JPS5939527B2 - Method for producing carbon fiber with branches - Google Patents

Method for producing carbon fiber with branches

Info

Publication number
JPS5939527B2
JPS5939527B2 JP315081A JP315081A JPS5939527B2 JP S5939527 B2 JPS5939527 B2 JP S5939527B2 JP 315081 A JP315081 A JP 315081A JP 315081 A JP315081 A JP 315081A JP S5939527 B2 JPS5939527 B2 JP S5939527B2
Authority
JP
Japan
Prior art keywords
fibers
carbon fibers
carbon fiber
branches
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP315081A
Other languages
Japanese (ja)
Other versions
JPS57117623A (en
Inventor
守信 遠藤
恒夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP315081A priority Critical patent/JPS5939527B2/en
Publication of JPS57117623A publication Critical patent/JPS57117623A/en
Publication of JPS5939527B2 publication Critical patent/JPS5939527B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭素繊維に気相法による炭素繊維の分枝を形成
させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming carbon fiber branches in carbon fibers by a vapor phase method.

炭素繊維は高強度、高弾性等の優れた性質を有するため
各種の材料に用いられており、その使用分野も拡大され
つつある。
Carbon fibers have excellent properties such as high strength and high elasticity, so they are used in various materials, and the fields of their use are also expanding.

従来製造されている炭素繊維はポリアクリロニトリル等
の合成繊維、ピンチ繊維、セルロース繊維等の有機繊維
を炭化したもの、あるいはベンゼン等の炭化水素を特殊
の条件下で熱分解し、炭素繊維とするものである。
Conventionally manufactured carbon fibers are those made by carbonizing synthetic fibers such as polyacrylonitrile, organic fibers such as pinch fibers and cellulose fibers, or those made by thermally decomposing hydrocarbons such as benzene under special conditions. It is.

後者は気相法炭素繊維と呼ばれ、結晶欠陥が極めて少な
く、従って強度、弾性率とも前者の繊維にくらべ著しく
高いのが特徴である。
The latter is called vapor-grown carbon fiber, and is characterized by having extremely few crystal defects and therefore having significantly higher strength and elastic modulus than the former fiber.

炭素繊維は一般に樹脂、セラミック、金属等との複合材
料として使用され、特に近年は軽量にして高強度、高弾
性の材料として各方面で注目され、用途も拡大しつつあ
る。
Carbon fiber is generally used as a composite material with resins, ceramics, metals, etc., and in recent years in particular has attracted attention in various fields as a lightweight, high-strength, high-elastic material, and its uses are expanding.

これらの複合材料において、炭素繊維はトウ状フェルト
状等各種の形態で使用される。
In these composite materials, carbon fibers are used in various forms such as tow and felt.

複合材料においては、マトリックスとなる樹脂、金属等
とのなじみ、接着性がよいことが重要である。
For composite materials, it is important that they have good compatibility and adhesion with matrix resins, metals, etc.

このため通常、炭素繊維は表面をわずかに酸化処理して
粗とし、これを複合材料に使用している。
For this reason, the surface of carbon fiber is usually slightly oxidized to make it rough, and then used in composite materials.

複合材料以外の炭素繊維の利用としては、特殊なものと
して、活性化処理して吸着剤とするものや、フィルター
材などがある。
Special uses of carbon fibers other than composite materials include those that undergo activation treatment to become adsorbents and filter materials.

このような従来知られている炭素繊維のフィラメントは
殆んどが枝のないものである。
Most of such conventionally known carbon fiber filaments are branchless.

これは炭化する前の原糸は紡糸によってつくられること
から当然である。
This is natural since the raw yarn before carbonization is produced by spinning.

気相法による炭素繊維では1部枝のあるものも発見され
るが、意図的につくられたものは少なく、そして枝のあ
る繊維が如何なる機構によって生成するかは全く不明で
あった。
Carbon fibers produced by the vapor phase method have been found to have some branches, but few have been intentionally created, and it was completely unclear what mechanism produced the branched fibers.

本発明者は先に金属等の微粒子が気相法炭素繊維の生成
に関与していることを発見し、特許出願した(特開昭5
2−103528)。
The present inventor previously discovered that fine particles such as metals are involved in the production of vapor-grown carbon fiber, and filed a patent application (Japanese Patent Application Laid-Open No.
2-103528).

本発明は炭素繊維生成におけるこの金属等の微粒子の作
用機構を解明し、これを応用することによりなされたも
のである。
The present invention was accomplished by elucidating the mechanism of action of fine particles of metal, etc. in the production of carbon fibers, and applying this knowledge.

即ち、本発明は予じめ用意された炭素繊維(黒鉛繊維を
含む)の表面に金属もしくは金属化合物の微粒子を付着
させ、これを気相法炭素繊維の生成条件下で保持するこ
とにより、微粒子が付着した部分より、気相法炭素繊維
を生成、成長させ、前記用意された炭素繊維に分枝を形
成させる方法である。
That is, in the present invention, fine particles of metal or metal compound are attached to the surface of carbon fibers (including graphite fibers) prepared in advance, and the fine particles are formed by attaching fine particles of a metal or a metal compound to the surface of carbon fibers prepared in advance and holding the fine particles under conditions for producing vapor-grown carbon fibers. In this method, vapor-grown carbon fibers are produced and grown from the portion to which the carbon fibers are attached, and branches are formed in the prepared carbon fibers.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

予じめ用意する炭素繊維にはアクリロニトリル等の合成
繊維、セルロース等の天然繊維、ピッチ繊維等各種の繊
維を炭化して炭素繊維としたもの、あるいは気相法炭素
繊維を用いることができる。
The carbon fibers prepared in advance may be synthetic fibers such as acrylonitrile, natural fibers such as cellulose, carbon fibers obtained by carbonizing various fibers such as pitch fibers, or vapor grown carbon fibers.

気相法炭素繊維を用いる場合は、先ず前記した特開昭5
2−103528等の方法で炭素繊維を生成させ、これ
をそのまま同一炉内で用いることもできる。
When using vapor-grown carbon fiber, first the above-mentioned Japanese Patent Application Laid-Open No.
It is also possible to generate carbon fiber by a method such as No. 2-103528 and use it as it is in the same furnace.

勿論、別に製造した気相法炭素を用いることができるこ
とは云うまでもない。
Of course, it goes without saying that vapor-grown carbon produced separately can also be used.

これらの炭素繊維はその太さ、あるいは形態例えば各フ
ィラメントがトウ状に揃っているかフェルト状にランダ
ムになっているかに関係なく用いることができる。
These carbon fibers can be used regardless of their thickness or shape, for example, whether the filaments are arranged in a tow-like manner or randomly in a felt-like manner.

ただ各フィラメントから分枝を形成させるには各フィラ
メントはある程度拡散した状態にしておくことが必要で
ある。
However, in order to form branches from each filament, it is necessary to keep each filament in a somewhat diffused state.

炭素繊維に付着させる金属としてはTi、Zr等の第4
a族、V、Nb等の第5a族、Cr、Mo等の第6a族
、Mn等の第7a族、Fe、Co等の第8族の元素等広
い範囲で用いることができるが、最も効果的で望ましい
のはFe、Co、Ni、V、Nb。
Examples of metals to be attached to carbon fibers include quaternary metals such as Ti and Zr.
It can be used in a wide range of elements, including elements of group a, group 5a such as V and Nb, group 6a such as Cr and Mo, group 7a such as Mn, and group 8 elements such as Fe and Co. Preferred are Fe, Co, Ni, V, and Nb.

Ta、Ti、Zrである。They are Ta, Ti, and Zr.

また金属化合物としては上記した金属の酸化物、炭化物
その細化合物の種類には限定されない。
Further, the metal compound is not limited to the above-mentioned metal oxides, carbides, and fine compounds.

この中には炭素繊維生成条件下においてH2により還元
され金属になるものもある。
Some of these are reduced to metals by H2 under carbon fiber production conditions.

これらの金属あるいはその金属化合物は特に超微粒のも
のが効果が大きい。
Ultrafine particles of these metals or their metal compounds are particularly effective.

実験によればこれらの粒子は300λ以下が最も望まし
い。
According to experiments, it is most desirable for these particles to have a diameter of 300λ or less.

炭素繊維の生成はこの微粒子を起点とし、初めは極めて
細い繊維がこの微粒子を繊維の頭部に付けたまま成長す
る。
The production of carbon fibers starts from these fine particles, and initially extremely thin fibers grow with these fine particles attached to the fiber head.

このような超微粒子の触媒効果によるため超微粉が必要
不可欠なものであり、本技術の特徴とするところである
Due to the catalytic effect of such ultrafine particles, ultrafine powder is indispensable and is a feature of this technology.

炭素繊維に超微粒子を付着させるいわゆるシーデング(
Seeding )の方法としては特に限定はなく、例
えばアルコール等の溶媒に微粒子を懸濁させ、この液中
に炭素繊維を通せばよい。
So-called seeding, which attaches ultrafine particles to carbon fibers (
There are no particular limitations on the method of seeding, and for example, fine particles may be suspended in a solvent such as alcohol, and carbon fibers may be passed through this liquid.

懸濁の量をコントロールすれば付着量を調節することが
できる。
By controlling the amount of suspension, the amount of adhesion can be adjusted.

液中を通した後、気相法炭素繊維の生成炉内を通せば連
続化も可能である。
After passing through the liquid, continuous production is possible by passing it through a vapor-grown carbon fiber production furnace.

その他分散媒を炭素繊維にスプレーすることにより微粒
子を付着させることも可能である。
It is also possible to attach the fine particles by spraying a dispersion medium onto the carbon fibers.

シーデング量は極めて少なくてよく、炭素繊維に対し、
0.001〜0.3重量係の範囲が適当であるが、分枝
発生状態はこのシーデング作用によって制御可能である
The amount of seeding needs to be extremely small, and compared to carbon fiber,
A range of 0.001 to 0.3 weight ratio is appropriate, and the state of branching can be controlled by this seeding effect.

このようにして超微粒子をシーデングした炭素繊維を続
いて気相法炭素繊維の生成条件下に保持する。
The carbon fiber seeded with ultrafine particles in this manner is then held under conditions for producing vapor-grown carbon fiber.

この方法は既に提案されている方法を用いることができ
る。
For this method, a method that has already been proposed can be used.

その概略を説明すれば炭素繊維の生成は温度が950〜
1300℃の炉内にベンゼン、トルエン、メタン、エタ
ン等の炭化水素ガスをH2ガスを含むキャリアガスと共
に通すことにより起る。
To give you an overview, carbon fiber is produced at a temperature of 950~
This occurs by passing a hydrocarbon gas such as benzene, toluene, methane, or ethane into a furnace at 1300° C. together with a carrier gas containing H2 gas.

この場合950〜1030°Cと低温の条件では核とな
るべき細い繊維(素繊維)の生成が主となり、その温度
以上ではこの細い繊維が太くなる成長が主となる。
In this case, under the low temperature conditions of 950 to 1030°C, the production of thin fibers (elementary fibers) to serve as the nucleus is the main activity, and above that temperature, the growth of these thin fibers becomes thick.

またこの関係は炉内を通すガスの流速を変えることによ
っても調整することができる。
This relationship can also be adjusted by changing the gas flow rate through the furnace.

即ち、ガス流速を例えば100〜1500crrL/分
と速くすると素繊維の生成が主となり、流速を10〜3
0CrfL/分程度に落せば太さの成長が主となる。
That is, when the gas flow rate is increased to, for example, 100 to 1500 crrL/min, elementary fibers are mainly generated, and when the gas flow rate is increased to 10 to 3
If it is reduced to about 0CrfL/min, the growth will be mainly in thickness.

キャリアガスとしてはH2ガスが最も望ましいが、これ
にアルゴン等の不活性ガスを混合することもできる。
Although H2 gas is most desirable as the carrier gas, an inert gas such as argon can also be mixed therein.

混合の場合はH2ガスが30係以上存在していることが
好ましい。
In the case of mixing, it is preferable that 30 parts or more of H2 gas is present.

炭化水素ガスとキャリアガスとの混合ガス中、炭化水素
ガスの含有率は、温度、流速その他用いる装置によって
適正範囲が選ばれるが、一般的には1〜60容積係が適
当である。
The content of hydrocarbon gas in the mixed gas of hydrocarbon gas and carrier gas is selected within an appropriate range depending on the temperature, flow rate, and other equipment used, but in general, a range of 1 to 60 volume ratio is appropriate.

この範囲でベンゼン等C/H比が高い炭化水素ではキャ
リアガスを多くし、メタン等C/H比が低いものは少な
目とすることが好ましい。
In this range, it is preferable to use a large amount of carrier gas for hydrocarbons with a high C/H ratio such as benzene, and less amount for hydrocarbons with a low C/H ratio such as methane.

これらの炭素繊維の生成条件を用いて本発明の分枝のあ
る繊維を得ることができる。
The branched fibers of the present invention can be obtained using these carbon fiber production conditions.

前記した超微粒子をシーデングした炭素繊維を上記の炭
素繊維生成条件下に保持する。
The carbon fiber seeded with the ultrafine particles described above is maintained under the carbon fiber production conditions described above.

この場合は先ず素繊維生成条件、即ち比較的低温側又は
高流速側とすることが適当である。
In this case, first, it is appropriate to set the fiber production conditions to be relatively low temperature or high flow rate.

分枝として発生した細い素繊維(数百λφ)を10μ前
後の太さに成長させるには続いて高温側又は低流速で処
理すればよい。
In order to grow the thin elementary fibers (several hundred λφ) generated as branches to a thickness of about 10 μm, it is necessary to subsequently process the fibers at a high temperature or at a low flow rate.

以上の温度、ガス流速、繊維の保持時間(連続化の場合
は通過速度)を適当に組合せれば分枝繊維の太さ、長さ
を調節することができる。
The thickness and length of the branched fibers can be adjusted by appropriately combining the above temperature, gas flow rate, and fiber retention time (passing speed in the case of continuous fibers).

太さについては数百λ〜数百μまで広範囲のものを得る
ことができる。
Regarding the thickness, it is possible to obtain a wide range of thicknesses from several hundred λ to several hundred μ.

長さの成長は30分〜1時間で5〜15crrLである
Length growth is 5-15 crrL in 30 minutes to 1 hour.

また分枝繊維の発生密度は超微粒子のシーデング量を調
節すればよい。
The density of branched fibers can be adjusted by adjusting the amount of ultrafine particle seeding.

本発明の方法により得られた分枝のある炭素繊維はこれ
を樹脂等と複合化した場合、分枝が多方向に伸びている
ため、炭素繊維が複合材中二次元、三次元に配置される
ので、複合強化の上で非常に良好となる。
When the branched carbon fiber obtained by the method of the present invention is composited with resin etc., the branches extend in multiple directions, so the carbon fibers are arranged two-dimensionally or three-dimensionally in the composite material. Therefore, it is very suitable for composite reinforcement.

またフェルト状炭素繊維に分枝を形成させたものは元の
繊維間に縦横に分枝が存在し、交絡するので、フェルト
としても好ましい状態となる。
In addition, felt-like carbon fibers with branches are present in the vertical and horizontal directions between the original fibers and become intertwined, making it suitable for use as felt.

またトウの状態でも単繊維相互の絡みが良好となり、炭
素繊維取扱い上の作業能率も著しく向上する。
In addition, even in the tow state, the intertwining of the single fibers becomes good, and the work efficiency in handling carbon fibers is significantly improved.

本発明によって得られた炭素繊維を2000℃以上のよ
うな高温処理して、さらに高性能の繊維(黒鉛繊維)と
することもできる。
The carbon fiber obtained according to the present invention can be treated at a high temperature of 2000° C. or higher to produce even higher performance fiber (graphite fiber).

実施例 I Feの超微粉(200〜300人、日本真空冶金(株)
製)101ru?をエチルアルコール100CC中に分
散させた。
Example I Fe ultrafine powder (200-300 people, Japan Shinku Yakin Co., Ltd.)
Made) 101ru? was dispersed in 100 cc of ethyl alcohol.

この中に気相法の炭素繊維(長さ120mm、太さ15
μ)10.9を分散させて浸漬し、引上げ後乾燥した。
In this, vapor phase carbon fiber (length 120 mm, thickness 15
μ) 10.9 was dispersed and immersed, pulled up and dried.

超微粉の付着量は0.002重量係であった。The amount of ultrafine powder adhered was 0.002% by weight.

ここを黒鉛の基板に載せ、炉内に配置されているアルミ
ナ炉芯管内に装入した。
This was placed on a graphite substrate and charged into an alumina furnace core tube placed in a furnace.

炉芯管内にベンゼンとH2の混合ガス(ベンゼン10容
量係)を毎分的20crfLの流速で流し、温度を約1
000℃にした。
A mixed gas of benzene and H2 (10 volumes of benzene) was flowed into the furnace core tube at a flow rate of 20 crfL per minute, and the temperature was kept at about 1
000℃.

この状態で60〜120分間保持した後、放冷し、基板
を取出したところ炭素繊維に多数の細い素繊維が枝状に
生成した。
After holding this state for 60 to 120 minutes, it was allowed to cool, and when the substrate was taken out, many thin elementary fibers were formed in the carbon fibers in the form of branches.

この素繊維は太さが0.1〜3μの範囲にあり、その長
さは10〜120mmの範囲にバラついていた。
The thickness of these elementary fibers was in the range of 0.1 to 3 μm, and the length was varied in the range of 10 to 120 mm.

全体の重量は10.5gであり、元の繊維の太さは殆ん
ど変りがないので、元の繊維に対し約5%が分枝繊維と
なる。
The total weight is 10.5 g, and since the thickness of the original fibers is almost unchanged, about 5% of the original fibers are branched fibers.

なお、この操作を数回くり返すとフェルト状炭素繊維が
製造できる。
Note that by repeating this operation several times, felt-like carbon fibers can be produced.

実施例 2 実施例1の気相法炭素繊維に代えて市販のポリアクリロ
ニトリルからの炭素繊維を用いた。
Example 2 In place of the vapor-grown carbon fiber of Example 1, carbon fiber made from commercially available polyacrylonitrile was used.

繊維の太さは約10μである。The thickness of the fiber is approximately 10μ.

微粉としてFeの代りにNiを用いた以外は例1と同様
に処理したところ、最終的に得られた繊維は元の繊維の
太さが約10μ、分枝部分の繊維は長さが5〜12mr
IL1太さは約0.1〜3μの範囲にあった。
The process was carried out in the same manner as in Example 1 except that Ni was used instead of Fe as the fine powder, and the final fiber obtained had an original fiber thickness of about 10 μm and a branched fiber length of 5 to 5 μm. 12mr
The IL1 thickness was in the range of about 0.1-3μ.

元の繊維が幾分太くなったことを考慮して計算すると概
略光の繊維に対し5係が分枝部分の繊維である。
Taking into consideration that the original fiber has become somewhat thicker, calculations show that approximately 5th part of the optical fiber is the branched fiber.

Claims (1)

【特許請求の範囲】 1 予じめ用意された炭素繊維の表面に金属もしくは金
属化合物の微粒子を付着させ、これを炭化水素ガスとキ
ャリアガスとの混合ガス中、950〜1300℃に保持
し、前記炭素繊維に分枝状炭素繊維を形成させることを
特徴とする分枝を有する炭素繊維の製造法。 2 予じめ用意された炭素繊維が気相法によるものであ
る特許請求の範囲第1項記載の分校を有する炭素繊維の
製造法。 3 予じめ用意された炭素繊維が有機繊維の炭化により
製造されたものである特許請求の範囲第1項記載の分枝
を有する炭素繊維の製造法。
[Claims] 1. Fine particles of metal or metal compound are attached to the surface of carbon fiber prepared in advance, and this is maintained at 950 to 1300°C in a mixed gas of hydrocarbon gas and carrier gas, A method for producing carbon fibers having branches, which comprises forming branched carbon fibers in the carbon fibers. 2. The method for producing carbon fibers having branched fibers according to claim 1, wherein the carbon fibers prepared in advance are produced by a vapor phase method. 3. The method for producing carbon fibers having branches according to claim 1, wherein the carbon fibers prepared in advance are produced by carbonizing organic fibers.
JP315081A 1981-01-14 1981-01-14 Method for producing carbon fiber with branches Expired JPS5939527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP315081A JPS5939527B2 (en) 1981-01-14 1981-01-14 Method for producing carbon fiber with branches

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP315081A JPS5939527B2 (en) 1981-01-14 1981-01-14 Method for producing carbon fiber with branches

Publications (2)

Publication Number Publication Date
JPS57117623A JPS57117623A (en) 1982-07-22
JPS5939527B2 true JPS5939527B2 (en) 1984-09-25

Family

ID=11549316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP315081A Expired JPS5939527B2 (en) 1981-01-14 1981-01-14 Method for producing carbon fiber with branches

Country Status (1)

Country Link
JP (1) JPS5939527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523506A (en) * 2009-04-10 2012-10-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Fiber sizing agent composed of nanoparticles

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156512A (en) * 1982-03-08 1983-09-17 Nippon Steel Corp Fibrous carbon material having thickly grown fine carbon cilium
JPS59228020A (en) * 1983-06-10 1984-12-21 Idemitsu Kosan Co Ltd Preparation of carbon fiber having branch
JPS61266666A (en) * 1985-05-21 1986-11-26 株式会社豊田中央研究所 Fiber for composite material and its production
CA2364075A1 (en) 1992-05-22 1993-12-09 Hyperion Catalysis International, Inc. Improved methods and catalysts for the manufacture of carbon fibrils
CN100336952C (en) 2000-12-20 2007-09-12 昭和电工株式会社 Branched vapor-grown carbon fiber, electrically conductive transparent compsn. and use thereof
WO2005026430A1 (en) * 2003-09-16 2005-03-24 Showa Denko K. K. Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
JP3776111B1 (en) * 2004-08-31 2006-05-17 株式会社物産ナノテク研究所 Carbon fiber structure
WO2006025462A1 (en) * 2004-08-31 2006-03-09 Bussan Nanotech Research Institute Inc. Carbon fiber structure
JP3850427B2 (en) * 2005-03-22 2006-11-29 株式会社物産ナノテク研究所 Carbon fiber bonded body and composite material using the same
JP2007119532A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Electroconductive coating material
JP2007119647A (en) * 2005-10-28 2007-05-17 Bussan Nanotech Research Institute Inc Composite material
JP4847106B2 (en) 2005-11-18 2011-12-28 保土谷化学工業株式会社 Carbon fiber structure
JP2007138338A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Composite material
JP2007138039A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Recycled composite material
JP4570553B2 (en) * 2005-11-18 2010-10-27 保土谷化学工業株式会社 Composite material
JP5054915B2 (en) * 2005-11-21 2012-10-24 保土谷化学工業株式会社 Method for producing carbon fiber structure
JP5364904B2 (en) * 2006-11-02 2013-12-11 島根県 Method for producing carbon nanofiber aggregate
US8158217B2 (en) * 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523506A (en) * 2009-04-10 2012-10-04 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー Fiber sizing agent composed of nanoparticles

Also Published As

Publication number Publication date
JPS57117623A (en) 1982-07-22

Similar Documents

Publication Publication Date Title
JPS5939527B2 (en) Method for producing carbon fiber with branches
US4900483A (en) Method of producing isotropically reinforced net-shape microcomposites
US4855091A (en) Method for the preparation of carbon filaments
US5780101A (en) Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
JPS6054998A (en) Production of carbon fiber grown in vapor phase
JPS63503555A (en) Novel carbon fibrils
Fan et al. The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers
JPH0827279A (en) Composite material containing new carbon fibril
EP1368505B1 (en) A ccvd method for producing tubular carbon nanofibers
US20030072942A1 (en) Combinative carbon material
US4970123A (en) Isotropically reinforced net-shape microcomposites
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
US5039504A (en) Process for producing graphite whiskers
JP3817703B2 (en) Method and apparatus for producing coiled carbon fiber
JPS5822571B2 (en) Carbon fiber manufacturing method using vapor phase method
Yang et al. Controllable synthesis of carbon microcoils/nanocoils by catalysts supported on ceramics using catalyzed chemical vapor deposition process
JP3071571B2 (en) Method for producing vapor grown carbon fiber
JP2006045668A (en) Whisker-coating material and producing method therefor
JPH0310566B2 (en)
JP4048138B2 (en) Coin-stacked nanographite, method for producing the same, and catalyst for the production thereof
JPS6278217A (en) Vapor-phase production of carbon fiber
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPS63283750A (en) Catalyst using carbon fibers as carrier
JPS58156513A (en) Carbon powder having thickly grown fine carbon cilia
EP0424922A2 (en) Carbonaceous fibers and production process therefor