 本発明は、薄鋼板1LlI造二〔程の連続焼鈍にお&J
る薄鋼板の冷却方法に関し、さらに詳しくは、均熱後の
薄鋼板を冷却ロールを用いて冷却する場合に薄鋼板の冷
却曲線が階段状になることが不可避であるが、それが鋼
板側質の改善に悪影響を及はさないように操業条件を規
定した冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to continuous annealing of thin steel sheets of 1L1 and 2.
Regarding the cooling method for thin steel sheets, in more detail, when cooling a thin steel sheet after soaking using a cooling roll, it is inevitable that the cooling curve of the thin steel sheet becomes step-like. It relates to a cooling method that defines operating conditions so as not to adversely affect the improvement of

薄鋼板の連続焼鈍は、灼熱保持により鋼板を再結晶させ
その後の、急速冷却とその後の析出処理とによって4柵
板中の固溶炭素陽を低減さぜるものである。固溶炭素針
の11(減に上り、X「14仮の月f1’t4?性のう
ち、時効特性、降伏特性、延性などが改善される。時効
特性は、一般に、歪時効処理(100’C130min
 )前後の応力上昇値で表わされる。
Continuous annealing of a thin steel plate involves recrystallizing the steel plate by holding it at scorching heat, followed by rapid cooling and subsequent precipitation treatment to reduce the amount of solid solute carbon in the four-barrel plate. The aging characteristics, yield characteristics, ductility, etc. of the solute carbon needle are improved by increasing the 11 (reduction) and the aging characteristics, yield characteristics, ductility, etc. C130min
) is expressed as the stress increase value before and after.

均熱処理後の鋼板を、@、速全冷却る方法としで、ガス
冷却、ミスト冷却、フォグ冷却、水冷却、ロール冷却、
粉粒体による直接冷却など種々の方法がある。これらの
冷却方法のうちいずilの方法を選択するかは、被焼鈍
材の種類、板厚、Φ位時間当りの生産量等に依存する。
There are several methods for quickly and completely cooling the steel plate after soaking treatment: gas cooling, mist cooling, fog cooling, water cooling, roll cooling,
There are various methods such as direct cooling using granular materials. Which of these cooling methods is selected depends on the type of material to be annealed, the plate thickness, the production amount per Φ hour, etc.

本発明は、これらのうち、ロール冷却に係るものである
。ロール冷却口、薄鋼(反の平均冷却速度が30〜b ると′);えら−Jlでいる。
Of these, the present invention relates to roll cooling. Roll cooling port, thin steel (average cooling rate of 30~B); gill-Jl.

しかし、冒−ル冷却は従来、薄鋼板の平均冷却速度がI
)1望のflljj囲内に人゛つておJIV、[よいと
の考えに、立脚しで採用されてふ・す、ぞの範囲内で1
ソ浩、できる秤:J’+”jの11)(板の焼鋪にしか
適用されていなかった。−J左わち、ン1’! !”l
:や)1イ1のii、類の差異に対し、て厳密な、1B
 7;、(ζが払わ)1ておらず、簡易外方法として用
いられ、ていプ、二。
However, in conventional cold cooling, the average cooling rate of thin steel sheets was I
) If there are any people within JIV's circle of 1 desire, JIV will be adopted based on the idea that it is good, and within the range of 1.
Sohiro, the scale that can be done: J' + "j's 11) (applied only to the baking of the board. -J left, N1'! !"l
:ya) 1i 1 ii, strict 1B for class differences
7; (ζ is paid) 1 is not used and is used as a simplified method;

ロール冷却方法が宿命的に有している問題は、ロールと
ロールどの中間に訃いて鋼板がロールと接触亡ずにF’
l 417の冷却511!度が著しく小さい部分が存在
することである。すなわち、温度〜時間平面に描いた薄
ψ11板の冷却曲線が階段状となることである。
The problem that the roll cooling method is destined to have is that if the steel plate falls between the rolls and the steel plate does not come into contact with the rolls, F'
l Cooling of 417 511! The problem is that there are parts where the degree is extremely small. That is, the cooling curve of the thin ψ11 plate drawn on the temperature-time plane has a step-like shape.

この問題は、均熱された薄鋼板を約750 ’Cがら約
400℃1でのイ1冷を必要とする温度域を1本のロー
ルで冷却することができない限り、回避することができ
ないものである。複数本のロールによってN <fl板
を冷却する場合、冷却し1−ルウ間の緩速冷却部が被冷
却材の材質を劣化させる問題を解決することが重要な課
題でちる。
This problem cannot be avoided unless a single roll can cool the uniformly heated thin steel plate in the temperature range from about 750°C to about 400°C. It is. When cooling an N<fl plate using a plurality of rolls, an important issue is to solve the problem that the slow cooling section between the first and second roux deteriorates the quality of the material to be cooled.

本発明者らは、上記問題を解決するために、薄鋼板のロ
ール冷却装置が刈銅板の所望の旧料特性に悪影・Wを及
ぼさないためにどのような〃件が必要でおるか、および
17−ル冷却方法の月1・1府性に及ぼす要因を実験に
より明らかにした。
In order to solve the above-mentioned problem, the present inventors investigated what conditions are necessary to ensure that a roll cooling device for thin steel sheets does not have an adverse effect on the desired properties of copper-cut copper sheets. Through experiments, we clarified the factors that affect the 1.1-month performance of the 17-channel cooling method.

ロール冷却法では、冷却ロールに接触している薄鋼板は
急冷される。薄鋼板が冷却ロール部を通過する通板速度
を遅くすれば、薄鋼板は冷却ロールどの接触部で急冷さ
れるが、同時に薄鋼板と冷却ロールとの非相触部におけ
る緩除時間も長くなる。逆に通板時間を速くすれば、緩
?9.・時間も短くなる。
In the roll cooling method, a thin steel plate in contact with a cooling roll is rapidly cooled. If the speed at which the thin steel sheet passes through the cooling roll section is slowed down, the thin steel sheet will be rapidly cooled at any point in contact with the cooling roll, but at the same time, the slow removal time will be lengthened at the points where the thin steel sheet and the cooling roll do not come into contact. . On the other hand, if you speed up the threading time, will it become slower? 9.・Time is also shorter.

薄鋼板が冷却ロールと接触する部分の長さと冷却ロール
に接触しない部分の長さどの比率、および薄鋼板が冷却
ロール部を通過する通板速度の両者が薄鋼板の適正な利
質とどのよう)i7関係にあるかに着目し、本発明が完
成された。
What is the ratio of the length of the part of the thin steel plate that contacts the cooling roll to the length of the part that does not contact the cooling roll, and the speed at which the thin steel plate passes through the cooling roll section? ) The present invention was completed by focusing on whether there is an i7 relationship.

本発明の第1の1−1的は、薄・愕扼製γ゛jI程の連
管焼鈍において冷却ロールを用いて所望の適正な材料I
PV (′lを有する薄剰・1板を製造することである
The first object of the present invention is to obtain a desired appropriate material I using a cooling roll in continuous tube annealing of a thin material of about γ゛jI.
The purpose is to produce a thin residual plate with PV ('l).

本発明の第2の目的は、t!I7鋼板製造工稈の連続焼
汁のロール冷却設備の適正な股唱指針を与えることであ
る。
The second object of the present invention is t! The purpose of this paper is to provide appropriate guidelines for the continuous roasting roll cooling equipment for I7 steel plate manufacturing process.

本発明のイ93の目的はロール冷却方法の材料IP’j
性に及t1す制r;+n要囚を明確にし、その制御を行
なうことである。
The object of A93 of the present invention is to improve the material IP'j of the roll cooling method.
It is to clarify what is important and control it.

第1図に示す2木の冷却ロールによる冷却装置を用いて
実験した。図において1はガス冷却部、2は案内ロール
、3は薄鋼板、4は冷却ロールである。薄<fi板3は
本装置の入ロ仰1ガス冷却部1で所望温度に調整され、
案内ロール2に導かれて2個の冷却ロールに巻付角θで
接触し、出側案内ロール2に導かれてF方向に通板され
る。
The experiment was conducted using a cooling device using two wooden cooling rolls as shown in FIG. In the figure, 1 is a gas cooling section, 2 is a guide roll, 3 is a thin steel plate, and 4 is a cooling roll. The thin<fi plate 3 is adjusted to a desired temperature in the gas cooling section 1 of this device,
It is guided by the guide roll 2 and comes into contact with two cooling rolls at a winding angle θ, and is guided by the exit guide roll 2 and passed in the F direction.

この装j;lでは、i、y鋼板がそれぞれの冷却ロール
に巻ぎついている巻付角を2等分する2而I) −P、
Q−Q間の距酩(ロール中心間隔) D (yn)、冷
却ロール4の?1′径It (m ) 、薄鋼板の冷却
ロール巻付角(冷却ロール中心角)θ(度)、薄鋼板の
通板速度LS  (m7分)を可変とした。
In this arrangement, the wrapping angle at which the i and y steel plates are wrapped around each cooling roll is divided into two equal parts.I) -P,
Distance between Q and Q (distance between roll centers) D (yn) of cooling roll 4? The 1' diameter It (m), the winding angle of the cooling roll of the thin steel sheet (center angle of the cooling roll) θ (degrees), and the threading speed LS (m7 minutes) of the thin steel sheet were made variable.

実験に供した薄鋼板の累月は第1Fに示す通りで、釧1
は複合組織高張力鋼(M、鋼2は遅時効性深絞り用軟鋼
板である。
The cumulative period of the thin steel plate used in the experiment is as shown on the 1st floor.
is a composite structure high-strength steel (M, steel 2 is a slow aging mild steel plate for deep drawing).

□ / 第1図において Δぶ=2個の冷却ロール間のロールと接触(−ないれり
鋼板の長さくNTi)(m) Δd−冷却ロールと圀触している薄鋼板の長さく1)C
)(m) N=Δd 、、−’Δ−e vs=AB間における薄く1板の冷却速度(℃/ se
c ) VR−13c間における薄くI板の冷却速度(”C/ 
sec ) VM = A 13 C間における薄鋼板の平均冷却速
度(℃/ see ) どすれば となる。
□ / In Figure 1, Δb = contact with the roll between two cooling rolls (- length of the rolled steel plate NTi) (m) Δd - length of the thin steel plate in contact with the cooling roll 1) C
)(m) N=Δd,,-'Δ-e vs=cooling rate of one thin plate between AB (℃/se
c) Cooling rate of thin I plate between VR-13c ("C/
sec) VM = Average cooling rate of the thin steel plate between A13C (°C/see).

冷却ロール4の温度は冷媒の種類と温度とを調整スルこ
と罠より20〜300 ’Cの任意の堪り[に保持する
ことができ、冷却ロール4に接触する直前の薄鋼板温度
は750〜450”Cに調整した。
The temperature of the cooling roll 4 can be maintained at any temperature of 20 to 300'C by adjusting the type and temperature of the refrigerant, and the temperature of the thin steel sheet just before contacting the cooling roll 4 is 750 to 450°C. “Adjusted to C.

また、本′装置の入flltl 8と出側Fどの間の甲
均冷t5康;バ:は目、(1“v +、(に等しくなる
ようにした。
In addition, the uniform cooling t5 between the input flltl 8 and the output side F of this apparatus was made to be equal to (1"v +, ().

1[;較のために、ガス忰よびミスト冷却による#1は
μm的な冷却速度を得られる実験を行ない、その冷却速
度をVT、とする。ここで1α線的な冷却速度とは、湯
度〜時間平面における冷却曲線が、急速冷却を必要とす
る均熱’E4 +rcから400℃以下までの範囲にお
いてj5 、%i的であるものを云い、ロール冷却にk
りる階段状温度降下と対比するためのものである。一般
には、従来のガス冷却法、ミスト冷却、′ノミ、水冷却
法は、@純的な冷却速度をもつものである。
1 [; For comparison, an experiment was conducted to obtain a cooling rate in μm for #1 using gas and mist cooling, and the cooling rate was defined as VT. Here, the 1α linear cooling rate means that the cooling curve on the temperature-time plane is j5, %i in the range from soaking 'E4 +rc, which requires rapid cooling, to 400°C or less. , k for roll cooling
This is to contrast with the stepwise temperature drop. In general, conventional gas cooling methods, mist cooling, chisel cooling, and water cooling methods have a pure cooling rate.

第1表掲記の鏑1を用イテ、It=o、7s、θ=12
0、LS=40としたときの焼鈍冷却後の降伏Jt y
rt=YS/l’sX100 (% )に及ぼすNo影
響を第2図に示す。第2図には、]二二値直線な冷却速
度(iKIN冷却)の場合を併記した。この直線冷却法
にするf−夕は700 ’Cから3oo℃までの冷却速
;Tを従来のガスジェット冷却におけるガス流i葎を変
更さ仕て得たものである。
Use Kabura 1 listed in the first notation, It=o, 7s, θ=12
0, yield Jt y after annealing and cooling when LS=40
The influence of No on rt=YS/l'sX100 (%) is shown in FIG. FIG. 2 also shows the case of a binary linear cooling rate (iKIN cooling). The cooling rate for this linear cooling method is obtained by changing the gas flow rate in conventional gas jet cooling.

Nが大きくなるに従′つて、j、tわち、?”!7 X
X:’r板が冷却し1−ルど接触l−ない部分の[壱さ
イCが短くなるに従って、ロール冷却は直、11配冷却
い二近づく。
As N increases, j, t, ? ”!7 X
X: When the plate is cooled, the roll cooling becomes closer to 11 times as the length C of the part that does not come in contact with the roll becomes shorter.

N −−−2= 2.、5でし、1、平均冷却速度を大
にし、でも、YRは低くならず、複合911織化できな
いが、N−3とすれば、?′!F、ぼ直線冷却法の場合
とIvM様、ないしはそれ以上の効果を得ることができ
る。すなわち、ロール冷却の特徴である高速冷却側にお
いで、しかも、ロール冷却で制御することが困4°(C
でない50〜b 3以」−であれば安定的にY It≦50チを(r(L
:保することができる。
N---2=2. , 5, 1. Even if the average cooling rate is increased, YR does not decrease and composite 911 cannot be woven, but if it is N-3? ′! F. It is possible to obtain an effect similar to or better than that of the IvM cooling method. In other words, on the high-speed cooling side, which is a characteristic of roll cooling, it is difficult to control with roll cooling.
If it is not 50~b 3 or more, then it is stable Y It≦50chi (r(L
:Can be maintained.

次に、N=3としたときに、1(・θとj山4反用U現
L Sとの比、It・θ/LSの値が、時効指数(以下
AIと記す)(ゆ/ y== ’)に及はす影響につい
て第1表掲記の鋼2について調べた結果を第3図に示す
。この実験ではIL=0.3〜i、o (m)、θ:=
20〜160(度)、LS=20〜45 (+ (マ1
1/m1n)の範囲に亘って変化させた。
Next, when N=3, the value of It・θ/LS, which is the ratio of 1(・θ to Figure 3 shows the results of an investigation of Steel 2 listed in Table 1 regarding the influence on the effect on the 0.3~i, o (m), θ:=
20~160 (degrees), LS=20~45 (+ (Ma1
1/m1n).

第3図から、[(・θ/■、Sの値が少なくとも3以下
であれ+=、l’、■λi が変化してもAIを4.k
g/門21〕L下に低(1にさ中ることができるっ連れ
焼鈍法において、イ′1冷、析出処理を行なうのはこの
AIを低下さ硅ること((あり、AIが4 kfJ /
 ym 2を越えると、スキンパス(+ Ill 7j
1された銅板が室温において時効が;IQ行I7、降伏
点の上昇、降伏点伸びの増大、全伸びので、(、少等を
生ずることが知られており、4k17/vm2以下にす
ることが必要である。
From Figure 3, it can be seen that even if the value of [(・θ/■, S is at least 3 or less +=, l', ■λi changes, the AI is 4.k
g/gate 21] In the co-annealing method, performing A'1 cooling and precipitation treatment is to lower this AI ((there is, and AI is 4). kfJ /
Beyond ym 2, skin pass (+ Ill 7j
It is known that aging of a copper plate subjected to aging at room temperature causes an increase in IQ row I7, an increase in yield point, an increase in yield point elongation, and a small amount of total elongation. is necessary.

1〕ノ土り実11.<I結里から、連トに1焼鋪におけ
る薄鋼板の冷却方法としてロール冷却を行なう場合、H
@θ71.:; ≦3 ・・・・・・・・・(2)の条
f1で枠業すれば、AIを十分低くすることができる。
1] Nodori Mi 11. <From I Yuri, when using roll cooling as a cooling method for thin steel sheets in one continuous firing process, H
@θ71. :; ≦3 ・・・・・・・・・ If you perform the frame work according to article f1 of (2), the AI can be made sufficiently low.

牛だ、冷却ロール間隔1) (巻付角θを2等分する2
面間の距p:If)と冷却ロールへの薄鋼板の巻付角θ
との関係&」、第1図に示し7たI)、It、0の(−
ζイ111学的閂係より次式となる。
It's a cow, cooling roll interval 1) (Divide the wrapping angle θ into two equal parts 2)
Distance between surfaces p: If) and wrapping angle θ of the thin steel plate around the cooling roll
The relationship between &'', 7 I) shown in Figure 1, and It, 0 (-
ζ A111 The following formula is obtained from the 111 logical bar.

前記N≧3の安住を用いれば上式t、t:となる。(3
)式の条件を満足しておれil゛、Y Itを50チ以
下とし、寸だAIを4k17/+o+”以下とすること
ができる。
If the above-mentioned stability of N≧3 is used, the above formulas t, t: are obtained. (3
) satisfies the conditions of the equation, il゛, Y It can be set to 50 or less, and the size AI can be set to 4k17/+o+'' or less.

(3)式は、2本のロール径11および巻f″1角θが
等しい場合の式であるがロール径が異なる場合でも、プ
こだ し It’、θ′:前段のロールの半径1巻付角It 、θ
;後段のロールの半径1巻付角となり、 の場合は(3)式がそのまま成立し、 の場合はΔ1がより小さくなり安全側にある。
Equation (3) is an equation when the two roll diameters 11 and the winding f''1 angle θ are the same, but even if the roll diameters are different, the following equations apply: It', θ': Radius of the previous roll 1 Wrapping angle It, θ
; The radius of the subsequent roll is one turn angle, and in the case of , equation (3) holds true, and in the case of , Δ1 is smaller and on the safe side.

従って、ロールの径お1、び巻付角が異なる場合には(
3)式の1(、θの値と1.て、大きい方の値を採るも
のとずればよい。
Therefore, if the roll diameter and wrap angle are different (
3) The value of 1(, θ and 1. in equation 3) may be changed to the larger value.

連続1!’(f・1シに卦けるロール冷却の最も重要な
点は冷却速度をどのように定め、その速度を如何に制御
するかにある。ロール冷却の冷却速度は、■ロール本l
(、■ロール間隔、■巻付角、■ロール内の冷媒の種・
i(l゛jと温度、■通板法度に依存する。これら■〜
■を円111!:することによってロール冷却の冷却速
度を制イ・・11することができる。
1 in a row! '(The most important point of roll cooling in F・1 is how to determine the cooling rate and how to control that speed.
(, ■Roll spacing, ■Wrapping angle, ■Type of refrigerant in the rolls,
Depends on i(l゛j and temperature, ■Threading speed. These ■~
■111 yen! : By doing so, the cooling rate of roll cooling can be controlled.

上記(21、(3)式は、巻付角θ、ロール間隔1)、
通板速度■、1(をJj正条件に規定するものである。
The above equations (21, (3) are: wrapping angle θ, roll interval 1),
The sheet threading speed ■, 1 (is defined as Jj positive condition.

以−にの実験は1.7=tの冷却ロールによるものであ
るが、冷却ロールが2本以上の場合においても、同様の
条件が、F、+7 +14板の冷却ロール接触部と非接
触部どの関係において必要であり、どのI Ivllの
冷却ロールについても上述の条件が満足されなければな
らない。
The experiment described above is based on a cooling roll of 1.7=t, but even when there are two or more cooling rolls, the same conditions apply to the cooling roll contact area and non-contact area of the F, +7 +14 plate. In any case necessary, the above-mentioned conditions must be met for any IIvll cooling roll.

実際操業」−1薄鋼板の冷却ロールへの巻付角θを変化
させて冷却速IW制御を行なう場合に、高い冷却速度を
要求する製品では、多数の冷却ロールのうち少なくとも
1本J、:J、 +7 &l−そのロールの可変巻付角
θの範囲を最大にするのが効果的である。
Actual Operation"-1 When controlling the cooling speed IW by changing the winding angle θ of a thin steel plate around a cooling roll, for products that require a high cooling speed, at least one of the many cooling rolls J: J, +7 &l- It is effective to maximize the range of the variable wrap angle θ of the roll.

従って、」二連の+2+ 、 (3)式の条件は、該冷
l−110−ルの最大巻付角θMのときに満足している
ことが必要である。
Therefore, the condition of ``double +2+'' and equation (3) must be satisfied when the maximum winding angle θM of the cold l-110-ru.

ロール冷却の冷却帯の設計に当っては、薄鋼板の通板速
度や所望冷却速IW等との兼合いで最大巻付角θ)(を
どの程度に定めるか事前に法定L7でおき、その0Mに
対してl)/Itが(3)式で規定される範囲内にある
ように予め投首1しておくことによって、良質な所望材
質の薄鋼板を製造する操業条件を確保することができる
When designing the cooling zone for roll cooling, determine in advance how much the maximum wrap angle θ) should be determined in consideration of the threading speed of the thin steel plate, the desired cooling speed IW, etc. By setting the head 1 in advance so that l)/It is within the range specified by formula (3) for 0M, it is possible to ensure operating conditions for manufacturing thin steel sheets of high quality and the desired material. can.

本発明は以」二に詳述した通り、薄鋼板の連井゛肥焼鈍
において、薄鋼板を均熱後、複数の冷却ロールに薄鋼板
を接触させて冷却する場合に、任意の隣接する2本の冷
却ロールのロール径の大きい方のロールの半径Rと、P
!t@板の冷却ロールへのh・1大巻付角θMと、該隣
接する2本のロールの薄鋼板巻付角を2等分する2面間
の距1ii[1)と、薄+11板の】:r+ 4M ’
>□:4 fr+−1、+5.1−’7i、t’+il
 ill: (2) 、 (3)式の通り規定して冷却
イi:’iiなうことに・(・)ろ。
As described in detail below, in continuous well annealing of a thin steel plate, when the thin steel plate is cooled by contacting a plurality of cooling rolls after soaking the thin steel plate, any adjacent two The radius R of the larger roll diameter of the book cooling roll, and P
! h・1 large wrapping angle θM of the t@ plate to the cooling roll, the distance 1ii [1) between the two surfaces that divides the thin steel plate wrapping angle of the two adjacent rolls into two, and the thin +11 plate. ]:r+4M'
>□:4 fr+-1, +5.1-'7i, t'+il
ill: (2) and (3), cooling is defined as shown in equations (2) and (3).

本・Σl−明力法により、薄(1・1板製造工程の連続
焼鈍において薄鋼板を冷却ロールを用いて冷却し、所望
の側材特性を°得ることができるようになった。
By using this Σl-meiriki method, it has become possible to cool thin steel sheets using cooling rolls during continuous annealing in the thin (1.1 sheet manufacturing process) and obtain desired side material properties.

濃、た、良好な材質の薄年板を得るためのロール冷却装
置の設計指金1が明確となった。
The first design guideline for a roll cooling device for obtaining thin plates with a good quality of material has been clarified.

込Cつに、本ポ明方法により、ロール冷却方法における
;;)!蟇;・1仮旧料IIH7,1,!%及1・了す
各要因が明らかとなったので、これらの要因、例えに1
、巻伺角θ、冷却ロールの一定方向の中心距離り、通板
速度1.S等に?tNIi板士」料に応じた制御目標値
を側方して制御する(−とがnl能となった。
Including C, the present invention method can be used in the roll cooling method ;;)! Toad;・1 temporary old fee IIH7,1,! % and 1. Since each factor has been clarified, these factors, for example, 1.
, winding angle θ, center distance of cooling roll in a certain direction, sheet threading speed 1. To S etc.? tNIi board player's control target value according to the fee (- has become nl function).

次に本〜へ明の実ノイ)1例をあげて本発明のすぐれた
効果をlj’J、明ずろが、本発明はもちろんこのよう
な実施例のみに局限’;’%j+るものではなく、本発
明の11’7神を逸脱しない範囲内において種々の改変
を施し得Z)もt7)である。イ′11えは、燐添加極
低炭素鋼の1i;ζ性の改I)す等を木梵明方法に」2
り行なうことが可能でホ)る。ず々わt) 、”Hの組
成にも依存するが、燐に、しろ411反・つ1Frr化
温1](領域、1 /、宸、1、炭り)く化・吻形11
す元本、Fll 、fばi’j、、 N b、 Z r
等と炭車、窒末スたし)へ怜。
Next, I will give one example to demonstrate the excellent effects of the present invention, but the present invention is of course not limited to such an embodiment. However, various modifications may be made without departing from the scope of the present invention.Z) and t7). I'11 E is the modification of 1i;
It is possible to do this. ``Although it depends on the composition of H, phosphorus has a temperature of 411 degrees and 1 Frr temperature 1] (area, 1 /, 1, charcoal) carbonization and snout shape 11
Principal, Fll, fba i'j,, N b, Z r
Rei to the charcoal car and nitrous stub).

A、、g 、 S等の複合171出物の析出が1仏行す
る温+rg領賊にpける緩除が<’+M板41T〔を劣
化さぜるよつな喝自には本発明方法を有効に・・、適用
1z)ことがTrf仲である。
The method of the present invention is used to prevent the precipitation of composite 171 products such as A, , g, and S from degrading the slow removal of the heat + rg band that causes the deterioration of the <'+M plate 41T. Enable..., application 1z) is compatible with Trf.

実施例 6本の冷却ロールを用いて連株入見tφのτ1−ル冷却
を行なったっ 使用鋼種は第2表に示すJ %li Fl 1へ73で
ある。
Example 6 cooling rolls were used to cool the continuous stock tφ. The steel type used was J %li Fl 1 to 73 as shown in Table 2.

実栴例1〜2は、第1表の4泗1〜2と同一であり、実
施例3は板1’p、 O,’32 ya ノブ’J ”
t ijR;Fj C之I Z)。
Actual examples 1 and 2 are the same as 4 cases 1 and 2 in Table 1, and Example 3 is the plate 1'P, O, '32 ya knob 'J''.
t ijR; Fj C no I Z).

実ノ相停止1〜3の各車のそれ毛′れの、1Mも1■鍋
な月利I侍性を第4図〜第6図に示した。第4図〜第6
図は横軸にR・θ閘/1.Sをとり、第4図は実%H(
fll 1(複合組織高張力鋼板)のe′ト伏点YS(
kp/閂2)、4(S5図は実施例2(深絞り川4(・
1板)の伸び1゛二βは)、第6図は実施例3(軟質ブ
リギ原板)のロツクウ毛ル硬度111t 30 ’I’
を−そオlそ゛ノ]示し、1ゾ1中f(0M)は前記(
3)式の右辺を示す。
Figures 4 to 6 show the average monthly profits for each car at actual phase stops 1 to 3. Figures 4 to 6
In the figure, the horizontal axis is R・θ lock/1. S is taken, and Figure 4 shows the actual %H (
fll 1 (composite structure high tensile strength steel plate) e' torsion point YS (
kp/barrel 2), 4 (S5 figure is Example 2 (deep drawing river 4 (・
Figure 6 shows the hardness of the hardness of Example 3 (soft original plate) 111t 30 'I'
, and f(0M) in 1zo1 is the above (
3) Show the right side of the equation.

g84図〜t(へ6トイ1シ」、前記(2) 、 (3
)式を満足する条件で冷却さJまた719年板がそれぞ
れの利質における最も主要な(−)料l)〒性に優れて
いることな示してい
g84 fig.
) It is also shown that the 719-year plate cooled under conditions that satisfy the equation (1) is superior in the most important (-) material in each interest rate.

【図面の簡単な説明】[Brief explanation of the drawing]

tρ71図V」ロール冷却方法の実験に用いたV置の1
1、’p E (t+I而p面 、 irr、 2. 
lソI tJ、複合組織高張力鋼& ’Z) V(’ 
伏比(Y R)のグラフ、9V 3図は遅時効性深絞り
鋼の時効J’+’1lil (A I )のグラフ、第
4図〜第6図はそれぞれ実MQ例の降伏点(YS)、伸
び(Et)、硬度(II R30T )のグラフである
。 1・・・ガス冷却部、2・・・=も内ロール、3・・・
薄鋼板、4・・・冷却ロール。 特W[出願人 川崎製鉄株式会社 三菱重工業株式会社 代理人 弁理士 小  杉  佳  男第2図 冷却速度、 ML 、 V□(喝) 1     2          4     56
R(s− 第4図 第5図    ROM/LS→ Re、/LS −=’
tρ71 Figure V" 1 of the V position used in the roll cooling method experiment
1, 'p E (t+I p plane, irr, 2.
lso I tJ, composite structure high tensile strength steel &'Z) V('
Graph of yield ratio (Y ), elongation (Et), and hardness (II R30T ). 1... Gas cooling section, 2... = Inner roll, 3...
Thin steel plate, 4... cooling roll. Special W [Applicant Kawasaki Steel Corporation Mitsubishi Heavy Industries, Ltd. Agent Patent Attorney Yoshio Kosugi Figure 2 Cooling rate, ML, V□ (chuckle) 1 2 4 56
R(s- Fig. 4 Fig. 5 ROM/LS→ Re, /LS -='

Claims (1)

【特許請求の範囲】 1  F7tii板の連続焼鈍において薄鋼板を均熱後
視数の冷却ロールに薄鋼板を接触させて冷却するに当り
、1−記2式を71f□IN足する条件により冷却する
ことを′1′r徴とする薄鋼板のロール冷却方法。 (1)  IL・θ>(/T、S ≦3ここに I(、:隣接する2本の冷却ロールのうち大径の冷却ロ
ールの半径(ns ) θM:玲却ロールへの薄鋼板の巻付用能な最大基イ′−
1角(ロール中心角)(度)’ ”’ :v”t’ +
1−’14にのj(’を板速度(m/分)1) : 隣
接する2本の冷却ロールの各巻付角を2等分する2面間
の距離(m )
[Claims] 1 In continuous annealing of F7tii plates, when cooling a thin steel plate by contacting it with a number of cooling rolls after soaking, the cooling is performed under the condition of adding 71f□IN to formula 1-2. A roll cooling method for thin steel sheets that has the characteristic of '1'r. (1) IL・θ>(/T, S≦3 where I(,: Radius of the larger diameter cooling roll among the two adjacent cooling rolls (ns) θM: Winding of the thin steel plate onto the cooling roll Maximum usable base
1 angle (roll center angle) (degrees)'”':v”t' +
1-'14 j (' is plate speed (m/min) 1): Distance between two surfaces that equally divides each wrap angle of two adjacent cooling rolls (m)
JP16636582A 1982-09-24 1982-09-24 Roll cooling method of thin steel sheet in continuous annealing Granted JPS5956532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16636582A JPS5956532A (en) 1982-09-24 1982-09-24 Roll cooling method of thin steel sheet in continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16636582A JPS5956532A (en) 1982-09-24 1982-09-24 Roll cooling method of thin steel sheet in continuous annealing

Publications (2)

Publication Number Publication Date
JPS5956532A true JPS5956532A (en) 1984-04-02
JPS6234807B2 JPS6234807B2 (en) 1987-07-29

Family

ID=15830044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16636582A Granted JPS5956532A (en) 1982-09-24 1982-09-24 Roll cooling method of thin steel sheet in continuous annealing

Country Status (1)

Country Link
JP (1) JPS5956532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738733A (en) * 1986-01-09 1988-04-19 Mitsubishi Jukogyo Kabushiki Kaisha Method for heat-treatment of a strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738733A (en) * 1986-01-09 1988-04-19 Mitsubishi Jukogyo Kabushiki Kaisha Method for heat-treatment of a strip

Also Published As

Publication number Publication date
JPS6234807B2 (en) 1987-07-29

Similar Documents

Publication Publication Date Title
CN109266815B (en) Shape control method for online quenching high-strength steel plate
RU2301838C2 (en) Steels with pack-net martensite-austenite microstructure subjected to cold treatment
EP2759614A1 (en) Method for generating a flat steel product with an amorphous, semi-amorphous or fine crystalline structure and flat steel product with such structures
DE3785661T2 (en) METHOD FOR PRODUCING A NON-AGING FIRE-GALVANIZED STEEL SHEET.
DE102012110010A1 (en) Apparatus and method for the continuous treatment of a metal strip
JPS5956532A (en) Roll cooling method of thin steel sheet in continuous annealing
DE10056847A1 (en) Hot rolling process uses a coiler tension rolling mill having a coiling machine installed on either the inlet or the outlet side of a rolling mill and a heater provided between the rolling mill and the coiling machine
US3615909A (en) Method of producing a steel packing strip
DE1483247C3 (en) Process for the continuous production of a high tensile strength tinplate
DE1927381A1 (en) Process for the production of rustproof, hardenable chrome steel strip and sheet
US6096146A (en) Method for heat treating rolled stock and device to achieve the method
JPS5544551A (en) Production of low yield ratio high tension hot rolled steel plate of superior ductility
DE102014112286A1 (en) Method for producing an embroidered packaging steel
JPS5920428A (en) Cooling method of steel strip in continuous annealing furnace
DE102016011047A1 (en) Flexible heat treatment plant for metallic strip in horizontal construction
EP3201369B1 (en) Method for the manufacture of steel strip material having different mechanical properties across the width of the strip
US2222263A (en) Method of heat treatment for pipes
DE102015001438A1 (en) Flexible heat treatment plant for metallic strip
JPS62501300A (en) Continuous quenching method for plate materials such as steel and its quenching equipment
CA1159286A (en) Fabrication process of rolled steel having a good weldability and high elasticity and resiliency at low temperatures
DE2729931A1 (en) PLANT FOR CONTINUOUS THERMAL TREATMENT OF ROLLED PLATE
US4186037A (en) Thermal treatment of intermediate quenching and quick tempering through eddy currents and a device for applying said treatment to high productivity rolling plants for flat products
AT302391B (en) Method and device for the production of steel wire rod
JPH0526851B2 (en)
CA1099620A (en) Method and apparatus for heat treatment of rolled steel plate