JPH0526851B2 - - Google Patents

Info

Publication number
JPH0526851B2
JPH0526851B2 JP61128789A JP12878986A JPH0526851B2 JP H0526851 B2 JPH0526851 B2 JP H0526851B2 JP 61128789 A JP61128789 A JP 61128789A JP 12878986 A JP12878986 A JP 12878986A JP H0526851 B2 JPH0526851 B2 JP H0526851B2
Authority
JP
Japan
Prior art keywords
wire
strength
wire drawing
sample
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61128789A
Other languages
Japanese (ja)
Other versions
JPS62284044A (en
Inventor
Yukio Yamaoka
Kazuichi Hamada
Toshuki Kimura
Hiroyuki Takahashi
Takashi Taniguchi
Hitoshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco Wire Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Wire Co Ltd filed Critical Kobe Steel Ltd
Priority to JP12878986A priority Critical patent/JPS62284044A/en
Publication of JPS62284044A publication Critical patent/JPS62284044A/en
Publication of JPH0526851B2 publication Critical patent/JPH0526851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、ワイヤロープ、ACSR、ビードワ
イヤおよびPC鋼線、バネ等の高強度で高靱性を
有する鋼線の製造方法に関するものである。 (従来技術) JISに記載されているような成分の高炭素硬鋼
線またはピアノ線では亜鉛めつきを施すと強度の
低下が大きいため、高強度の亜鉛めつき鋼線を得
るためにはめつき前の鋼線の強度をさらに高くし
ておく必要がある。また350℃以上の温度で低温
焼戻される場合にも同様にめつき前の鋼線の強度
を高くしておく必要がある。 鋼線の高強度化として、一般的には伸線加工度
を増加させまたは強度の高い素材を採用すること
が行われるが、高強度化のために伸線加工度を増
加すると、第1図に示すように鋼線の強度が斜線
部の領域に達し、靱延性の劣化が激しくなる。こ
のため捻回値のバラツキが大きくなり、縦割れが
発生するようになる。また曲げ加工性も低下する
ため、ロープ、ACSR、PC撚線等の撚線加工時
の断線やバネ成形時の折損および伸線中の断線等
トラブルの原因となる。また特開昭46−33393号
公報に示されるように、パテンテイング処理後の
素材強度を向上させるために、Crを添加するこ
とも試みられているが、Crを添加すると伸線前
の酸洗時にスマツトの発生が多くなるため、酸洗
時間の増加あるいは潤滑皮膜不良により、生産性
の低下あるいは伸線性の低下を招くことになる。 (発明の目的) この発明はこのような技術的背景のもとになさ
れたものであり、生産性の低下や伸線性の低下が
なく、高強度およびねじり、曲げ特性等の靱延性
に優れた鋼線の製造方法を提供するものである。 (発明の構成) この発明の要旨は、C:0.70〜1.00%、Si:
0.50〜2.00%、Mn:0.50〜1.50%、N:0.003〜
0.015%およびAl:0.020〜0.100%含み、残部が
Feと不可避的不純物からなる線材をパテンテイ
ング処理することにより微細パーライト組織で引
張強さ138Kgf/mm2以上とした後、伸線回数7〜
16回、伸線速度50〜550m/min、伸線加工度70
〜93%の条件で伸線し、かつ最終の伸線ダイスか
ら数えて少なくとも4番目以降の後半のダイスに
ついては全て伸線後直ちに水冷するようにしたも
のである。 鋼線の靱延性に関しては、本発明者による種々
の研究の結果、Siを添加することによつて高いパ
テンテイング強度が確保でき、また鋼線を亜鉛め
つきまたは低温焼鈍する場合に強度低下を防止で
きること、さらにN、Al等の添加と上記のよう
な適切な伸線条件を施すことにより高強度(引張
強さ232−68log d Kgf/mm2)において、優れ
た靱延性を有する亜鉛めつき鋼線および低温焼鈍
鋼線が製造できることが見出された。 上記成分限定の理由は以下の通りである。 C:Cはパテンテイング強度を上昇させるため
に有効な元素であるが、0.70%未満では必要な強
度が得られず、また1.00%を越えると網状セメン
タイトが粒界に析出し、靱性を害するので、その
範囲を0.70〜1.00%とした。 Si:Siはパテンテイング強度を上昇させるため
と、亜鉛めつきおよび350℃以上での低温焼鈍に
よ強度低下を抑制するために、0.5%以上添加す
るが、添加量が多くなると圧延時および再加熱パ
テンテイング時に脱炭しやすくなるので、上限を
2.00%とした。 Mn:Mnは焼入性を上昇させ、パテンテイン
グ材の強度上昇およびパーライトの微細化により
靱性を上昇させるために有効であるが、0.5%未
満ではその効果は低く、また1.5%を越えるとパ
テンテイング処理でパーライト変態終了時間が長
くなり、実用的でないので、0.5%〜1.5%の範囲
とした。 Al:Alはパテンテイング時に窒化物を生成さ
せ、結晶粒を微細化し、靱延性を向上させるため
に、添加するが、0.020%未満ではその効果が小
さいため、0.020%以上添加する。これによつて
伸線後の捻回特性および曲げ加工性が改善され、
製品の加工時および使用中の折損の発生が低減す
る。しかし0.100%を越えて添加すると介在物が
増加し伸線性を低下させるため、Alの添加量は
0.020〜0.100%とする。また結晶粒微細化のため
にTi、Nb、Vを添加してもよいが、Al、Ti、
Nb、Vの添加量は上記と同様の理由から1種類
または2種以上合計で0.020〜0.100%とする。 NはAlとともに窒化物を積極的に生成させる
ためのもので、0.003%以上添加するが、0.015%
を越えて添加すると靱延性が低下するため、その
上限は0.015%とする。 またパテンテイング後の強度を増加させるNi、
Cr、Mo、W、B等の元素はそれぞれ0.1%以下の
含有量であればこの発明の効果を損うものではな
い。 また上記伸線条件の限定理由は以下の通りであ
る。 上記範囲の成分でパテンテイング強度を138Kg
f/mm2以上とした後、伸線後の強度を232−68log
d Kgf/mm2以上とするには、この発明の適用が
考えられる用途の線径範囲においては少なくとも
70%以上の伸線加工度が必要である。しかし伸線
加工度が93%を越えると、この発明の製造方法に
おいても靱延性が低下するため、伸線加工度の範
囲を70〜93%とした。 上記伸線加工度での伸線において、伸線回数が
6回以下では1ダイス当りの加工度が高く、発熱
が大きくなつて急激に脆化するため、下限は7回
とし、上限な経済性の点から16回とした。 伸線速度については、伸線回数と同様の理由で
550m/minを越えると脆化が著しく、断線が発
生するため、550m/min以下の伸線速度が望ま
しい。また下限は経済性の点から50m/minとし
た。 伸線後の冷却については、例えば第2図に示す
装置を用いて鋼線に冷却するが、鋼線の脆化を防
止するためには、最終の伸線ダイスから数えて少
なくとも4番目以降の後半のダイスについては全
て伸線後直ちに水冷することが必要である。 第2図は伸線加工されて発熱した鋼線を、直ち
に水冷する伸線および冷却装置の1例を示してい
る。すなわち伸線、冷却装置2はダイスボツクス
21とこのダイスボツクス21によつて保持され
たダイスケース22と、ダイスケース22に取付
けたケースキヤツプ23と、ダイスケース22内
でスペーサ24と上記ケースキヤツプ23とによ
つて挟み付けられて固定されているダイス25と
を有し、ダイスケース22の内部にはダイス25
を冷却するための冷却室26が形成され、ここに
冷却水が導入されるようにしている。 また伸線装置2には冷却装置3が連結され、こ
の冷却装置3はその内部に冷却室30が形成され
てここに冷却水入口31から冷却水を導入し、冷
却水出口32から排出させるようにしている。ま
たその後流側にはガイド部材34を設けて、ここ
を通過する鋼線を外周に空気供給口33からの空
気を送り、乾燥させるようにしている。そして鋼
線1はキヤツプ23中を通つてダイス25で伸線
され、伸線後の鋼線10は直ちに冷却室30中に
送り込まれ、ここを通る間に冷却される。ついで
ガイド部材34中を通る間に空気によつて外周面
の水分が除去され、乾燥される。 例えば、伸線回数が7回でNo.1〜No.7の計7個
のダイスにより伸線を行なう場合、No.4、No.5、
No.6およびNo.7の各ダイスを示すもので、本発明
ではこれらのダイスでは伸線後の水冷を必須とす
ることになる。 このように伸線された鋼線10はダイス出口で
冷却されるので、歪時効による脆化が抑えられ
る。上記ダイスによる伸線およびその直後の水冷
が、所定の伸線回数繰返される。 実施例 1 線径12.7mmで、その成分がC:0.81%、Si:
0.75%、Mn:0.80%、Al:0.060%、N:0.008%
の鋼線と、線径12.7mmでその成分がC:0.82%、
Si:0.25%、Mn:0.73%、Al:0.011%、N:
0.002%の鋼線とをそれぞれ鉛パテンテイングし
た後、伸線速度100m/min、伸線加工度91.5%
で線径3.7mmまで伸線し、ついで350℃でブルーイ
ングしたものを、曲率半径3mmで約120°に曲げ試
験した結果、第1表に示すようになつた。 同表において試料No.1、No.2はそれぞれ上記前
者の成分のものであつて、試料No.1はこの発明に
よる方法であつて水冷を行なつたもの、試料No.2
は比較法であつて水冷を行なつてないもの、試料
No.3は比較材であつて上記後者の成分のものを示
している。
(Industrial Application Field) The present invention relates to a method for producing high-strength and high-toughness steel wires such as wire ropes, ACSRs, bead wires, PC steel wires, and springs. (Prior art) Galvanizing a high carbon hard steel wire or piano wire with the composition listed in JIS will result in a significant decrease in strength. It is necessary to further increase the strength of the previous steel wire. Furthermore, when low-temperature tempering is performed at a temperature of 350°C or higher, it is necessary to similarly increase the strength of the steel wire before plating. In order to increase the strength of steel wire, it is generally done by increasing the degree of wire drawing or by using a material with high strength. As shown in , the strength of the steel wire reaches the shaded area, and the deterioration of toughness and ductility becomes severe. For this reason, the variation in torsion value becomes large, and vertical cracks begin to occur. In addition, bending workability is also reduced, which may cause problems such as wire breakage during stranding of ropes, ACSR, PC stranded wires, etc., breakage during spring forming, and wire breakage during wire drawing. Furthermore, as shown in Japanese Patent Application Laid-open No. 46-33393, attempts have been made to add Cr to improve the strength of the material after patenting treatment, but adding Cr results in Since the occurrence of smut increases, the pickling time increases or the lubricating film becomes defective, leading to a decrease in productivity or a decrease in wire drawability. (Objective of the invention) This invention was made against the above technical background, and provides a wire that does not reduce productivity or drawability, and has high strength and excellent toughness and ductility such as torsion and bending properties. A method for manufacturing steel wire is provided. (Structure of the invention) The gist of this invention is as follows: C: 0.70 to 1.00%, Si:
0.50~2.00%, Mn: 0.50~1.50%, N: 0.003~
Contains 0.015% and Al: 0.020~0.100%, the balance is
A wire consisting of Fe and unavoidable impurities is patented to have a fine pearlite structure with a tensile strength of 138 Kgf/mm 2 or more, and then the wire is drawn 7 to 7 times.
16 times, wire drawing speed 50 to 550 m/min, wire drawing degree 70
Wire drawing was performed under conditions of ~93%, and all dies in the second half, counting from the final wire drawing die, at least after the fourth die, were all cooled with water immediately after the wire drawing. Regarding the toughness and ductility of steel wire, as a result of various studies conducted by the present inventors, it was found that adding Si can ensure high patenting strength and prevent strength loss when steel wire is galvanized or low-temperature annealed. Furthermore, by adding N, Al, etc. and applying appropriate wire drawing conditions as described above, galvanized steel with high strength (tensile strength of 232-68 log d Kgf/mm 2 ) and excellent toughness and ductility can be produced. It has been found that wire and low temperature annealed steel wire can be produced. The reasons for limiting the above ingredients are as follows. C: C is an effective element for increasing patenting strength, but if it is less than 0.70%, the required strength cannot be obtained, and if it exceeds 1.00%, reticulated cementite will precipitate at grain boundaries, impairing toughness. The range was set to 0.70-1.00%. Si: Si is added in an amount of 0.5% or more to increase patenting strength and to suppress strength loss due to galvanizing and low-temperature annealing at temperatures above 350°C. It becomes easier to decarburize during patenting, so set the upper limit.
It was set at 2.00%. Mn: Mn is effective in increasing the hardenability, increasing the strength of the patenting material, and increasing the toughness by making pearlite finer. However, if it is less than 0.5%, the effect is low, and if it exceeds 1.5%, the patenting process Since it takes a long time to complete pearlite transformation and is not practical, it is set to a range of 0.5% to 1.5%. Al: Al is added in order to generate nitrides during patenting, refine crystal grains, and improve toughness and ductility, but if it is less than 0.020%, the effect is small, so it is added in an amount of 0.020% or more. This improves twisting properties and bending properties after wire drawing,
The occurrence of breakage during product processing and use is reduced. However, if it is added in excess of 0.100%, inclusions will increase and the drawability will decrease, so the amount of Al added is
Set to 0.020-0.100%. In addition, Ti, Nb, and V may be added to refine grains, but Al, Ti,
For the same reason as above, the amount of Nb and V added is 0.020 to 0.100% in total of one type or two or more types. N is added to actively generate nitrides together with Al, and is added at least 0.003%, but 0.015%
If added in excess of this amount, the toughness and ductility will decrease, so the upper limit is set at 0.015%. Ni, which also increases the strength after patenting,
Elements such as Cr, Mo, W, and B do not impair the effects of the present invention as long as the content is 0.1% or less. Moreover, the reason for limiting the above wire drawing conditions is as follows. The patenting strength is 138Kg with the above range of ingredients.
After f/mm 2 or more, the strength after wire drawing is 232-68log
d Kgf/mm 2 or more, at least within the wire diameter range of the intended use of this invention.
A wire drawing degree of 70% or more is required. However, if the degree of wire drawing exceeds 93%, the toughness and ductility will decrease even in the production method of the present invention, so the degree of wire drawing is set in the range of 70 to 93%. In wire drawing at the above wire drawing processing rate, if the number of wire drawings is 6 or less, the processing rate per die is high and heat generation increases, causing rapid embrittlement. Therefore, the lower limit is set to 7 times, and the upper limit is economical. It was set as 16 times from the point of view. The wire drawing speed is determined for the same reason as the number of wire drawings.
If it exceeds 550 m/min, embrittlement will be significant and wire breakage will occur, so a wire drawing speed of 550 m/min or less is desirable. In addition, the lower limit was set at 50 m/min from the point of view of economy. For cooling after wire drawing, the steel wire is cooled using, for example, the equipment shown in Figure 2. However, in order to prevent the steel wire from becoming brittle, it is necessary to All dies in the second half need to be water-cooled immediately after wire drawing. FIG. 2 shows an example of a wire drawing and cooling device that immediately cools with water the steel wire that generates heat during the wire drawing process. That is, the wire drawing and cooling device 2 includes a die box 21, a die case 22 held by the die box 21, a case cap 23 attached to the die case 22, a spacer 24 inside the die case 22, and the case cap 23. The die 25 is sandwiched and fixed by the die case 22.
A cooling chamber 26 is formed to cool the water, and cooling water is introduced into the cooling chamber 26. Further, a cooling device 3 is connected to the wire drawing device 2, and this cooling device 3 has a cooling chamber 30 formed therein, into which cooling water is introduced from a cooling water inlet 31 and discharged from a cooling water outlet 32. I have to. Further, a guide member 34 is provided on the downstream side thereof, and air from an air supply port 33 is sent to the outer periphery of the steel wire passing through the guide member 34 to dry it. Then, the steel wire 1 passes through the cap 23 and is drawn by the die 25, and the steel wire 10 after drawing is immediately sent into the cooling chamber 30, where it is cooled while passing therethrough. Then, while passing through the guide member 34, air removes moisture from the outer peripheral surface and dries it. For example, when wire drawing is performed 7 times using a total of 7 dies No. 1 to No. 7, No. 4, No. 5,
This shows dies No. 6 and No. 7, and in the present invention, these dies require water cooling after wire drawing. Since the steel wire 10 drawn in this manner is cooled at the exit of the die, embrittlement due to strain aging is suppressed. The wire drawing using the die and the subsequent water cooling are repeated a predetermined number of times. Example 1 Wire diameter is 12.7 mm, its components are C: 0.81%, Si:
0.75%, Mn: 0.80%, Al: 0.060%, N: 0.008%
steel wire with a wire diameter of 12.7 mm and its composition is C: 0.82%,
Si: 0.25%, Mn: 0.73%, Al: 0.011%, N:
After applying lead patenting to 0.002% steel wire, the wire drawing speed was 100 m/min and the wire drawing degree was 91.5%.
The wire was drawn to a wire diameter of 3.7 mm, then blued at 350°C, and then subjected to a bending test at a radius of curvature of 3 mm and approximately 120°, and the results are shown in Table 1. In the same table, Samples No. 1 and No. 2 are of the former component, respectively, and Sample No. 1 is obtained by the method according to the present invention and water-cooled, and Sample No. 2 is obtained by water cooling.
is a comparative method without water cooling, sample
No. 3 is a comparative material and shows the latter component.

【表】 上記表において、折損率は曲げにより折損率を
示し、T.S.は抗張力を示す。試料No.1および2は
それぞれ鉛パテンテイング後の抗張力が140Kg
f/mm2、試料No.3が131Kgf/mm2であり、また試
験の結果試料No.1および2は縦割れが発生せず、
試料No.3では縦割れが発生した。 上記の結果から、Al、Nの添加により曲げ加
工性および捻回特性が向上し、またSiの添加およ
びこの発明の伸線条件によれば低温焼鈍での強度
低下が防止できることがわかる。 実施例 2 線径9mmで、その成分がC:0.85%、Si:1.10
%、Mn:0.92%、Al:0.061%、N:0.008%の鋼
線と、線径9mmでその成分がC:0.83%、Si:
0.27%、Mn:0.68%、Al:0.045%、N:0.002%
の鋼線とをそれぞれ鉛パテンテイングした後、伸
線速度220m/min、伸線加工度92%で線径2.5mm
まで伸線し、ついで440℃で亜鉛めつきしたもの
を、曲率半径3mmで約120°に曲げ試験した結果、
第2表に示すようになつた。 同表において試料No.1はこの発明によるもので
上記前者の成分のものを用い全ダイスについて水
冷を行なつたもの、試料No.2および3は比較材で
あつて上記後者の成分のものをそれぞれ示してい
る。
[Table] In the above table, the breakage rate indicates the breakage rate due to bending, and TS indicates the tensile strength. Sample No. 1 and 2 each have a tensile strength of 140Kg after lead patenting.
f/mm 2 , sample No. 3 was 131Kgf/mm 2 , and as a result of the test, no vertical cracks occurred in samples No. 1 and 2.
Vertical cracking occurred in sample No. 3. The above results show that the addition of Al and N improves the bending workability and twisting properties, and the addition of Si and the wire drawing conditions of the present invention can prevent a decrease in strength during low-temperature annealing. Example 2 Wire diameter is 9 mm, its components are C: 0.85%, Si: 1.10
%, Mn: 0.92%, Al: 0.061%, N: 0.008% steel wire, wire diameter 9 mm, and its components are C: 0.83%, Si:
0.27%, Mn: 0.68%, Al: 0.045%, N: 0.002%
After applying lead patenting to each steel wire, the wire diameter was 2.5 mm at a wire drawing speed of 220 m/min and a wire drawing degree of 92%.
As a result of a bending test of approximately 120 degrees with a curvature radius of 3 mm, the wire was drawn to 440℃ and then galvanized at 440℃.
The results are as shown in Table 2. In the same table, sample No. 1 is according to the present invention and is made of the former component and all the dies are water-cooled, and samples No. 2 and 3 are comparative materials and are made of the latter component. are shown respectively.

【表】 上記表において、試料No.1は鉛パテンテイング
後の抗張力が140Kgf/mm2、試料No.2および3は
それぞれ134Kgf/mm2であり、また試料No.1およ
び2では全ダイスについて伸線後の水冷を行い、
試料No.3では伸線後の水冷は行つていない。試験
の結果試料No.1は縦割れが発生せず、試料No.2で
は縦割れが発生した。また試料No.3は伸線中に断
線が発生したため、それ以降の試験は行つていな
い。 上記の結果から、この発明による亜鉛めつき鋼
線は強度が高く、靱性も優れていることがわか
る。 実施例 3 線径13mmで、その成分がC:0.77%、Si:0.92
%、Mn:0.75%、Al:0.055%、N:0.009%の鋼
線と、線径13mmでその成分がC:0.76%、Si:
0.22%、Mn:0.71%、Al:0.010%、N:0.003%
の鋼線とをそれぞれ鉛パテンテイングした後、伸
線加工度90.5%で線径4mmまで伸線したものを、
曲率半径3mmで約120°に曲げ試験した結果、第3
表に示すようになつた。 同表において試料No.1はこの発明によるもので
上記前者の成分のものを用い全ダイスについて水
冷を行なつたもの、試料No.2は比較材であつて上
記後者の成分のものをそれぞれ示し、また試料No.
1では伸線速度150m/minで伸線後水冷し、試
料No.2では伸線速度30m/minで伸線後の水冷を
行つていない。
[Table] In the above table, sample No. 1 has a tensile strength of 140 Kgf/mm 2 after lead patenting, sample Nos. 2 and 3 each have a tensile strength of 134 Kgf/mm 2 , and sample No. 1 and 2 have a tensile strength of all dies. Perform water cooling after the wire,
Sample No. 3 was not water-cooled after wire drawing. As a result of the test, no vertical cracks occurred in sample No. 1, and vertical cracks occurred in sample No. 2. In addition, sample No. 3 broke during wire drawing, so no further tests were conducted. From the above results, it can be seen that the galvanized steel wire according to the present invention has high strength and excellent toughness. Example 3 Wire diameter is 13 mm, its components are C: 0.77%, Si: 0.92
%, Mn: 0.75%, Al: 0.055%, N: 0.009% steel wire, and the wire diameter is 13 mm and its components are C: 0.76%, Si:
0.22%, Mn: 0.71%, Al: 0.010%, N: 0.003%
After applying lead patenting to each steel wire, the wire was drawn to a wire diameter of 4 mm at a wire drawing rate of 90.5%.
As a result of a bending test of approximately 120° with a radius of curvature of 3 mm, the third
The results are as shown in the table. In the same table, sample No. 1 is according to the present invention and is made with the former component and all the dice are water-cooled, and sample No. 2 is a comparative material with the latter component. , and sample no.
Sample No. 1 was drawn at a drawing speed of 150 m/min and then water-cooled, while Sample No. 2 was drawn at a drawing speed of 30 m/min and then water-cooled.

【表】 上記表において、試料No.1は鉛パテンテイング
後の抗張力が139Kgf/mm2、試料No.2は126Kgf/
mm2であり、また試験の結果試料No.1は縦割れが発
生せず、試料No.2では縦割れが発生した。 上記の結果から、従来は直径4mmの鋼線におい
て、抗張力が(232−68log d)Kgf/mm2の範囲
内では靱延性が著しく低下していたが、この発明
によるものでは、良好な曲げ加工性および捻回特
性を有することがわかる。 実施例 4 線径5mmと3mmで、その成分がC:0.85%、
Si:1.20%、Mn:0.85%、Al:0.041%、N:
0.008%の鋼線(本発明材)と、線径5mmと3mm
でその成分がC:0.72%、Si:0.30%、Mn:0.68
%、Al:0.010%、N:0.003%の鋼線(比較材)
とをそれぞれ鉛パテンテイングした後、伸線速度
300m/min、伸線加工度89.8%で線径1.6mmおよ
び0.96mmまでそれぞれ伸線し、ついで440℃でブ
ルーイングしたものを、C%−Snの置換めつき
を行い、ビードワイヤを製作した。なお、上記本
発明材についてはダイス後面の直接水冷を行い、
比較材については後面直接冷却は行つていない。 上記本発明材の鉛パテンテイング後の抗張力は
152Kgf/mm2、比較材のそれは124Kgf/mm2であつ
た。また、比較材についてはさらに高強度化させ
たものについても検討するため、鉛パテンテイン
グ後の抗張力は上記同様で線径6mmのものを線径
1.6mmに、線径3.6mmのものを線径0.96mmにそれぞ
れ上記同様の条件で伸線し、ビードワイヤを製作
した。 その結果は第4表に示す通りであり、同表にお
いて試料No.1および4はこの発明によるもので全
ダイスについて水冷を行なつたもの、試料No.2、
3、5および6は比較法によるものである。試料
1、2は母線の線径が3.0mmで伸線加工度が89.8
%、試料3は母線の線径が3.6mmで伸線加工度が
92.9%、試料4、5は母線の線径が5mmで伸線加
工度が89.8%、試料6は母線の線径が6mm、伸線
加工度が92.9%のものである。またBWはビード
ワイヤを示す。 上記表において、この発明のものは強度、靱性
ともに優れているが、比較材は現状の強度の低い
場合は正常捻回であるが、強度を高くすると捻回
も低く脆化が著しい。
[Table] In the above table, sample No. 1 has a tensile strength of 139Kgf/mm 2 after lead patenting, and sample No. 2 has a tensile strength of 126Kgf/mm 2 .
mm 2 , and as a result of the test, no vertical cracks occurred in sample No. 1, and vertical cracks occurred in sample No. 2. From the above results, it can be seen that conventionally, the toughness and ductility of steel wires with a diameter of 4 mm decreased significantly when the tensile strength was within the range of (232-68 log d) Kgf/ mm2 , but with the present invention, good bending workability was observed. It can be seen that it has good flexibility and twisting properties. Example 4 Wire diameters are 5 mm and 3 mm, and the component is C: 0.85%,
Si: 1.20%, Mn: 0.85%, Al: 0.041%, N:
0.008% steel wire (invention material) and wire diameter 5mm and 3mm
Its components are C: 0.72%, Si: 0.30%, Mn: 0.68
%, Al: 0.010%, N: 0.003% steel wire (comparison material)
After lead patenting and wire drawing speed
The wires were drawn to wire diameters of 1.6 mm and 0.96 mm at 300 m/min and a wire drawing rate of 89.8%, and then blued at 440° C., followed by C%-Sn substitution plating to produce bead wires. In addition, for the above-mentioned material of the present invention, the rear surface of the die was directly water-cooled.
For comparison materials, direct cooling on the rear surface was not performed. The tensile strength of the above invention material after lead patenting is
152Kgf/mm 2 , and that of the comparative material was 124Kgf/mm 2 . In addition, as for comparison materials, we will also consider materials with even higher strength, so the tensile strength after lead patenting is the same as above, but the wire diameter is 6 mm.
A bead wire of 1.6 mm and 3.6 mm in diameter was drawn to a wire diameter of 0.96 mm under the same conditions as above to produce bead wire. The results are shown in Table 4, in which samples No. 1 and 4 are according to the present invention and all dice were water-cooled, sample No. 2,
3, 5 and 6 are by comparative method. Samples 1 and 2 have a generatrix wire diameter of 3.0 mm and a wire drawing degree of 89.8.
%, sample 3 has a generatrix wire diameter of 3.6 mm and a wire drawing degree.
92.9%, samples 4 and 5 have a generatrix wire diameter of 5 mm and a wire drawing degree of 89.8%, and sample 6 has a generatrix wire diameter of 6 mm and a wire drawing degree of 92.9%. Also, BW indicates bead wire. In the above table, the material of the present invention is excellent in both strength and toughness, while the comparative material has normal twisting when the current strength is low, but when the strength is increased, the twisting is low and embrittlement is significant.

【表】 (発明の効果) 以上説明したように、この発明は、C、Si、
Mn、Al、N等の成分を適切に調整するととも
に、伸線回数、伸線速度、伸線加工度等の条件を
適切な範囲に設定することにより、亜鉛めつきを
行つた高強度高靱性の鋼線および低温焼鈍を行つ
た高強度高靱性の鋼線を製造することができるよ
うにしたものである。 この高強度化によりワイヤロープ、ACSR、ビ
ードワイヤ、およびPC、バネ等の製品において
使用鋼材の量の低減が可能となり、経済性の向上
が期待できる。
[Table] (Effects of the invention) As explained above, this invention provides C, Si,
High strength and high toughness achieved through zinc plating by appropriately adjusting components such as Mn, Al, and N, and setting conditions such as the number of wire drawings, wire drawing speed, and degree of wire drawing within appropriate ranges. This makes it possible to produce high-strength, high-toughness steel wires and low-temperature annealed steel wires. This increased strength makes it possible to reduce the amount of steel used in products such as wire rope, ACSR, bead wire, PC, and springs, and is expected to improve economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼線の線径と抗張力との関係で靱延性
が発生する領域を示す特性図、第2図は伸線およ
び冷却を行う装置の断面図である。 1……鋼線、2……伸線装置、3……冷却装
置、10……伸線後の鋼線、25……ダイス、3
0……冷却室。
FIG. 1 is a characteristic diagram showing the region where toughness and ductility occur due to the relationship between the wire diameter and tensile strength of the steel wire, and FIG. 2 is a sectional view of a device for drawing and cooling the wire. DESCRIPTION OF SYMBOLS 1...Steel wire, 2...Wire drawing device, 3...Cooling device, 10...Steel wire after wire drawing, 25...Dice, 3
0...Cooling room.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.70〜1.00%、Si:0.50〜2.00%、Mn:
0.50〜1.50%、N:0.003〜0.015%およびAl:
0.020〜0.100%含み、残部がFeと不可避的不純物
からなる線材をパテンテイング処理することによ
り微細パーライト組織で引張強さ138Kgf/mm2
上とした後、伸線回数7〜16回、伸線速度50〜
550m/min、伸線加工度70〜93%の条件で伸線
し、かつ最終の伸線ダイスから数えて少なくとも
4番目以降の後半のダイスについては全て伸線後
直ちに水冷することを特徴とする靱延性に優れた
高強度高靱性鋼線の製造方法。
1 C: 0.70-1.00%, Si: 0.50-2.00%, Mn:
0.50-1.50%, N: 0.003-0.015% and Al:
A wire rod containing 0.020~0.100% and the balance consisting of Fe and unavoidable impurities is patented to have a fine pearlite structure with a tensile strength of 138 Kgf/mm2 or more , and then the wire is drawn 7~16 times at a wire drawing speed of 50. ~
The wire is drawn at a speed of 550 m/min and a wire drawing degree of 70 to 93%, and all dies in the second half, starting from the fourth die counting from the final wire drawing die, are all cooled with water immediately after drawing. A method for producing high-strength, high-toughness steel wire with excellent toughness and ductility.
JP12878986A 1986-06-02 1986-06-02 High-strength high-toughness steel wire having excellent toughness and ductility and production thereof Granted JPS62284044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12878986A JPS62284044A (en) 1986-06-02 1986-06-02 High-strength high-toughness steel wire having excellent toughness and ductility and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12878986A JPS62284044A (en) 1986-06-02 1986-06-02 High-strength high-toughness steel wire having excellent toughness and ductility and production thereof

Publications (2)

Publication Number Publication Date
JPS62284044A JPS62284044A (en) 1987-12-09
JPH0526851B2 true JPH0526851B2 (en) 1993-04-19

Family

ID=14993493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12878986A Granted JPS62284044A (en) 1986-06-02 1986-06-02 High-strength high-toughness steel wire having excellent toughness and ductility and production thereof

Country Status (1)

Country Link
JP (1) JPS62284044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761825A3 (en) * 1995-08-24 1998-09-09 Shinko Kosen Kogyo Kabushiki Kaisha High strength steel strand for prestressed concrete and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553612B2 (en) * 1988-02-25 1996-11-13 新日本製鐵株式会社 Manufacturing method of high strength and high toughness galvanized steel wire
JPH03138333A (en) * 1989-10-21 1991-06-12 Nippon Steel Corp Steel wire for valve spring having excellent ductility and fatigue resistance
JP3983218B2 (en) * 2003-10-23 2007-09-26 株式会社神戸製鋼所 Ultra fine high carbon steel wire excellent in ductility and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158521A (en) * 1974-06-12 1975-12-22
JPS5920427A (en) * 1982-07-22 1984-02-02 Sumitomo Metal Ind Ltd Steel wire for steel core of steel reinforced al twisted wire and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158521A (en) * 1974-06-12 1975-12-22
JPS5920427A (en) * 1982-07-22 1984-02-02 Sumitomo Metal Ind Ltd Steel wire for steel core of steel reinforced al twisted wire and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761825A3 (en) * 1995-08-24 1998-09-09 Shinko Kosen Kogyo Kabushiki Kaisha High strength steel strand for prestressed concrete and method for manufacturing the same

Also Published As

Publication number Publication date
JPS62284044A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
CN101765672B (en) Wire rod and high-strength steel wire excellent in ductility, and processes for production of both
CN101331243B (en) High strength steel wire for good wire drawability property and the manufacture method thereof
US3666572A (en) Process for the continuous heat treatment of a low alloy steel wire material
US4889567A (en) High strength and high toughness steel bar, rod and wire and the process of producing the same
JPH07188834A (en) High strength steel sheet having high ductility and its production
JP3283332B2 (en) High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same
JPH0526851B2 (en)
CN104630614B (en) Method for improving forming performance of super-low-carbon aluminum killed steel galvanized product
JP3859331B2 (en) High fatigue strength steel wires and springs and methods for producing them
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
US4023987A (en) Method of producing soft thin steel sheet by continuous annealing
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JPH11256282A (en) Precipitation hardening martensitic stainless steel excellent in strength, toughness, and fatigue characteristic, and its production
JP3307715B2 (en) Surface treated original plate for DI can with excellent necked-in properties
JPH02240242A (en) Stainless steel wire having excellent high strength characteristics and its manufacture
JPH07292443A (en) High strength and high toughness hot-dip plated steel wire and its production
JPH0995733A (en) Production of high strength non-heat treated wire rod for bolt
JPH09137247A (en) High workability steel sheet excellent in high strengthening characteristic by heating
JPH0124208B2 (en)
JPH08295931A (en) Wire rod excellent in wire drawability
JPH05302120A (en) Production of high tensile strength steel wire
JPH06136452A (en) Production of hard steel wire
JP3340232B2 (en) Manufacturing method of high strength steel wire
JPH089734B2 (en) Method for producing ultra high strength steel wire with excellent ductility
JPS62112752A (en) Wire rod for extra fine wire having high strength, high toughness, high ductility, and corrosion resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees